Quantum-Chemical Investigations on the Structure and Stability of Mixed Trimers Containing HC3N in Combination with H2C2 and/or HCN Analyzed by QTAIM, NBO and SAPT Methods
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. HC3NHCNH2C2 Clusters
3.2. (HC3N)2H2C2 Clusters
3.3. HC3N(H2C2)2 Clusters
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aalto, S.; Garcia-Burillo, S.; Muller, S.; Winters, J.M.; van der Werf, P.; Henkel, C.; Costagliola, F.; Neri, R. Detection of HCN, HCO+, and HNC in the Mrk 231 molecular outflow. Astron. Astrophys. 2012, 537, A44. [Google Scholar] [CrossRef]
- Boger, G.I.; Sternberg, A. CN and HCN in Dense Interstellar Clouds. Astrophys. J. 2005, 632, 302–315. [Google Scholar] [CrossRef]
- Ziurys, L.M.; Turner, B.E. Detection of Interstellar Vibrationally Excited HCN. Astrophys. J. 1986, 300, L19. [Google Scholar] [CrossRef] [PubMed]
- Snyder, L.E.; Buhl, D. Observations of radio emission from interstellar hydrogen cyanide. Astrophys. J. Lett. 1971, 163, L47. [Google Scholar] [CrossRef]
- Rimmer, P.B.; Majumdar, L.; Priyadarshi, A.; Wright, S.; Yurchenko, S.N. Detectable Abundance of Cyanoacetylene (HC3N) Predicted on Reduced Nitrogen-rich Super-Earth Atmospheres. Astrophys. J. Lett. 2021, 921, L28. [Google Scholar] [CrossRef]
- Rico-Villas, F.; Martín-Pintado, J.; González-Alfonso, E.; Rivilla, V.M.; Martín, S.; García-Burillo, S.; Jiménez-Serra, I.; Sánchez-García, M. Vibrationally excited HC3N emission in NGC 1068: Tracing the recent star formation in the starburst ring. Mon. Not. R. Astron. Soc. 2021, 502, 3021–3034. [Google Scholar] [CrossRef]
- Yu, N.; Wang, J.-J.; Xu, J.L. Chemical evolution of HC3N in dense molecular clouds. Mon. Not. R. Astron. Soc. 2019, 489, 4497–4512. [Google Scholar] [CrossRef]
- Sloan, G.C.; Kraemer, K.E.; McDonald, I.; Groenewegen, M.A.T.; Wood, P.R.; Zijlstra, A.A.; Lagadec, E.; Boyer, M.L.; Kemper, F.; Matsuura, M.; et al. The Infrared Spectral Properties of Magellanic Carbon Stars. Astrophys. J. 2016, 826, 44. [Google Scholar] [CrossRef]
- Matsuura, M.; Wood, P.R.; Sloan, G.C.; Zijlstra, A.A.; van Loon, J.T.; Groenewegen, M.A.T.; Blommaert, J.A.D.L.; Cioni, M.R.L.; Feast, M.W.; Habing, H.J.; et al. Spitzer observations of acetylene bands in carbon-rich asymptotic giant branch stars in the Large Magellanic Cloud. Mon. Not. R. Astron. Soc. 2006, 371, 415–420. [Google Scholar] [CrossRef]
- Hoobler, P.R.; Turney, J.M.; Agarwal, J.; Schaefer, H.F., III. Fundamental vibrational analyses of the HCN monomer dimer and associated isotopologues. Chem. Phys. Chem. 2018, 19, 3257–3265. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, M.; Provasi, P.F.; Aucar, G.A.; Alkorta, I.; Elguero, J. Theoretical study of HCN and HNC neutral and charged clusters. J. Phys. Chem. B 2005, 109, 18189–18194. [Google Scholar] [CrossRef]
- Tamassia, F.; Bizzocchi, L.; Melosso, M.; Martin-Drumel, M.-A.; Pirali, O.; Pietropolli Charmet, A.; Canè, E.; Dore, L.; Gordon, I.E.; Guillemin, J.-C.; et al. Synchrotron-based far-infrared spectroscopy of HC3N: Extended ro-vibrational analysis and new line list up to 3360 cm−1. J. Quant. Spectrosc. Radiat. Transf. 2022, 279, 108044. [Google Scholar] [CrossRef]
- Bizzocchi, L.; Tamassia, F.; Laas, J.; Giuliano, B.M.; Degli Esposti, C.; Dore, L.; Melosso, M.; Canè, E.; Pietropolli Charmet, A.; Müller, H.S.P.; et al. Rotational and High-resolution Infrared Spectrum of HC3N: Global Ro-vibrational Analysis and Improved Line Catalog for Astrophysical Observations. Astrophys. J. Suppl. 2017, 233, 11. [Google Scholar] [CrossRef]
