Separable Reversible Data Hiding for Encrypted 3D Meshes Based on Self-Organized Blocking and Most Significant Bit Prediction
Abstract
:1. Introduction
- All vertices of a 3D mesh are classified into different small sets using self-organized blocking. In each set, only one vertex is used as the reference, and others are used to reserve free rooms. Thus, from a holistic perspective, this method can effectively reduce the number of reference vertices in the 3D mesh and obtain more free rooms from other vertices;
- All vertices in each set are adjacent to the central vertex. Between these vertices, high spatial correlation can be usually obtained. When the most significant bit prediction is applied, more high-order bits of x, y, and z coordinates in each set can be considered as embeddable bits;
- Only a small amount of auxiliary information is generated during the calculation process of obtaining free rooms. In each set, several high-order bits of x, y, and z coordinates of the second vertex are used to record this auxiliary information, while high-order bits of other vertices can be used as embeddable bits. Thus, the embedding rate can be improved further.
2. Method Description
2.1. Preprocessing of Vertex Coordinates
2.2. Blocking and Embeddable Room Generation
2.3. Mesh Model Encryption and Data Embedding
2.4. Data Extraction and Mesh Recovery
3. Experimental Results
3.1. Analysis of Embedding Capacity
3.2. Geometric and Visual Quality
3.3. Performance Comparison
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.P. Reversible data hiding with optimal value transfer. IEEE Trans. Multimed. 2013, 15, 316–325. [Google Scholar] [CrossRef]
- Roselinkiruba, R.; Sree Sharmila, T. Dynamic optimal pixel block selection data hiding approach using bit plane and image encryption. Int. J. Inf. Technol. 2023, 15, 3441–3448. [Google Scholar] [CrossRef]
- Roselinkiruba, R. Reversible data hiding using optimization, interpolation and binary image encryption techniques. Multimed. Tools Appl. 2023, 82, 35757–35780. [Google Scholar] [CrossRef]
- Roselinkiruba, R.; Sree Sharmila, T. Secure data hiding by fruit fly optimization improved hybridized seeker algorithm. Multidim. Syst. Sign. Process. 2021, 32, 405–430. [Google Scholar] [CrossRef]
- Roselinkiruba, R.; Bhuvaneshwari, G. Feature extraction based pixel segmentation techniques data hiding and data encryption. Multimed. Tools Appl. 2024, 83, 19259–19276. [Google Scholar] [CrossRef]
- Das, R.; Baykara, M.; Tuna, G. A novel approach to steganography: Enhanced least significant bit substitution algorithm integrated with self-determining encryption feature. Comput. Syst. Sci. Eng. 2019, 34, 23–32. [Google Scholar] [CrossRef]
- Li, X.; Sun, X.; Liu, Q. Image integrity authentication scheme based on fixed point theory. IEEE Trans. Image Process. 2014, 24, 632–645. [Google Scholar]
- Kanwal, S.; Tao, F.; Almogren, A.; Taj, R.; Radwan, A. A robust data hiding reversible technique for improving the security in e-health care system. Comput. Model Eng. 2022, 134, 201–219. [Google Scholar] [CrossRef]
