The Effect of Multiple Additional Sampling with Multi-Fidelity, Multi-Objective Efficient Global Optimization Applied to an Airfoil Design
Abstract
:1. Introduction
2. Efficient Global Optimization
2.1. Multi-Fidelity Requirements for the Hybrid Surrogate Model
2.2. Multi-Objective, Multiple Additional Sampling for EGO Process
3. Mathematics Test Functions
3.1. Result and Discussion of First Test Function
3.2. Results and Discussion of Second Test Function
4. Airfoil Design Problem
4.1. Problem Statement
4.2. Design of Experiment
4.3. Aerodynamic Evaluation
4.3.1. High-Fidelity Aerodynamic Evaluation
4.3.2. Low-Fidelity Aerodynamic Evaluation
4.4. The Hybrid Surrogate Model and Data Improvement
5. Result and Discussion
6. Conclusions
- All proposed techniques accomplish to obtain 5 optimal airfoil shapes for each technique. The decrease of is 0.715%, 0.536% and 0.536% when compares against the lowest of initial airfoil for 1-SA, 2-MAs, and 4-MAs, respectively, the increase of is 22.21% when compares against the highest of initial airfoil for all 1-SA, 2-MAs, and 4-MAs, respectively.
- The computational convergence rate of is terminated at 35th sampling point for all proposed techniques. The 1-SA uses 5 iterations, the 2-MAs uses 3 iterations, and the 4-MAs uses 2 iterations. The computational convergence rate of is terminated at 31st sampling point for all proposed techniques. The solution is found in 1 iteration. The pareto-solution of 4-MAs technique has obtained the last additional sampling at 41st while 2-MAs and 1-SA technique have obtained at 44th and 46th, respectively. The results show that the computational convergence rate can be accelerated by adding multiple sampling points in each iteration, but multi-additional sampling point does not impact principally the hybrid surrogate model accuracy or the optimal solution.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
EGO | Efficient Global Optimization |
CST | Class Shape Function Transformation |
LHS | Latin Hypercube Sampling |
RANS | Reynolds Averaged Navier-Stokes |
CFD | Computational Fluid Dynamics |
RBF | Radial Basis Function |
EI | Expected Improvement |
EHVI | Expected Hyper-Volume Improvement |
GA | Genetic Algorithm |
SF | Single-fidelity |
MF | Multi-Fidelity |
SO | Single-Objective |
MO | Multi-Objective |
SA | Single-Additional Sampling Point |
MA | Multi-Additional Sampling Point |
References
- Jones, D.R.; Schonlau, M.; Welch, W.J. Efficient global optimization of expensive black-box functions. J. Glob. Optim. 1998, 13, 455–492. [Google Scholar] [CrossRef]
- Forrester, A.; Sobester, A.; Keane, A. Engineering Design via Surrogate Modelling: A Practical Guide; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Wang, K.; Han, Z.H.; Zhang, K.S.; Song, W.P. An efficient geometric constraint handling method for surrogate-based aerodynamic shape optimization. Eng. Appl. Comput. Fluid Mech. 2023, 17, e2153173. [Google Scholar] [CrossRef]
- Ariyarit, A.; Sugiura, M.; Tanabe, Y.; Kanazaki, M. Hybrid surrogate-model-based multi-fidelity efficient global optimization applied to helicopter blade design. Eng. Optim. 2018, 50, 1016–1040. [Google Scholar] [CrossRef]
- Kishi, Y.; Kitazaki, S.; Ariyarit, A.; Makino, Y.; Kanazaki, M. Planform dependency of optimum cross-sectional geometric distributions for supersonic wing. Aerosp. Sci. Technol. 2019, 90, 181–193. [Google Scholar] [CrossRef]
- Du, X.; Amrit, A.; Thelen, A.S.; Leifsson, L.T.; Zhang, Y.; Han, Z.H.; Koziel, S. Aerodynamic Design of a Rectangular Wing in Subsonic Inviscid Flow by Direct and Surrogate-based Optimization. In Proceedings of the 35th AIAA Applied Aerodynamics Conference, Denver, CO, USA, 5–9 June 2017; p. 4366. [Google Scholar]
