Current Status of the Standard Model Prediction for the Bs → μ+μ− Branching Ratio
Abstract
:1. Introduction
2. The Effective Lagrangian and the Branching Ratio Formula
3. The QCD Corrections to
4. The Electroweak Corrections
4.1. The Correction
4.2. Power-Enhanced QED Corrections
5. Numerical Analysis
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. The Branching Ratio Formula
Appendix B. Numerical Update for
Parameter | Value | Unit | Refs. |
---|---|---|---|
190.0 (1.3) | MeV | [16,17,18,19,20] | |
0.00851 (10) | - | derived from Ref. [36] | |
1.517 (4) | ps | [37] |
CKM | Other | Non-Parametric | ∑ | ||||||
---|---|---|---|---|---|---|---|---|---|
2024 [this paper] | % | % | % | % | % | <0.1% | % | % | |
2013 [10] | % | % | % | % | % | <0.1% | % | % |
References
- Aad, G.; Abajyan, T.; Abbott, B.; Abdallah, J.; Khalek, S.A.; Abdelalim, A.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; et al. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 2012, 716, 16565–16590. [Google Scholar] [CrossRef]
- Chatrchyan, S.; Khachatryan, V.; Sirunyan, A.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; et al. Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC. Phys. Lett. B 2012, 716, 30–61. [Google Scholar] [CrossRef]
- Altmannshofer, W.; Stangl, P. New physics in rare B decays after Moriond 2021. Eur. Phys. J. C 2021, 81, 952. [Google Scholar] [CrossRef] [PubMed]
- Aaij, R.; Abellan Beteta, C.; Adametz, A.; Adeva, B.; Adinolfi, M.; Adrover, C.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Alessio, F.; et al. First Evidence for the Decay → μ+μ−. Phys. Rev. Lett. 2013, 110, 021801. [Google Scholar] [CrossRef] [PubMed]
- Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Bergauer, T.; Brandstetter, J.; Dragicevic, M.; Erö, J.; Escalante Del Valle, A.; Flechl, M.; et al. Measurement of properties of → μ+μ− decays and search for B0 → μ+μ− with the CMS experiment. J. High Energy Phys. 2020, 2020, 188. [Google Scholar] [CrossRef]
- Tumasyan, A.; Adam, W.; Andrejkovic, J.W.; Bergauer, T.; Chatterjee, S.; Damanakis, K.; Dragicevic, M.; Del Valle, A.E.; Hussain, P.S.; Jeitler, M.; et al. Measurement of the → μ+μ− decay properties and search for the B0 → μ+μ− decay in proton-proton collisions at s = 13 TeV. Phys. Lett. B 2023, 842, 137955. [Google Scholar] [CrossRef]
- Aaij, R.; Beteta, C.A.; Ackernley, T.; Adeva, B.; Adinolfi, M.; Afsharnia, H.; Aidala, C.A.; Aiola, S.; Ajaltouni, Z.; Akar, S.; et al. Analysis of Neutral B-Meson Decays into Two Muons. Phys. Rev. Lett. 2022, 128, 041801. [Google Scholar] [CrossRef] [PubMed]
- Aaboud, M.; Aad, G.; Abbott, B.; Abbott, D.C.; Abdinov, O.; Abeloos, B.; Abhayasinghe, D.K.; Abidi, S.H.; AbouZeid, O.S.; Abraham, N.L.; et al. Study of the rare decays of and B0 mesons into muon pairs using data collected during 2015 and 2016 with the ATLAS detector. J. High Energy Phys. 2019, 2019, 098. [Google Scholar] [CrossRef]
- Navas, S.; Amsler, C.; Gutsche, T.; Hanhart, C.; Hernández-Rey, J.J.; Lourenço, C.; Masoni, A.; Mikhasenko, M.; Mitchell, R.E.; Patrignani, C.; et al. Review of Particle Physics. Phys. Rev. D 2024, 110, 030001. Available online: https://pdg.lbl.gov (accessed on 1 June 2024).