- Qin, C.; Zhang, X. Effective reversible data hiding in encrypted image with privacy protection for image content. J. Vis. Commun. Image R 2015, 31, 154–164. [Google Scholar] [CrossRef]
- Singh, P.; Raman, B. Reversible data hiding based on Shamir’s secret sharing for color images over cloud. Inform. Sci. 2018, 422, 77–97. [Google Scholar] [CrossRef]
- Pandey, R.; Singh, A.K.; Kumar, B.; Mohan, A. Iris based secure NROI multiple eye image watermarking for teleophthalmology. Multimed. Tools Appl. 2016, 75, 14381–14397. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, K.; Zhang, W.; Yao, Y.; Yu, N. Distortion design for secure adaptive 3-D mesh steganography. IEEE Trans. Multimed. 2018, 21, 1384–1398. [Google Scholar] [CrossRef]
- Li, L.; Wang, S.; Zhang, S.; Luo, T.; Chang, C.C. Homomorphic encryption-based robust reversible watermarking for 3D model. Symmetry 2020, 12, 347. [Google Scholar] [CrossRef]
- Singh, P.K.; Jana, B.; Datta, K. Superpixel based robust reversible data hiding scheme exploiting Arnold transform with DCT and CA. J. King Aaud. Univ. Comput. 2022, 34, 4402–4420. [Google Scholar] [CrossRef]
- Hassan, F.S.; Gutub, A. Novel embedding secrecy within images utilizing an improved interpolation-based reversible data hiding scheme. J. King Aaud. Univ. Comput. 2022, 34, 2017–2030. [Google Scholar] [CrossRef]
- Fridrich, J.; Goljan, M.; Du, R. Lossless data embedding for all image formats. In Security and Watermarking of Multimedia Contents IV; SPIE: Bellingham, WA, USA, 2002; Volume 4675, pp. 572–583. [Google Scholar]
- Leelavathi, R.; Giri Prasad, M.N. High-Capacity Reversible Data Hiding Using Lossless LZW Compression. In EAI/Springer Innovations in Communication and Computing, Proceedings of the International Conference on Computing, Communication, Electrical and Biomedical Systems; Springer International Publishing: Cham, Switzerland, 2022; pp. 517–528. [Google Scholar]
- Tian, J. Reversible data embedding using a difference expansion. IEEE Trans. Circuits. Syst. Video Technol. 2003, 13, 890–896. [Google Scholar] [CrossRef]
- Wang, W. A reversible data hiding algorithm based on bidirectional difference expansion. Multimed. Tools Appl. 2020, 79, 5965–5988. [Google Scholar] [CrossRef]
- Li, X.; Li, B.; Yang, B.; Zeng, T.Y. General framework to histogram shifting-based reversible data hiding. IEEE Trans. Image Process. 2013, 22, 2181–2191. [Google Scholar] [CrossRef]
- Khudhair, S.K.; Sahu, M.; Raghunandan, K.R.; Sahu, A.K. Secure reversible data hiding using block-wise histogram shifting. Electronics 2023, 12, 1222. [Google Scholar] [CrossRef]
- Thodi, D.M.; Rodriguez, J.J. Prediction-error based reversible watermarking. In Proceedings of the 2004 International Conference on Image Processing (ICIP’04), Singapore, 24–27 October 2004; Volume 3, pp. 1549–1552. [Google Scholar]
- He, W.; Cai, Z. Reversible data hiding based on dual pairwise prediction-error expansion. IEEE Trans. Image Process. 2021, 30, 5045–5055. [Google Scholar] [CrossRef]
- Puech, W.; Chaumont, M.; Strauss, O. A reversible data hiding method for encrypted images. In Security, Forensics, Steganography, and Watermarking of Multimedia Contents; SPIE: Bellingham, WA, USA, 2008; Volume 6819, pp. 534–542. [Google Scholar]
