Fast Prediction of Airfoil Aerodynamic Characteristics Based on a Combined Autoencoder
Abstract
:1. Introduction
2. Methodology
2.1. Data Preparation
2.1.1. Airfoil Shape Dataset
2.1.2. Airfoil Aerodynamic Characteristics Dataset
2.2. The Combined Autoencoder (CAE) Network
2.2.1. Autoencoder (AE)
2.2.2. Multilayer Perceptrons (MLPs)
3. Results and Discussion
3.1. Validation of Aerodynamic Characteristics
3.2. Airfoil Shape Feature Extraction
3.3. Prediction of Aerodynamic Coefficients
3.4. Prediction of Airfoil Pressure Distribution
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Wang, Y.; Deng, L.; Wan, Y.; Yang, Z.; Yang, W.; Chen, C.; Zhao, D.; Wang, F.; Guo, Y. An Intelligent Method for Predicting the Pressure Coefficient Curve of Airfoil-Based Conditional Generative Adversarial Networks. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 3538–3552. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Kim, H.-J.; Lee, D.-H.; Rho, O.-H. Response Surface Method for Airfoil Design in Transonic Flow. J. Aircr. 2001, 38, 231–238. [Google Scholar] [CrossRef]
- Han, Z.; Zhang, K.; Song, W.; Liu, J. Surrogate-Based Aerodynamic Shape Optimization with Application to Wind Turbine Airfoils. In Proceedings of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Grapevine, TX, USA, 7–10 January 2013. [Google Scholar]
- Andrés-Pérez, E.; Carro-Calvo, L.; Salcedo-Sanz, S.; Martin-Burgos, M.J. Aerodynamic Shape Design by Evolutionary Optimization and Support Vector Machines. In Application of Surrogate-Based Global Optimization to Aerodynamic Design; Iuliano, E., Pérez, E.A., Eds.; Springer Tracts in Mechanical Engineering; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–24. ISBN 978-3-319-21505-1. [Google Scholar]
- Li, J.; Du, X.; Martins, J.R.R.A. Machine Learning in Aerodynamic Shape Optimization. Prog. Aerosp. Sci. 2022, 134, 100849. [Google Scholar] [CrossRef]
- Wallach, R.; Mattos, B.; Girardi, R.; Curvo, M. Aerodynamic Coefficient Prediction of Transport Aircraft Using Neural Network. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 9–12 January 2006. [Google Scholar]
- Santos, M.; Mattos, B.; Girardi, R. Aerodynamic Coefficient Prediction of Airfoils Using Neural Networks. In Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 7–10 January 2008. [Google Scholar]
- Bertrand, X.; Tost, F.; Champagneux, S. Wing Airfoil Pressure Calibration with Deep Learning. In Proceedings of the AIAA Aviation 2019 Forum, Dallas, TX, USA, 17–21 June 2019. [Google Scholar]
- Abbott, I.H.; Von Doenhoff, A.E.; Stivers, L., Jr. Summary of Airfoil Data; NASA: Washington, DC, USA, 1945.
- Yonekura, K.; Wada, K.; Suzuki, K. Generating Various Airfoil Shapes with Required Lift Coefficient Using Conditional Variational Autoencoders. arXiv 2021, arXiv:2106.09901. [Google Scholar] [CrossRef]
- Sobieczky, H. Parametric Airfoils and Wings. In Recent Development of Aerodynamic Design Methodologies; Fujii, K., Dulikravich, G.S., Eds.; Notes on Numerical Fluid Mechanics (NNFM); Vieweg+Teubner Verlag: Wiesbaden, Germany, 1999; Volume 65, pp. 71–87. ISBN 978-3-322-89954-5. [Google Scholar]
- Hicks, R.M.; Henne, P.A. Wing Design by Numerical Optimization. J. Aircr. 1978, 15, 407–412. [Google Scholar] [CrossRef]
- Kulfan, B.M. Universal Parametric Geometry Representation Method. J. Aircr. 2008, 45, 142–158. [Google Scholar] [CrossRef]
- Sederberg, T.W.; Parry, S.R. Free-Form Deformation of Solid Geometric Models. SIGGRAPH Comput. Graph. 1986, 20, 151–160. [Google Scholar] [CrossRef]
- Masters, D.A.; Taylor, N.J.; Rendall, T.C.S.; Allen, C.B.; Poole, D.J. Geometric Comparison of Aerofoil Shape Parameterization Methods. AIAA J. 2017, 55, 1575–1589. [Google Scholar] [CrossRef]
- Bouhlel, M.A.; He, S.C.; Martins, J. Scalable Gradient-Enhanced Artificial Neural Networks for Airfoil Shape Design in the Subsonic and Transonic Regimes. Struct. Multidiscip. Optim. 2020, 61, 1363–1376. [Google Scholar] [CrossRef]
- Li, J.; Zhang, M. Data-Based Approach for Wing Shape Design Optimization. Aerosp. Sci. Technol. 2021, 112, 106639. [Google Scholar] [CrossRef]
- Du, X.S.; He, P.; Martins, J. Rapid Airfoil Design Optimization via Neural Networks-Based Parameterization and Surrogate Modeling. Aerosp. Sci. Technol. 2021, 113, 106701. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, Q.; Lu, H. Modeling Multiresponse Surfaces for Airfoil Design with Multiple-Output-Gaussian-Process Regression. J. Aircr. 2014, 51, 740–747. [Google Scholar] [CrossRef]
