Multistability, Chaos, and Synchronization in Novel Symmetric Difference Equation
Abstract
:1. Introduction
- The construction of a new third-order symmetric difference equation transformed into a 3D discrete symmetry map and its proprieties are explored.
- The diverse nonlinear traits generate the symmetry map, such as multistability, chaos, and hyperchaos, illustrated with bifurcation diagrams, Lyapunov exponents, and phase attractors.
- We use the 0-1 test and the sample entropy (SampEn) to measure and evaluate the complexity of chaos in the chaotic symmetric map.
- The stabilization and synchronization scheme of the chaotic symmetric map is realized based on the stability conditions of the discrete-time system.
2. The New Symmetric Map and Its Proprieties
- Case 1. Consider , , . The associated characteristic equation is defined by:
- Case 2. Let us assume that , , . The characteristic equation is given by:
3. Chaotic Analysis
- Case 1. In Figure 1a,b, the bifurcation diagram and the associated of the map (2) are plotted using MATLAB R2024a code. Considering to be the bifurcation parameter versus with , maps the parameters and IN1 and IN2. Subsequently, a small portion of the zone proximal to the bifurcation and the associated are plotted at , presented in detailed view as shown in Figure 1c,d. When , and , the map is chaotic with only three values being positive. Additionally, when , is hyperchaotic, where shows two positive and one displaying negative values. Moreover, the symmetric map is periodic at , and , where all values are negative. The map is quasi-periodic in , where one has zero values.
- Case 2. For versus in with , and IN1 and IN2. The symmetric map changes the dynamics between the hyperchoas, periodic, and quasi-periodic behaviors as illustrated in Figure 2a,b. For more details on , view Figure 2c,d. When , and , the map become hyperchaotic with two positive , and one negative value. It shows the periodic behavior when , and , where all three values are negative. The presence of one zero and the others is negatively expressed in the progression to quasi-periodic in the interval .
- Case 3. Similarly, take and versus in as shown in Figure 3a, Figure 3b as well as the detailed view in Figure 3c,d with . The chaotic behavior appears when , , where one of the is positive. Conversely, the periodic region exists when all the are negative at , and . When , the map has a quasi-periodic attractor characterized by one equal to zero. Thus, becomes chaotic again. According to these results, the characteristic of symmetry in the behaviors’ evolution becomes observable, reappearing over a wide field of the parameters’ systems. In contrast, symmetry breaking also occurs within a small scope.
4. Chaos Complexity
4.1. 0-1 Test
4.2. Sample Entropy
5. Chaos Control
6. Synchronization Scheme
7. Discussion and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, X.; Sun, K.; Wang, H.; Yao, Z. Coexisting hyperchaos and multistability in a discrete memristor-coupled bi-neuron model. Nonlinear Dyn. 2024, 112, 9547–9561. [Google Scholar] [CrossRef]
- Ahmadi, A.; Parthasarathy, S.; Pal, N.; Rajagopal, K.; Jafari, S.; Tlelo-Cuautle, E. Extreme multistability and extreme events in a novel chaotic circuit with hidden attractors. Int. J. Bifurc. Chaos 2022, 33, 2330016. [Google Scholar] [CrossRef]
- Strogatz, S.H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Elaydi, S.N. Discrete Chaos: With Applications in Science and Engineering; Chapman and Hall/CRC: Boca Raton, FL, USA, 2007. [Google Scholar]
- Karimov, T.; Rybin, V.; Kolev, G.; Rodionova, E.; Butusov, D. Chaotic communication system with symmetry-based modulation. Appl. Sci. 2021, 11, 3698. [Google Scholar] [CrossRef]
- Hamadneh, T.; Abbes, A.; Falahah, I.A.; AL-Khassawneh, Y.A.; Heilat, A.S.; Al-Husban, A.; Ouannas, A. Complexity and Chaos Analysis for Two-Dimensional Discrete-Time Predator–Prey Leslie–Gower Model with Fractional Orders. Axioms 2023, 12, 561. [Google Scholar] [CrossRef]