- Yu, C.; Zhang, X.; Li, G.; Zhan, S.; Tang, Z. Reversible data hiding with adaptive difference recovery for encrypted images. Inf. Sci. 2022, 584, 89–110. [Google Scholar] [CrossRef]
- Ma, K.; Zhang, W.; Zhao, X.; Yu, N.; Li, F. Reversible data hiding in encrypted images by reserving room before encryption. IEEE Trans. Inf. Forensics Secur. 2013, 8, 553–562. [Google Scholar] [CrossRef]
- Puteaux, P.; Puech, W. A recursive reversible data hiding in encrypted images method with a very high payload. IEEE Trans. Multimed. 2020, 23, 636–650. [Google Scholar] [CrossRef]
- Pang, Z.; Li, H.; Xiao, Z.; Sui, L. Reversible data hiding in encrypted images based on an adaptive recognition strategy for blocks. Symmetry 2023, 15, 524. [Google Scholar] [CrossRef]
- Sui, L.; Li, H.; Liu, J.; Xiao, Z.; Tian, A. Reversible data hiding in encrypted images based on hybrid prediction and Huffman coding. Symmetry 2023, 15, 1222. [Google Scholar] [CrossRef]
- Sui, L.; Pang, Z.; Cheng, Y.; Xiao, Z.; Tian, A. Reversible data hiding in encrypted images using multiple Huffman coding based on optimal block allocation. Multimed. Tools Appl. 2023, 83, 34887–34911. [Google Scholar]
- Lee, C.F.; Shen, J.J.; Wu, Y.J. Agrawal S PVO-based reversible data hiding exploiting two-layer embedding for enhancing image fidelity. Symmetry 2020, 12, 1164. [Google Scholar] [CrossRef]
- Ohbuchi, R.; Masuda, H.; Aono, M. Watermaking three-dimensional polygonal models. In Proceedings of the Fifth ACM International Conference on Multimedia, Seattle, WA, USA, 9–13 November 1997; pp. 261–272. [Google Scholar]
- Wu, H.T.; Cheung, Y.M. A fragile watermarking scheme for 3D meshes. In Proceedings of the 7th workshop on Multimedia and Security, New York, NY, USA, 1–2 August 2005; pp. 117–124. [Google Scholar]
- Kanai, S.; Date, H.; Kishinami, T. Digital watermarking for 3D polygons using multiresolution wavelet decomposition. In Proceedings of the Sixth IFIP WG, L’Aquila, Italy, 27–29 May 1998; Volume 5, pp. 296–307. [Google Scholar]
- Denis, F.; Lavoué, G.; Dupont, F.; Baskurt, A. Digital watermarking of compressed 3D meshes. In Proceedings of the International Conference on Machine Intelligence, Tozeur, Tunisia, 5–7 November 2005; pp. 648–654. [Google Scholar]
- Li, L.; Li, Z.; Liu, S.; Li, H. Rate control for video-based point cloud compression. IEEE Trans. Image Process. 2020, 29, 6237–6250. [Google Scholar] [CrossRef]
- Jiang, R.; Zhou, H.; Zhang, W.; Yu, N. Reversible data hiding in encrypted three-dimensional mesh models. IEEE Trans. Multimed. 2017, 20, 55–67. [Google Scholar] [CrossRef]
- Shah, M.; Zhang, W.; Hu, H.; Zhou, H.; Mahmood, T. Homomorphic encryption-based reversible data hiding for 3D mesh models. Arab. J. Sci. Eng. 2018, 43, 8145–8157. [Google Scholar] [CrossRef]
- Tsai, Y.Y. Separable reversible data hiding for encrypted three-dimensional models based on spatial subdivision and space encoding. IEEE Trans. Multimed. 2020, 23, 2286–2296. [Google Scholar] [CrossRef]
