Optical Bistability of Graphene Incorporated into All-Superconducting Photonic Crystals
Abstract
:1. Introduction
2. Complex System Composed of All-Superconducting Photonic Crystals and Graphene
3. Optical Bistability in All-Superconducting Photonic Crystal
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gibbs, H.M. Optical Bistability: Controlling Light with Light; Academic Press: Cambridge, MA, USA, 1985. [Google Scholar]
- Ni, H.; Wang, J.; Wu, A. Optical bistability in aperiodic multilayer composed of graphene and Thue-Morse lattices. Optik 2021, 242, 167163. [Google Scholar] [CrossRef]
- Hu, J.; Wu, J.; Jin, D.; Chu, S.T.; Little, B.E.; Huang, D.; Morandotti, R.; Moss, D.J. Thermo-optic response and optical bistablility of integrated high-index doped silica ring resonators. Sensors 2023, 23, 9767. [Google Scholar] [CrossRef] [PubMed]
- Li, J.B.; Liang, S.; Xiao, S.; He, M.D.; Liu, L.H.; Luo, J.H.; Chen, L.Q. A sensitive biosensor based on optical bistability in a semiconductor quantum dot-DNA nanohybrid. J. Phys. D Appl. Phys. 2018, 52, 035401. [Google Scholar] [CrossRef]
- Liu, J.C.; Wang, F.L.; Han, J.Y.; Hao, Y.Z.; Yang, Y.D.; Xia, J.L.; Huang, Y.Z. All-optical switching and multiple logic gates based on hybrid square–rectangular laser. J. Light. Technol. 2020, 38, 1382–1390. [Google Scholar] [CrossRef]
- Nagasaki, Y.; Gholipour, B.; Ou, J.Y.; Plum, E.; MacDonald, K.F.; Takahara, J.; Zheludev, N.I. Optical bistability in shape-memory nanowire metamaterial array. Appl. Phys. Lett. 2018, 113, 021105. [Google Scholar] [CrossRef]
- Zhang, W.L.; Jiang, Y.; Zhu, Y.Y.; Wang, F.; Rao, Y.J. All-optical bistable logic control based on coupled Tamm plasmons. Opt. Lett. 2013, 38, 4092–4095. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Jiang, J.; Xie, D.; Wang, S.; Bi, K.; Duan, H.; Yang, J.; He, J. Transient security transistors self-supported on biodegradable natural-polymer membranes for brain-inspired neuromorphic applications. Nanoscale 2018, 10, 14893–14901. [Google Scholar] [CrossRef] [PubMed]
- Mao, C.; Zhong, D.; Liu, F.; Wang, L.; Zhao, D. Multiple optical bistabilities in graphene arrays-bulk dielectric composites. Opt. Laser Technol. 2022, 154, 108292. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, Z.; Long, H.; Wang, K.; Wang, B.; Lu, P. Optical bistability in defective photonic multilayers doped by graphene. Opt. Quant. Electron. 2017, 49, 163. [Google Scholar] [CrossRef]
- Ni, H.; Zhou, G.P.; Xu, S.L.; Liu, F.H.; Zhao, M.M.; Duan, S.R.; Zhao, D. Low-temperature optical bistability and multistability in superconducting photonic multilayers with graphene. Results Phys. 2023, 52, 106867. [Google Scholar] [CrossRef]
- Masaya, N.; Akihiko, S.; Satoshi, M.; Goh, K.; Eiichi, K.; Takasumi, T. Optical bistable switching action of Si high-Q photonic-crystal nanocavities. Opt. Express 2005, 13, 2678–2687. [Google Scholar]
- Qian, L.; Hu, Y.; Chen, Z.; Zhao, D.; Dong, J.; Chen, X. Temperature dependence of optical bistability in superconductor–semiconductor photonic crystals embedded with graphene. Crystals 2023, 13, 545. [Google Scholar] [CrossRef]
- Ardakani, A.G.; Firoozi, F.B. Highly tunable bistability using an external magnetic field in photonic crystals containing graphene and magnetooptical layers. J. Appl. Phys. 2017, 121, 023105. [Google Scholar] [CrossRef]
- Kim, M.; Kim, S.; Kim, S. Optical bistability based on hyperbolic metamaterials. Opt. Express 2018, 26, 11620–11632. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Feng, J.; Chen, J.; Liu, H.; Yuan, S.; Guo, S.; Yu, Q.; Zeng, H. Optical bistability in a tunable gourd-shaped silicon ring resonator. Nanomaterials 2022, 12, 2447. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Xu, B.; Guo, H.; Xu, W.; Zhong, D.; Ke, S. Low threshold optical bistability in aperiodic PT-symmetric lattices composited with Fibonacci sequence dielectrics and graphene. Appl. Sci. 2019, 9, 5125. [Google Scholar] [CrossRef]