- Bobeth, C.; Gorbahn, M.; Hermann, T.; Misiak, M.; Stamou, E.; Steinhauser, M. Bs,d → l+l− in the Standard Model with Reduced Theoretical Uncertainty. Phys. Rev. Lett. 2014, 112, 101801. [Google Scholar] [CrossRef]
- Beneke, M.; Bobeth, C.; Szafron, R. Enhanced electromagnetic correction to the rare B-meson decay Bs,d → μ+μ−. Phys. Rev. Lett. 2018, 120, 011801. [Google Scholar] [CrossRef]
- Beneke, M.; Bobeth, C.; Szafron, R. Power-enhanced leading-logarithmic QED corrections to Bq → μ+μ−. J. High Energy Phys. 2019, 10, 232, Erratum in J. High Energy Phys. 2022, 11, 099. [Google Scholar] [CrossRef]
- Arbey, A.; Mahmoudi, F.; Stal, O.; Stefaniak, T. Status of the Charged Higgs Boson in Two Higgs Doublet Models. Eur. Phys. J. C 2018, 78, 182. [Google Scholar] [CrossRef]
- Arbey, A.; Battaglia, M.; Mahmoudi, F. Constraints on the MSSM from the Higgs Sector: A pMSSM Study of Higgs Searches, → μ+μ− and Dark Matter Direct Detection. Eur. Phys. J. C 2012, 72, 1906. [Google Scholar] [CrossRef]
- Buras, A.J.; Fleischer, R.; Girrbach, J.; Knegjens, R. Probing New Physics with the Bs → μ+μ− Time-Dependent Rate. J. High Energy Phys. 2013, 2013, 077. [Google Scholar] [CrossRef]
- Bazavov, A.; Bernard, C.; Brown, N.; DeTar, C.; El-Khadra, X.; Gámiz, E.; Gottlieb, S.; Heller, M.; Komijani, J.; Kronfeld, S.; et al. B- and D-meson leptonic decay constants from four-flavor lattice QCD. Phys. Rev. D 2018, 98, 074512. [Google Scholar] [CrossRef]
- Bussone, A.; Carrasco, N.; Dimopoulos, P.; Frezzotti, R.; Lami, P.; Lubicz, V.; Picca, E.; Riggio, L.; Rossi, G.C.; Simula, S.; et al. Mass of the b quark and B -meson decay constants from Nf=2+1+1 twisted-mass lattice QCD. Phys. Rev. D 2016, 93, 114505. [Google Scholar] [CrossRef]
- Dowdall, R.J.; Davies, C.T.H.; Horgan, R.R.; Monahan, C.J.; Shigemitsu, J. B-Meson Decay Constants from Improved Lattice Nonrelativistic QCD with Physical u, d, s, and c Quarks. Phys. Rev. Lett. 2013, 110, 222003. [Google Scholar] [CrossRef]
- Hughes, C.; Davies, C.T.H.; Monahan, C.J. New methods for B meson decay constants and form factors from lattice NRQCD. Phys. Rev. D 2018, 97, 054509. [Google Scholar] [CrossRef]
- Aoki, Y.; Blum, T.; Colangelo, G.; Collins, S.; Della Morte, M.; Dimopoulos, P.; Dürr, S.; Feng, X.; Fukaya, H.; Golterman, M.; et al. FLAG Review 2021. Eur. Phys. J. C 2022, 82, 869. [Google Scholar] [CrossRef]
- Logan, H.E.; Nierste, U. Bs,d → ℓ+ℓ− in a two Higgs doublet model. Nucl. Phys. B 2000, 586, 39–55. [Google Scholar] [CrossRef]
- Misiak, M.; Urban, J. QCD corrections to FCNC decays mediated by Z-penguins and W-boxes. Phys. Lett. B 1999, 451, 161–169. [Google Scholar] [CrossRef]
- Dugan, M.J.; Grinstein, B. On the vanishing of evanescent operators. Phys. Lett. B 1991, 256, 239–244. [Google Scholar] [CrossRef]
- Hermann, T.; Misiak, M.; Steinhauser, M. Three-loop QCD corrections to Bs → μ+μ−. J. High Energy Phys. 2013, 12, 097. [Google Scholar] [CrossRef]
- Steinhauser, M. Results and techniques of multiloop calculations. Phys. Rept. 2002, 364, 247–357. [Google Scholar] [CrossRef]
- Misiak, M.; Steinhauser, M. Three loop matching of the dipole operators for b → sγ and b → sg. Nucl. Phys. B 2004, 683, 277–305. [Google Scholar] [CrossRef]
- Inami, T.; Lim, C.S. Effects of Superheavy Quarks and Leptons in Low-Energy Weak Processes KL → μ, K+ → π+ν and K0↔0. Prog. Theor. Phys. 1981, 65, 297–314. [Google Scholar] [CrossRef]
- Buchalla, G.; Buras, A.J. QCD corrections to rare K- and B-decays for arbitrary top quark mass. Nucl. Phys. B 1993, 400, 225–239. [Google Scholar] [CrossRef]
- Buchalla, G.; Buras, A.J. QCD corrections to the sdZ vertex for arbitrary top quark mass. Nucl. Phys. B 1993, 398, 285–300. [Google Scholar] [CrossRef]