- Han, Z.H.; Xu, C.Z.; Liang, Z.; Zhang, Y.; Zhang, K.; Song, W.P. Efficient aerodynamic shape optimization using variable-fidelity surrogate models and multilevel computational grids. Chin. J. Aeronaut. 2020, 33, 31–47. [Google Scholar] [CrossRef]
- Li, Z.; Tian, K.; Li, H.; Shi, Y.; Wang, B. A competitive variable-fidelity surrogate-assisted CMA-ES algorithm using data mining techniques. Aerosp. Sci. Technol. 2021, 119, 107084. [Google Scholar] [CrossRef]
- Emmerich, M.T.; Giannakoglou, K.C.; Naujoks, B. Single-and multiobjective evolutionary optimization assisted by Gaussian random field metamodels. IEEE Trans. Evol. Comput. 2006, 10, 421–439. [Google Scholar] [CrossRef]
- Keane, A.J. Statistical improvement criteria for use in multiobjective design optimization. AIAA J. 2006, 44, 879–891. [Google Scholar] [CrossRef]
- Zuhal, L.R.; Palar, P.S.; Shimoyama, K. A comparative study of multi-objective expected improvement for aerodynamic design. Aerosp. Sci. Technol. 2019, 91, 548–560. [Google Scholar] [CrossRef]
- Daulton, S.; Balandat, M.; Bakshy, E. Differentiable expected hypervolume improvement for parallel multi-objective Bayesian optimization. Adv. Neural Inf. Process. Syst. 2020, 33, 9851–9864. [Google Scholar]
- Cheng, S.; Zhan, H.; Shu, Z.; Fan, H.; Wang, B. Effective optimization on Bump inlet using meta-model multi-objective particle swarm assisted by expected hyper-volume improvement. Aerosp. Sci. Technol. 2019, 87, 431–447. [Google Scholar] [CrossRef]
- Jim, T.M.; Faza, G.A.; Palar, P.S.; Shimoyama, K. A multiobjective surrogate-assisted optimisation and exploration of low-boom supersonic transport planforms. Aerosp. Sci. Technol. 2022, 128, 107747. [Google Scholar] [CrossRef]
- Ariyarit, A.; Kanazaki, M. Multi-fidelity multi-objective efficient global optimization applied to airfoil design problems. Appl. Sci. 2017, 7, 1318. [Google Scholar] [CrossRef]
- Namura, N.; Shimoyama, K.; Obayashi, S. Expected improvement of penalty-based boundary intersection for expensive multiobjective optimization. IEEE Trans. Evol. Comput. 2017, 21, 898–913. [Google Scholar] [CrossRef]
- Ariyarit, A.; Rooppakhun, S.; Puangchaum, W.; Phiboon, T. Design Optimization of Alloy Wheels Based on a Dynamic Cornering Fatigue Test Using Finite Element Analysis and Multi-Additional Sampling of Efficient Global Optimization. Symmetry 2023, 15, 2169. [Google Scholar] [CrossRef]
- Liu, F.; Han, Z.H.; Zhang, Y.; Song, K.; Song, W.P.; Gui, F.; Tang, J.B. Surrogate-based aerodynamic shape optimization of hypersonic flows considering transonic performance. Aerosp. Sci. Technol. 2019, 93, 105345. [Google Scholar] [CrossRef]
- He, Y.; Sun, J.; Song, P.; Wang, X. Variable-fidelity expected improvement based efficient global optimization of expensive problems in presence of simulation failures and its parallelization. Aerosp. Sci. Technol. 2021, 111, 106572. [Google Scholar] [CrossRef]
- Ariyarit, A.; Phiboon, T.; Kanazaki, M.; Bureerat, S. The effect of multi-additional sampling for multi-fidelity efficient global optimization. Symmetry 2020, 12, 1499. [Google Scholar] [CrossRef]
- Aye, C.M.; Wansaseub, K.; Kumar, S.; Tejani, G.G.; Bureerat, S.; Yildiz, A.R.; Pholdee, N. Airfoil Shape Optimisation Using a Multi-Fidelity Surrogate-Assisted Metaheuristic with a New Multi-Objective Infill Sampling Technique. CMES-Comput. Model. Eng. Sci. 2023, 137, 2111. [Google Scholar]
- Lin, Q.; Hu, J.; Zhou, Q. Parallel multi-objective Bayesian optimization approaches based on multi-fidelity surrogate modeling. Aerosp. Sci. Technol. 2023, 143, 108725. [Google Scholar] [CrossRef]
- Matheron, G. Principles of geostatistics. Econ. Geol. 1963, 58, 1246–1266. [Google Scholar] [CrossRef]
- Mark, J.O. Introduction to Radial Basis Function Network. 1996. Available online: https://faculty.cc.gatech.edu/~isbell/tutorials/rbf-intro.pdf (accessed on 30 July 2024).