- Li, L.; Wang, S.; Luo, T.; Chang, C.C.; Zhou, Q.; Li, H. Reversible data hiding for encrypted 3D model based on prediction error expansion. J. Sens. 2020, 2020, 8851999. [Google Scholar] [CrossRef]
- Van Rensburg, B.J.; Puteaux, P.; Puech, W.; Pedeboy, J.P. Homomorphic two tier reversible data hiding in encrypted 3D objects. In Proceedings of the 2021 IEEE International Conference on Image Processing (ICIP), Anchorage, AK, USA, 19–22 September 2021; pp. 3068–3072. [Google Scholar]
- Luo, T.; Li, L.; Zhang, S.; Wang, S.; Gu, W. A novel reversible data hiding method for 3D model in homomorphic encryption domain. Symmetry 2021, 13, 1090. [Google Scholar] [CrossRef]
- Yin, Z.; Xu, N.; Wang, F.; Cheng, L.; Luo, B. Separable reversible data hiding based on integer mapping and multi-MSB prediction for encrypted 3D mesh models. In Pattern Recognition and Computer Vision: Proceedings of the 4th Chinese Conference, PRCV 2021, Beijing, China, 29 October–1 November 2021; Springer International Publishing: Cham, Switzerland, 2021; pp. 336–348. [Google Scholar]
- Lyu, W.L.; Cheng, L.; Yin, Z. High-capacity reversible data hiding in encrypted 3D mesh models based on multi-MSB prediction. Signal Process. 2022, 201, 108686. [Google Scholar] [CrossRef]
- Xu, N.; Tang, J.; Luo, B.; Yin, Z. Separable reversible data hiding based on integer mapping and MSB prediction for encrypted 3D mesh models. Cogn. Comput. 2022, 14, 1172–1181. [Google Scholar] [CrossRef]
- Hou, G.; Ou, B.; Long, M.; Peng, F. Separable Reversible Data Hiding for Encrypted 3D Mesh Models Based on Octree Subdivision and Multi-MSB Prediction. IEEE Trans. Multimed. 2023, 26, 2395–2407. [Google Scholar] [CrossRef]
- Gao, K.; Homg, J.H.; Chang, C.C. Reversible Data Hiding for Encrypted 3D Mesh Models with Secret Sharing over Galois Field. IEEE Trans. Multimed. 2023, 26, 5499–5510. [Google Scholar] [CrossRef]
- Zhang, G.; Sui, Z.; Sun, C.; Liu, Q.; Cheng, X. A multi-layer mesh synchronized reversible data hiding algorithm on the 3D model. Multimed. Syst. 2024, 30, 52. [Google Scholar] [CrossRef]
- Qu, L.; Lu, H.; Chen, P.; Amirpour, H.; Timmerer, C. Ring Co-XOR encryption based reversible data hiding for 3D mesh model. Signal Process. 2024, 217, 109357. [Google Scholar] [CrossRef]
- Deering, M. Geometry compression. In Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 6–11 August 1995; pp. 13–20. [Google Scholar]
Vertex Information | Face Information | |||||
---|---|---|---|---|---|---|
Index of Vertex | x-Axis Coordinate | y-Axis Coordinate | z-Axis Coordinate | Coordinates Value | Index of Faces | Elements in Each Face |
0 | (0.262933, 0.102269, 0.138247) | 0 | (4, 14, 17) | |||
1 | (0.0843142, 0.0418575, −0.0419302) | 1 | (0, 15, 2) | |||
2 | (0.0676609, −0.0308717, 0.133371) | 2 | (5, 1, 16) | |||
3 | (0.0469116, −0.050008, 0.252355) | 3 | (3, 4, 5) | |||
4 | (0.0184431, 0.103867, −0.0063665) | 4 | (7, 1, 16) | |||
5 | (0.0998372, −0.193745, −0.16268) | … | ||||
… | … | … | … | … | 10 | (2, 4, 45) |
14 | (0.0111131, −0.104825, −0.14166) | … | … | |||
15 | (0.0178132, 0.0791963, −0.0112798) | 32 | (2, 3, 4) | |||
16 | (−0.061459, −0.0977343, −0.133353) | … | … | |||