- Hamadneh, T.; Hioual, A.; Alsayyed, O.; Al-Khassawneh, Y.A.; Al-Husban, A.; Ouannas, A. The FitzHugh–Nagumo Model Described by Fractional Difference Equations: Stability and Numerical Simulation. Axioms 2023, 12, 806. [Google Scholar] [CrossRef]
- Li, H.L.; Cao, J.; Hu, C.; Jiang, H.; Alsaadi, F.E. Synchronization analysis of discrete-time fractional-order quaternion-valued uncertain neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2023. [Google Scholar] [CrossRef]
- Hioual, A.; Alomari, S.; Al-Tarawneh, H.; Ouannas, A.; Grassi, G. Fractional discrete neural networks with variable order: Solvability, finite time stability and synchronization. Eur. Phys. J. Spec. Top. 2024, 1–14. [Google Scholar] [CrossRef]
- Feng, W.; Zhao, X.; Zhang, J.; Qin, Z.; Zhang, J.; He, Y. Image encryption algorithm based on plane-level image filtering and discrete logarithmic transform. Mathematics 2022, 10, 2751. [Google Scholar] [CrossRef]
- Feng, W.; Wang, Q.; Liu, H.; Ren, Y.; Zhang, J.; Zhang, S.; Qian, K.; Wen, H. Exploiting newly designed fractional-order 3D Lorenz chaotic system and 2D discrete polynomial hyper-chaotic map for high-performance multi-image encryption. Fractal Fract. 2023, 7, 887. [Google Scholar] [CrossRef]
- Erkan, U.; Toktas, A.; Lai, Q. Design of two dimensional hyperchaotic system through optimization benchmark function. Chaos Solitons Fractals 2023, 167, 113032. [Google Scholar] [CrossRef]
- Wang, R.; Li, C.; Kong, S.; Jiang, Y.; Lei, T. A 3D memristive chaotic system with conditional symmetry. Chaos Solitons Fractals 2022, 158, 111992. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, X.; Zang, H.; Lei, T.; Fu, H. An Offset-Boostable Chaotic Oscillator with Broken Symmetry. Symmetry 2022, 14, 1903. [Google Scholar] [CrossRef]
- Bao, H.; Hua, Z.; Wang, N.; Zhu, L.; Chen, M.; Bao, B. Initials-boosted coexisting chaos in a 2-D sine map and its hardware implementation. IEEE Trans. Ind. Inform. 2020, 17, 1132–1140. [Google Scholar] [CrossRef]
- Rajagopal, K.; Kanagaraj, S.; Volos, C.; Karthikeyan, A. Influence of parametric symmetry on the dynamics of 3D sinusoidal discrete systems. Symmetry 2023, 15, 780. [Google Scholar] [CrossRef]
- Zhang, J. Control Analysis of Stochastic Lagging Discrete Ecosystems. Symmetry 2022, 14.5, 1039. [Google Scholar] [CrossRef]
- Ramadoss, J.; Almatroud, O.A.; Momani, S.; Pham, V.T.; Thoai, V.P. Discrete memristance and nonlinear term for designing memristive maps. Symmetry 2022, 14, 2110. [Google Scholar] [CrossRef]
- Montoya, F.G.; Baños, R.; Alcayde, A. Symmetry in engineering sciences. Symmetry 2021, 11, 3698. [Google Scholar]
- Andrianov, I.; Koblik, S.; Starushenko, G. Transition from discrete to continuous media: The impact of symmetry changes on asymptotic behavior of waves. Symmetry 2021, 13, 1008. [Google Scholar] [CrossRef]
- Li, C.; Sprott, J.C.; Zhang, X.; Chai, L.; Liu, Z. Constructing conditional symmetry in symmetric chaotic systems. Chaos Solitons Fractals 2022, 155, 111723. [Google Scholar] [CrossRef]
- Leutcho, G.D.; Wang, H.; Kengne, R.; Kengne, L.K.; Njitacke, Z.T.; Fozin, T.F. Symmetry-breaking, amplitude control and constant Lyapunov exponent based on single parameter snap flows. Eur. Phys. J. Spec. Top. 2022, 230, 1887–1903. [Google Scholar] [CrossRef]
- Peng, Y.; Lan, Z.; Li, W.; Li, Y.; Peng, J. Modeling different discrete memristive sine maps and its parameter identification. Eur. Phys. J. Spec. Top. 2022, 231, 3187–3196. [Google Scholar] [CrossRef]
- Ali, A.M.A.; Sriram, S.; Natiq, H.; Ahmadi, A.; Rajagopal, K.; Jafari, S. A novel multi-stable sinusoidal chaotic map with spectacular behaviors. Commun. Theor. Phys. 2022, 75, 115001. [Google Scholar] [CrossRef]
- Abu-Amara, F.; Abdel-Qader, I. Chaotic image encryption via convex sinusoidal map. Wseas Trans. Signal Process. 2013, 9, 177–184. [Google Scholar]
- Xu, Q.; Cheng, S.; Ju, Z.; Chen, M.; Wu, H. Asymmetric coexisting bifurcations and multi-stability in an asymmetric memristive diode-bridge-based jerk circuit. Chin. J. Phys. 2021, 70, 69–81. [Google Scholar] [CrossRef]