- Bobeth, C.; Gorbahn, M.; Stamou, E. Electroweak Corrections to Bs,d → ℓ+ℓ−. Phys. Rev. D 2014, 89, 034023. [Google Scholar] [CrossRef]
- Huber, T.; Lunghi, E.; Misiak, M.; Wyler, D. Electromagnetic logarithms in → Xsl+l−. Nucl. Phys. B 2006, 740, 105–137. [Google Scholar] [CrossRef]
- Beneke, M.; Buchalla, G.; Neubert, M.; Sachrajda, C.T. QCD factorization for B → ππ decays: Strong phases and CP violation in the heavy quark limit. Phys. Rev. Lett. 1999, 83, 1914–1917. [Google Scholar] [CrossRef]
- Beneke, M.; Rohrwild, J. B meson distribution amplitude from B → γℓ. Eur. Phys. J. C 2011, 71, 1818. [Google Scholar] [CrossRef]
- Feldmann, T.; Gubernari, N.; Huber, T.; Seitz, N. Contribution of the electromagnetic dipole operator O7 to the s → μ+μ− decay amplitude. Phys. Rev. D 2023, 107, 013007. [Google Scholar] [CrossRef]
- Finauri, G.; Gambino, P. The q2 moments in inclusive semileptonic B decays. J. High Energy Phys. 2024, 2024, 206. [Google Scholar] [CrossRef]
- Charles, J.; Hocker, A.; Lacker, H.; Laplace, S.; Le Diberder, F.R.; Malcles, J.; Ocariz, J.; Pivk, M.; Roos, L. CP violation and the CKM matrix: Assessing the impact of the asymmetric B factories. Eur. Phys. J. C 2005, 41, 1–131. [Google Scholar] [CrossRef]
- Amhis, Y.S.; Banerjee, S.; Ben-Haim, E.; Bertholet, E.; Bernlochner, F.U.; Bona, M.; Bozek, A.; Bozzi, C.; Brodzicka, J.; Chobanova, V.; et al. Averages of b-hadron, c-hadron, and τ-lepton properties as of 2021. Phys. Rev. D 2023, 107, 052008. [Google Scholar] [CrossRef]
- Peskin, M.E.; Schroeder, D.V. An Introduction to Quantum Field Theory; Addison-Wesley: Reading, PA, USA, 1995. [Google Scholar] [CrossRef]
- Lang, M. Leptonic Decays of Neutral B Mesons in the Three-Spurion Two-Higgs-Doublet Model. Ph.D. Thesis, KIT, Karlsruhe, Germany, 2023. [Google Scholar] [CrossRef]
- De Bruyn, K.; Fleischer, R.; Knegjens, R.; Koppenburg, P.; Merk, M.; Pellegrino, A.; Tuning, N. Probing New Physics via the → μ+μ− Effective Lifetime. Phys. Rev. Lett. 2012, 109, 041801. [Google Scholar] [CrossRef]
- De Bruyn, K.; Fleischer, R.; Knegjens, R.; Koppenburg, P.; Merk, M.; Tuning, N. Branching Ratio Measurements of Bs Decays. Phys. Rev. D 2012, 86, 014027. [Google Scholar] [CrossRef]
- Asatrian, H.M.; Asatryan, H.H.; Hovhannisyan, A.; Nierste, U.; Tumasyan, S.; Yeghiazaryan, A. Penguin contribution to the width difference and CP asymmetry in Bq-q mixing at order Nf. Phys. Rev. D 2020, 102, 033007. [Google Scholar] [CrossRef]
Parameter | Value | Unit | Refs. |
---|---|---|---|
230.3 (1.3) | MeV | [16,17,18,19,20] | |
41.97 (48) | - | [35] | |
0.9820 (4) | - | derived from Ref. [36] | |
1.622 (8) | ps | [37] | |
172.57 (29) | GeV | [9] | |
0.1180 (9) | - | [9] |
CKM | Other | Non-Parametric | ∑ | ||||||
---|---|---|---|---|---|---|---|---|---|
2024 [this paper] | % | % | % | % | % | <0.1% | % | % | |
2013 [10] | % | % | % | % | % | <0.1% | % | % |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czaja, M.; Misiak, M. Current Status of the Standard Model Prediction for the Bs → μ+μ− Branching Ratio. Symmetry 2024, 16, 917. https://doi.org/10.3390/sym16070917
Czaja M, Misiak M. Current Status of the Standard Model Prediction for the Bs → μ+μ− Branching Ratio. Symmetry. 2024; 16(7):917. https://doi.org/10.3390/sym16070917
Chicago/Turabian StyleCzaja, Mateusz, and Mikołaj Misiak. 2024. "Current Status of the Standard Model Prediction for the Bs → μ+μ− Branching Ratio" Symmetry 16, no. 7: 917. https://doi.org/10.3390/sym16070917
APA StyleCzaja, M., & Misiak, M. (2024). Current Status of the Standard Model Prediction for the Bs → μ+μ− Branching Ratio. Symmetry, 16(7), 917. https://doi.org/10.3390/sym16070917