- Grefenstette, J.J. Genetic algorithms and machine learning. In Proceedings of the Sixth Annual Conference on Computational Learning Theory, Santa Cruz, CA, USA, 26–28 July 1993; pp. 3–4. [Google Scholar]
- Kulfan, B.M. Universal parametric geometry representation method. J. Aircr. 2008, 45, 142–158. [Google Scholar] [CrossRef]
- Wickramasinghe, U.K.; Carrese, R.; Li, X. Designing airfoils using a reference point based evolutionary many-objective particle swarm optimization algorithm. In Proceedings of the IEEE Congress on Evolutionary Computation, Barcelona, Spain, 18–23 July 2010; pp. 1–8. [Google Scholar]
- Ye, K.Q. Orthogonal column Latin hypercubes and their application in computer experiments. J. Am. Stat. Assoc. 1998, 93, 1430–1439. [Google Scholar] [CrossRef]
- Sheldahl, R.E.; Klimas, P.C. Aerodynamic Characteristics of Seven Symmetrical Airfoil Sections through 180-Degree Angle of Attack for Use in Aerodynamic Analysis of Vertical Axis Wind Turbines (No. SAND-80-2114); Sandia National Labs: Albuquerque, NM, USA, 1981.
- Eshelman, L.J.; Schaffer, J.D. Real-coded genetic algorithms and interval-schemata. In Foundations of Genetic Algorithms; Elsevier: Amsterdam, The Netherlands, 1993; Volume 2, pp. 187–202. [Google Scholar]
Design Variable | Design Range |
---|---|
0.10–0.18 | |
0.05–0.15 | |
0.05–0.15 | |
−0.18–−0.01 | |
−0.15–−0.05 | |
−0.18–−0.02 |
(°C) | (kg/m3) | (kg/ms) | (m2/s) | |
---|---|---|---|---|
15 | 1.2257 | 1.802 × 10−5 | 1.470 × 10−5 | 1.4 |
Number of Mesh | ||||
---|---|---|---|---|
40,000 | 0.52688 | 0.01343 | 0.1292% | 1.2739% |
160,000 | 0.52686 | 0.01334 | 0.1312% | 0.6067% |
360,000 | 0.52719 | 0.01329 | 0.0695% | 0.2551% |
640,000 | 0.52743 | 0.01327 | 0.0239% | 0.0863% |
1,000,000 | 0.52756 | 0.01326 | - | - |
Iteration | 1-SA | Iteration | 2-MAs | Iteration | 4-MAs | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
No. | No. | No. | |||||||||
1 | 31 | 0.01139 | 1.6500 | 1 | 31 | 0.01139 | 1.6500 | 1 | 31 | 0.01139 | 1.6500 |
2 | 32 | 0.01125 | 1.7062 | 32 | 0.01116 | 1.7799 | 32 | 0.01116 | 1.7799 | ||
3 | 33 | 0.01125 | 1.7842 | 2 | 33 | 0.01178 | 3.1482 | 33 | 0.01178 | 3.1482 | |
4 | 34 | 0.01179 | 3.1652 | 34 | 0.01123 | 1.7216 | 34 | 0.01123 | 1.7216 | ||
5 | 35 | 0.01112 | 1.8513 | 3 | 35 | 0.01114 | 1.8973 | 2 | 35 | 0.01114 | 1.8973 |
6 | 36 | 0.01117 | 1.7714 | 36 | 0.01118 | 1.8939 | 36 | 0.01118 | 1.8939 | ||
7 | 37 | 0.01141 | 1.6862 | 4 | 37 | 0.01127 | 1.7248 | 37 | 0.01124 | 1.8710 | |
8 | 38 | 0.01146 | 1.6975 | 38 | 0.01125 | 1.8548 | 38 | 0.01147 | 1.6949 | ||
9 | 39 | 0.01129 | 1.7757 | 5 | 39 | 0.01133 | 1.7361 | 3 | 39 | 0.01133 | 1.7789 |