- Mirza, J.; Ghafoor, S.; Hussain, A. All-optical 2R-regeneration and continuous wave to pulsed signal wavelength conversion based on fiber nonlinearity. Opt. Quant. Electron. 2018, 50, 336. [Google Scholar] [CrossRef]
- Lee, E.H.; Kim, K.H.; Lee, H.K. Nonlinear effects in optical fiber: Advantages and disadvantages for high capacity all-optical communication application. Opt. Quant. Electron. 2002, 34, 1167–1174. [Google Scholar] [CrossRef]
- Mirza, J.; Ghafoor, S.; Hussain, A. All-optical regenerative technique for width-tunable ultra-wideband signal generation. Photonic Netw. Commun. 2019, 38, 98–107. [Google Scholar] [CrossRef]
- Zhao, D.; Ke, S.; Hu, Y.; Wang, B.; Lu, P. Optical bistability in parity-time-symmetric dielectric multilayers incorporated with graphene. J. Opt. Soc. Am. B 2019, 36, 1731–1737. [Google Scholar] [CrossRef]
- Li, Z.; Xu, Z.; Qu, X.; Wang, S.; Peng, J. Pattern transfer of hexagonal packed structure via ultrathin metal nanomesh masks for formation of Si nanopore arrays. J. Alloys Compd. 2017, 695, 458–461. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mat. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Grigorenko, A.N.; Polini, M.; Novoselov, K.S. Graphene plasmonics. Nat. Photon. 2012, 6, 749–758. [Google Scholar] [CrossRef]
- Avouris, P.; Freitag, M. Graphene photonics, plasmonics, and optoelectronics. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 72–83. [Google Scholar] [CrossRef]
- Falkovsky, L.A.; Pershoguba, S.S. Optical far-infrared properties of a graphene monolayer and multilayer. Phys. Rev. B 2007, 76, 153410. [Google Scholar] [CrossRef]
- Wang, Y.D.; Liu, H.X.; Wang, S.L.; Cai, M. A waveguide-integrated graphene-based subwavelength electro-optic switch at 1550 nm. Opt. Commun. 2021, 495, 127121. [Google Scholar] [CrossRef]
- Wang, Z.; Bing, W.; Hua, L.; Kai, W.; Lu, P. Plasmonic lattice solitons in nonlinear graphene sheet arrays. Opt. Express 2015, 23, 32679–32689. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, B.; Long, H.; Wang, K.; Lu, P. Surface plasmonic lattice solitons in semi-infinite graphene sheet arrays. J. Light. Technol. 2017, 34, 2960. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, B.; Wang, K.; Long, H.; Lu, P. Vector plasmonic lattice solitons in nonlinear graphene-pair arrays. Opt. Lett. 2016, 41, 3619. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, Z.; Qin, C.; Wang, B.; Lu, P. Asymmetric plasmonic supermodes in nonlinear graphene multilayers. Opt. Express 2017, 25, 1234. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Qin, C.; Wang, B.; Long, H.; Lu, P. Rabi oscillations of plasmonic supermodes in graphene multilayer arrays. IEEE J. Sel. Top. Quant. 2016, 23, 4600165. [Google Scholar] [CrossRef]
- Wang, F.; Qin, C.; Wang, B.; Ke, S.; Long, H.; Wang, K.; Lu, P. Rabi oscillations of surface plasmon polaritons in graphene-pair arrays. Opt. Express 2015, 23, 31136–31143. [Google Scholar] [CrossRef] [PubMed]
- Aly, A.H.; Mohamed, D.; Elsayed, H.A.; Mehaney, A. Fano resonance by means of the one-dimensional superconductor photonic crystals. J. Supercond. Nov. Magn. 2018, 31, 3827–3833. [Google Scholar] [CrossRef]
- Athe, P.; Srivastava, S. Tunable Fano resonance in one-dimensional superconducting photonic crystal. J. Supercond. Nov. Magn. 2015, 28, 2331–2336. [Google Scholar] [CrossRef]
- Athe, P.; Srivastava, S. Tunable multiple Fano resonances in one-dimensional photonic crystal containing multiple superconductor. J. Supercond. Nov. Magn. 2016, 29, 2247–2252. [Google Scholar] [CrossRef]