17 | (0.0247783, −0.131539, 0.0722694) | |||||
… | … | … | … | … | ||
45 | (0.0847778, −0.432659, −0.0978527) | |||||
… | … | … | … | … |
Bit Length | 8 Bits | 16 Bits | 32 Bits | 64 Bits | ||||||
---|---|---|---|---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | 6 | 7 | 10 | 11 | 12 | 13 | |
beetle | 6.04 | 16.78 | 10.28 | 35.43 | 28.71 | 21.96 | 66.10 | 59.28 | 52.39 | 45.91 |
pig | 4.87 | 14.33 | 7.14 | 31.38 | 25.31 | 18.89 | 60.93 | 54.12 | 47.95 | 41.58 |
mushroom | 1.15 | 10.24 | 2.64 | 25.77 | 20.13 | 14.11 | 52.05 | 46.50 | 40.50 | 34.27 |
cow | 4.99 | 18.14 | 11.48 | 36.71 | 29.94 | 23.11 | 68.54 | 60.73 | 53.98 | 47.10 |
elephant | 7.03 | 18.57 | 11.31 | 38.32 | 31.11 | 23.85 | 70.98 | 63.91 | 56.60 | 49.45 |
fandisk | 5.19 | 15.96 | 9.95 | 33.05 | 26.90 | 20.64 | 61.05 | 54.91 | 48.69 | 42.44 |
Test Meshes | Method | Embedding Rate (bpv) | Hausdorff | SNR | Error-Free in Secret Data Extraction | Separable |
---|---|---|---|---|---|---|
beetle | Jiang et al. [37] | 0.35 | 9.9000 | 43.00 | YES | NO |
Shah et al. [38] | 6 | 0.0820 | 90.8471 | NO | NO | |
Yin et al. [43] | 16.51 | 0.0086 | 96.20 | NO | YES | |
Lyu et al. [44] | 23.55 | 0 | 125.00 | NO | YES | |
proposed method | 66.10 | 0 | ∞ | NO | YES | |
mannequin | Jiang et al. [37] | 0.34 | 9.3000 | 52.47 | YES | NO |
Shah et al. [38] | 6 | 0.0728 | 100.0923 | NO | NO | |
Yin et al. [43] | 13.66 | 0.0040 | 130.92 | NO | YES | |
Lyu et al. [44] | 18.95 | 0 | 125.00 | NO | YES | |
proposed method | 57.02 | 0 | ∞ | NO | YES | |
mushroom | Jiang et al. [37] | 0.45 | 10.1000 | 47.91 | YES | NO |
Shah et al. [38] | 6 | 0.0640 | 100.0923 | NO | NO | |
Yin et al. [43] | 16.72 | 0.0081 | 102.25 | NO | YES | |
Lyu et al. [44] | 21.76 | 0 | 125.00 | NO | YES | |
proposed method | 52.05 | 0 | ∞ | NO | YES | |
elephant | Jiang et al. [37] | 0.34 | 0.1100 | 41.50 | YES | NO |
Shah et al. [38] | 6 | 0.0848 | 90.8037 | NO | NO | |
Yin et al. [43] | 18.12 | 0.0086 | 95.97 | NO | YES | |
Lyu et al. [44] | 27.96 | 0 | 125.00 | NO | YES | |
proposed method | 70.98 | 0 | ∞ | NO | YES |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sui, L.; Zhang, P.; Xiao, Z.; Zhou, N. Separable Reversible Data Hiding for Encrypted 3D Meshes Based on Self-Organized Blocking and Most Significant Bit Prediction. Symmetry 2024, 16, 1059. https://doi.org/10.3390/sym16081059
Sui L, Zhang P, Xiao Z, Zhou N. Separable Reversible Data Hiding for Encrypted 3D Meshes Based on Self-Organized Blocking and Most Significant Bit Prediction. Symmetry. 2024; 16(8):1059. https://doi.org/10.3390/sym16081059
Chicago/Turabian StyleSui, Liansheng, Pengfei Zhang, Zhaolin Xiao, and Nan Zhou. 2024. "Separable Reversible Data Hiding for Encrypted 3D Meshes Based on Self-Organized Blocking and Most Significant Bit Prediction" Symmetry 16, no. 8: 1059. https://doi.org/10.3390/sym16081059
APA StyleSui, L., Zhang, P., Xiao, Z., & Zhou, N. (2024). Separable Reversible Data Hiding for Encrypted 3D Meshes Based on Self-Organized Blocking and Most Significant Bit Prediction. Symmetry, 16(8), 1059. https://doi.org/10.3390/sym16081059