10 | 40 | 0.01131 | 1.8065 | 40 | 0.01156 | 1.9199 | 40 | 0.01127 | 1.7257 | ||
11 | 41 | 0.01155 | 1.9227 | 6 | 41 | 0.01179 | 1.9892 | 41 | 0.01127 | 1.7083 | |
12 | 42 | 0.01178 | 1.9862 | 42 | 0.01144 | 1.6858 | 42 | 0.01139 | 1.8710 | ||
13 | 43 | 0.01133 | 1.7091 | 7 | 43 | 0.01185 | 2.2461 | 4 | 43 | 0.01163 | 1.9358 |
14 | 44 | 0.01122 | 1.9588 | 44 | 0.01134 | 1.6910 | 44 | 0.01159 | 1.7430 | ||
15 | 45 | 0.01123 | 1.7830 | 8 | 45 | 0.01135 | 1.7509 | 45 | 0.01132 | 1.7083 | |
16 | 46 | 0.01133 | 1.6973 | 46 | 0.01141 | 1.6825 | 46 | 0.01187 | 1.8537 | ||
17 | 47 | 0.01127 | 1.7729 | 9 | 47 | 0.01126 | 1.7691 | 5 | 47 | 0.01136 | 1.7578 |
18 | 48 | 0.01143 | 1.7570 | 48 | 0.01158 | 1.7391 | 48 | 0.01131 | 1.7152 | ||
19 | 49 | 0.01129 | 1.7253 | 10 | 49 | 0.01131 | 1.7340 | 49 | 0.01132 | 1.7240 | |
20 | 50 | 0.01117 | 1.8046 | 50 | 0.01136 | 1.7708 | 50 | 0.01142 | 1.7282 |
No. | 1-SA | No. | 2-MAs | No. | 4-MAs | |||
---|---|---|---|---|---|---|---|---|
35 | 0.7349 | 0.01111 | 35 | 0.7259 | 0.01113 | 35 | 0.7260 | 0.01113 |
36 | 0.7513 | 0.01116 | 32 | 0.7495 | 0.01115 | 32 | 0.7496 | 0.01115 |
32 | 0.7655 | 0.01124 | 34 | 0.7621 | 0.01122 | 34 | 0.7621 | 0.01122 |
46 | 0.7675 | 0.01132 | 44 | 0.7690 | 0.01133 | 41 | 0.7651 | 0.01126 |
31 | 0.7785 | 0.01139 | 31 | 0.7785 | 0.01139 | 31 | 0.7785 | 0.01139 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phiboon, T.; Pichitkul, A.; Tantrairatn, S.; Bureerat, S.; Kanazaki, M.; Ariyarit, A. The Effect of Multiple Additional Sampling with Multi-Fidelity, Multi-Objective Efficient Global Optimization Applied to an Airfoil Design. Symmetry 2024, 16, 1094. https://doi.org/10.3390/sym16081094
Phiboon T, Pichitkul A, Tantrairatn S, Bureerat S, Kanazaki M, Ariyarit A. The Effect of Multiple Additional Sampling with Multi-Fidelity, Multi-Objective Efficient Global Optimization Applied to an Airfoil Design. Symmetry. 2024; 16(8):1094. https://doi.org/10.3390/sym16081094
Chicago/Turabian StylePhiboon, Tharathep, Auraluck Pichitkul, Suradet Tantrairatn, Sujin Bureerat, Masahiro Kanazaki, and Atthaphon Ariyarit. 2024. "The Effect of Multiple Additional Sampling with Multi-Fidelity, Multi-Objective Efficient Global Optimization Applied to an Airfoil Design" Symmetry 16, no. 8: 1094. https://doi.org/10.3390/sym16081094
APA StylePhiboon, T., Pichitkul, A., Tantrairatn, S., Bureerat, S., Kanazaki, M., & Ariyarit, A. (2024). The Effect of Multiple Additional Sampling with Multi-Fidelity, Multi-Objective Efficient Global Optimization Applied to an Airfoil Design. Symmetry, 16(8), 1094. https://doi.org/10.3390/sym16081094