- Qian, W.; Zhao, T.; Huang, Y.; He, L.; Duan, G.; Qin, C. Modeling and data mining of engineering airfoil aerodynamic characteristics. Acta Aerodyn. Sin. 2021, 39, 175–183. [Google Scholar]
- Yonekura, K.; Wada, K.; Suzuki, K. Generating Various Airfoils with Required Lift Coefficients by Combining NACA and Joukowski Airfoils Using Conditional Variational Autoencoders. Eng. Appl. Artif. Intell. 2022, 108, 104560. [Google Scholar] [CrossRef]
- Sekar, V.; Jiang, Q.; Shu, C.; Khoo, B.C. Fast Flow Field Prediction over Airfoils Using Deep Learning Approach. Phys. Fluids 2019, 31, 057103. [Google Scholar] [CrossRef]
- Bublik, O. Fast Pressure Prediction along the NACA Airfoil Using the Convolution Neural Network. In Proceedings of the 35 Conference with International Participation, Srní, Czech Republic, 4–6 November 2019. [Google Scholar]
- Bhatnagar, S.; Afshar, Y.; Pan, S.W.; Duraisamy, K.; Kaushik, S. Prediction of Aerodynamic Flow Fields Using Convolutional Neural Networks. Comput. Mech. 2019, 64, 525–545. [Google Scholar] [CrossRef]
- Yilmaz, E.; German, B. A Convolutional Neural Network Approach to Training Predictors for Airfoil Performance. In Proceedings of the 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Denver, CO, USA, 5–9 June 2017. [Google Scholar]
- Yu, B.; Xie, L.; Wang, F. An Improved Deep Convolutional Neural Network to Predict Airfoil Lift Coefficient. In Proceedings of the International Conference on Aerospace System Science and Engineering, Toronto, ON, Canada, 30 July–1 August 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 275–286. [Google Scholar]
- Zhang, Y.; Sung, W.J.; Mavris, D.N. Application of Convolutional Neural Network to Predict Airfoil Lift Coefficient. In Proceedings of the 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee, FL, USA, 9–13 January 2018. [Google Scholar]
- Chen, H.; He, L.; Qian, W.Q.; Wang, S. Multiple Aerodynamic Coefficient Prediction of Airfoils Using a Convolutional Neural Network. Symmetry 2020, 12, 544. [Google Scholar] [CrossRef]
- Zhao, T.; Qian, W.; Lin, J.; Chen, H.; Ao, H.; Chen, G.; He, L. Learning Mappings from Iced Airfoils to Aerodynamic Coefficients Using a Deep Operator Network. J. Aerosp. Eng. 2023, 36, 04023035. [Google Scholar] [CrossRef]
- Wang, J.; Li, R.; He, C.; Chen, H.; Cheng, R.; Zhai, C.; Zhang, M. An Inverse Design Method for Supercritical Airfoil Based on Conditional Generative Models. Chin. J. Aeronaut. 2022, 35, 62–74. [Google Scholar] [CrossRef]
- Ma, T.; Xie, H.; Wang, J. Pressure Distribution Prediction of Supercritical Airfoils at Multiple Flight Conditions Using Deep Learning Approach. J. Phys. Conf. Ser. 2022, 2292, 012012. [Google Scholar] [CrossRef]
- Selig, M. UIUC Airfoil Coordinates Database. Available online: https://m-selig.ae.illinois.edu/ads/coord_database.html (accessed on 23 August 2023).
- Drela, M. XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils. In Low Reynolds Number Aerodynamics; Mueller, T.J., Ed.; Lecture Notes in Engineering; Springer: Berlin/Heidelberg, Germany, 1989; Volume 54, pp. 1–12. ISBN 978-3-540-51884-6. [Google Scholar]
- Bragg, M.B. An Experimental Study of the Aerodynamics of a NACA 0012 Airfoil with a Simulated Glaze Ice Accretion; No. NASA-CR-179897. 1986. Available online: https://ntrs.nasa.gov/api/citations/19890005713/downloads/19890005713.pdf (accessed on 10 June 2024).
Latent 5 | Latent 10 | Latent 20 | Latent 40 | |
---|---|---|---|---|
Train MSE | ||||
Test MSE |
CAE5 | CAE10 | CAE20 | CAE40 | MLP | |
---|---|---|---|---|---|
100 | 77.27 | 70.83 | 106.06 | 89.39 | |
100 | 82.78 | 70.15 | 78.21 | 77.77 | |
100 | 78.42 | 66.33 | 110.48 | 86.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Qian, W.; Zhao, T.; He, L.; Chen, H.; Sun, H.; Tian, Y.; Cui, J. Fast Prediction of Airfoil Aerodynamic Characteristics Based on a Combined Autoencoder. Symmetry 2024, 16, 791. https://doi.org/10.3390/sym16070791
Wang X, Qian W, Zhao T, He L, Chen H, Sun H, Tian Y, Cui J. Fast Prediction of Airfoil Aerodynamic Characteristics Based on a Combined Autoencoder. Symmetry. 2024; 16(7):791. https://doi.org/10.3390/sym16070791
Chicago/Turabian StyleWang, Xu, Weiqi Qian, Tun Zhao, Lei He, Hai Chen, Haisheng Sun, Yuan Tian, and Jinlei Cui. 2024. "Fast Prediction of Airfoil Aerodynamic Characteristics Based on a Combined Autoencoder" Symmetry 16, no. 7: 791. https://doi.org/10.3390/sym16070791
APA StyleWang, X., Qian, W., Zhao, T., He, L., Chen, H., Sun, H., Tian, Y., & Cui, J. (2024). Fast Prediction of Airfoil Aerodynamic Characteristics Based on a Combined Autoencoder. Symmetry, 16(7), 791. https://doi.org/10.3390/sym16070791