- Athe, P.; Srivastava, S.; Thapa, K.B. Electromagnetically induced reflectance and Fano resonance in one dimensional superconducting photonic crystal. Phys. C 2018, 547, 36–40. [Google Scholar] [CrossRef]
- Dong, X.; Ni, H.; Zhao, M.; Zhong, D.; Zhao, D.; Liu, J.; Chen, X. Tunable bandstop filtering specialities in superconducting Thue–Morse photonic multilayers. Opt. Commun. 2023, 546, 129825. [Google Scholar] [CrossRef]
- Perconte, D.; Cuellar, F.A.; Moreau-Luchaire, C.; Piquemal-Banci, M.; Galceran, R.; Kidambi, P.R.; Martin, M.-B.; Hofmann, S.; Bernard, R.; Dlubak, B.; et al. Tunable Klein-like tunnelling of high-temperature superconducting pairs into graphene. Nat. Phys. 2018, 14, 25–29. [Google Scholar] [CrossRef]
- Liu, F.; Hu, H.; Zhao, D.; Liu, F.; Zhao, M. Goos-Hänchen shift in cryogenic defect photonic crystals composed of superconductor HgBa2Ca2Cu3O8+δ. PLoS ONE 2024, 19, e0302142. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Chen, X.; Liu, Q.; Liu, J.; Liu, J.; Wang, Y. Optical fractal in cryogenic environments based on distributed feedback Bragg photonic crystals. PLoS ONE 2023, 18, e0291863. [Google Scholar] [CrossRef] [PubMed]
- Hanson, G.W. Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide. J. Appl. Phys. 2008, 104, 084314. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhuang, Y.C.; Sun, Q.F.; He, L. Coexistence of electron whispering-gallery modes and atomic collapse states in graphene/WSe2 heterostructure quantum dots. Nat. Commun. 2022, 13, 1597. [Google Scholar] [CrossRef]
- Wei, H.; Chen, X.; Zhao, D.; Zhao, M.; Wang, Y.; Zhang, P. Temperature sensing based on defect mode of one-dimensional superconductor-semiconductor photonic crystals. Crystals 2023, 13, 302. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, B.; Long, H.; Wang, K.; Lu, P. Surface vector plasmonic lattice solitons in semi-infinite graphene-pair arrays. Opt. Express 2017, 25, 20708–20717. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Bartal, G.; Genov, D.A.; Zhang, X. Subwavelength discrete solitons in nonlinear metamaterials. Phys. Rev. Lett. 2007, 99, 153901. [Google Scholar] [CrossRef] [PubMed]
- Ye, F.; Mihalache, D.; Hu, B.; Panoiu, N.C. Subwavelength plasmonic lattice solitons in arrays of metallic nanowires. Phys. Rev. Lett. 2010, 104, 106802. [Google Scholar] [CrossRef]
- Kou, Y.; Ye, F.; Chen, X. Multipole plasmonic lattice solitons. Phy. Rev. A 2011, 84, 033855. [Google Scholar] [CrossRef]
Structures | Authors | Optical Effects | Refs. |
---|---|---|---|
Graphene or graphene arrays | Wang, Z., et al. Wang, F., et al. | Spatial solitons, plasmonic supermodes, Rabi oscillations | [28,29,30,31,32,33] |
Superconductor photonic crystals | Aly, X., et al. Athe, P., et al. Dong, X., et al. | Fano resonance, filters | [34,35,36,37,38] |
Composite systems of graphene and superconductors | Perconte, D., et al. Liu, F., et al. Qian, L., et al. | Klein-like tunneling, Goos–Hänchen shift, optical bistability | [13,39,40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Q.; Liu, J.; Zhao, D.; Zhao, M.; Hu, H. Optical Bistability of Graphene Incorporated into All-Superconducting Photonic Crystals. Symmetry 2024, 16, 803. https://doi.org/10.3390/sym16070803
Xiao Q, Liu J, Zhao D, Zhao M, Hu H. Optical Bistability of Graphene Incorporated into All-Superconducting Photonic Crystals. Symmetry. 2024; 16(7):803. https://doi.org/10.3390/sym16070803
Chicago/Turabian StyleXiao, Qun, Jun Liu, Dong Zhao, Miaomiao Zhao, and Haiyang Hu. 2024. "Optical Bistability of Graphene Incorporated into All-Superconducting Photonic Crystals" Symmetry 16, no. 7: 803. https://doi.org/10.3390/sym16070803
APA StyleXiao, Q., Liu, J., Zhao, D., Zhao, M., & Hu, H. (2024). Optical Bistability of Graphene Incorporated into All-Superconducting Photonic Crystals. Symmetry, 16(7), 803. https://doi.org/10.3390/sym16070803