- Lin, H.; Wang, C.; Sun, J.; Zhang, X.; Sun, Y.; Iu, H.H. Memristor-coupled asymmetric neural networks: Bionic modeling, chaotic dynamics analysis and encryption application. Chaos Solitons Fractals 2023, 166, 112905. [Google Scholar] [CrossRef]
- Xia, Y.; Xie, B.; Yu, Y. A novel chaos control method based on conjugate direction and adaptive step size. Structures 2024, 63, 106458. [Google Scholar] [CrossRef]
- Almatrafi, M.B.; Berkal, M. Bifurcation analysis and chaos control for prey-predator model with Allee effect. Int. J. Anal. Appl. 2023, 21, 131. [Google Scholar] [CrossRef]
- Ramasamy, S.; Banjerdpongchai, D.; Park, P. Chaos control of a delayed tri-trophic food chain model with fear and its carry over effects. Symmetry 2023, 15, 484. [Google Scholar] [CrossRef]
- Ouannas, A.; Al-sawalha, M.M. On inverse full state hybrid projective synchronization of chaotic dynamical systems in discrete-time. Int. J. Dyn. Control 2017, 5, 252–258. [Google Scholar] [CrossRef]
- Ouannas, A.; Odibat, Z. On inverse generalized synchronization of continuous chaotic dynamical systems. Int. J. Appl. Comput. Math. 2016, 2, 1–11. [Google Scholar] [CrossRef]
- Ouannas, A. A new synchronization scheme for general 3D quadratic chaotic systems in discrete-time. Nonlinear Dyn. Syst. Theory 2015, 15, 163–170. [Google Scholar]
- Ouannas, A. A new chaos synchronization criterion for discrete dynamical systems. Appl. Math. Sci. 2014, 8, 2025–2034. [Google Scholar] [CrossRef]
- Kong, S.; Li, C.; Jiang, H.; Lai, Q.; Jiang, X. Symmetric image encryption algorithm based on a new product trigonometric chaotic map. Symmetry 2022, 14, 373. [Google Scholar] [CrossRef]
- Toktas, F.; Erkan, U.; Yetgin, Z. Cross-channel color image encryption through 2D hyperchaotic hybrid map of optimization test functions. Expert Syst. Appl. 2024, 249, 123583. [Google Scholar] [CrossRef]
- Ogata, K. Discrete-Time Control Systems; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1995. [Google Scholar]
- Gottwald, G.A.; Melbourne, I. The 0-1 test for chaos: A review. In Chaos Detection and Predictability; Springer: Berlin/Heidelberg, Germany, 2016; pp. 221–247. [Google Scholar]
- Li, Y.; Wang, X.; Liu, Z.; Liang, X.; Si, S. The entropy algorithm and its variants in the fault diagnosis of rotating machinery: A review. IEEE Access 2018, 6, 66723–66741. [Google Scholar] [CrossRef]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol.-Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef]
- Elaydi, S. An Antroduction to Difference Equations, 3rd ed.; Springer: New York, NY, USA, 2005. [Google Scholar]
- Li, H.L.; Wang, Z.; Jiang, Y.L.; Zhang, L.; Teng, Z. Anti-synchronization and intermittent anti-synchronization of two identical delay hyperchaotic Chua systems via linear control. Asian J. Control 2017, 19, 202–214. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almatroud, O.A.; Abu Hammad, M.; Dababneh, A.; Diabi, L.; Ouannas, A.; Khennaoui, A.A.; Alshammari, S. Multistability, Chaos, and Synchronization in Novel Symmetric Difference Equation. Symmetry 2024, 16, 1093. https://doi.org/10.3390/sym16081093
Almatroud OA, Abu Hammad M, Dababneh A, Diabi L, Ouannas A, Khennaoui AA, Alshammari S. Multistability, Chaos, and Synchronization in Novel Symmetric Difference Equation. Symmetry. 2024; 16(8):1093. https://doi.org/10.3390/sym16081093
Chicago/Turabian StyleAlmatroud, Othman Abdullah, Ma’mon Abu Hammad, Amer Dababneh, Louiza Diabi, Adel Ouannas, Amina Aicha Khennaoui, and Saleh Alshammari. 2024. "Multistability, Chaos, and Synchronization in Novel Symmetric Difference Equation" Symmetry 16, no. 8: 1093. https://doi.org/10.3390/sym16081093
APA StyleAlmatroud, O. A., Abu Hammad, M., Dababneh, A., Diabi, L., Ouannas, A., Khennaoui, A. A., & Alshammari, S. (2024). Multistability, Chaos, and Synchronization in Novel Symmetric Difference Equation. Symmetry, 16(8), 1093. https://doi.org/10.3390/sym16081093