- Chubb, K.L.; Tennyson, J.; Yurchenko, S.N. ExoMol molecular line lists—XXXVII. Spectra of acetylene. Mon. Not. R. Astron. Soc. 2020, 493, 1531–1545. [Google Scholar] [CrossRef]
- Jose, J.; Zamir, A.; Stein, T. Molecular dynamics reveals formation path of benzonitrile and other molecules in conditions relevant to the interstellar medium. Proc. Natl. Acad. Sci. USA 2021, 118, e2101371118. [Google Scholar] [CrossRef]
- Volosatova, A.D.; Lukianova, M.A.; Zasimova, P.V.; Feldman, V.I. Direct evidence for a radiation-induced synthesis of acetonitrile and isoacetonitrile from a 1:1 CH4⋯HCN complex at cryogenic temperatures: Is it a missing link between inorganic and prebiotic astrochemistry? Phys. Chem. Chem. Phys. 2021, 23, 18449–18460. [Google Scholar] [CrossRef] [PubMed]
- Freitas, D.P.; Pansini, F.N.N.; Varandas, A.J.C. Linear and cyclic (HCN)n clusters: A DFT study of IR and Raman spectra. Chem. Phys. Lett. 2023, 828, 140734. [Google Scholar] [CrossRef]
- Kabadi, E.M.; Pingale, S.S. Investigating cyclic cooperativity in ring stabilization of (HCN)n and (HNC)n: N=3–11 clusters. Mater. Today Proc. 2022, 48, 599–601. [Google Scholar] [CrossRef]
- Karpfen, A. Linear and Cyclic Clusters of Hydrogen Cyanide and Cyanoacetylene: A Comparative ab Initio and Density Functional Study on Cooperative Hydrogen Bonding. J. Phys. Chem. 1996, 100, 13474–13486. [Google Scholar] [CrossRef]
- Takeuchi, H. Global minimum geometries of acetylene clusters (HCCH)n with n ≤ 55 obtained by a heuristic method combined with geometrical perturbations. J. Comput. Chem. 2010, 31, 1569–1794. [Google Scholar] [CrossRef] [PubMed]
- Garrison, S.L.; Sandler, S.I. An Accurate Acetylene Intermolecular Potential for Phase Behavior Predictions from Quantum Chemistry. J. Phys. Chem. B 2004, 108, 18972–18979. [Google Scholar] [CrossRef]
- Shuler, K.; Dykstra, C.E. A Model Study of Aggregation of Acetylene Molecules. J. Phys. Chem. A 2000, 104, 11522–11530. [Google Scholar] [CrossRef]
- Guennoun, Z.; Coupeaud, A.; Couturier-Tamburelli, I.; Piétri, N.; Coussan, S.; Aycard, J.-P. Acetylenic/cyanoacetylenic complexes: Simulation of the Titan’s atmosphere chemistry. Chem. Phys. 2004, 330, 143–151. [Google Scholar] [CrossRef]
- Piétri, N.; Coupeaud, A.; Aycard, J.-P.; Couturier-Tamburelli, I. Cyanoacetylenic complexes as pre-reactional species leading to the HC7N synthesis. Part I: Experimental and theoretical identification of the HC3N: C4H2. Chem. Phys. 2009, 358, 7–12. [Google Scholar] [CrossRef]
- Piétri, N.; Sessouma, B.; Borget, F.; Chiavassa, T.; Couturier-Tamburelli, I. Cyanoacetylene (HC3N) and ammonia (NH3) complexes: A DFT theoretical and experimental study. Chem. Phys. 2012, 400, 98–102. [Google Scholar] [CrossRef]
- Kang, L.; Novick, S.E. The microwave spectra of the weakly bound complex between carbon monoxide and cyanoacetylene, OC H-C≡C-C≡N. J. Mol. Spectrosc. 2012, 276–277, 10–13. [Google Scholar] [CrossRef]
- Kang, L.; Davis, P.; Dorell, I.; Li, K.; Oncer, O.; Wang, L.; Novick, S.E.; Kukolich, S.G. Rotational spectrum and structure of the T-shaped cyanoacetylene carbon dioxide complex, HCCCN··CO2. J. Mol. Spectrosc. 2017, 342, 62–72. [Google Scholar] [CrossRef]
- Schroeder, W.P.; Chenoweth, K.; Dykstra, C.E. Ab initio and model investigation of acetylene clustering around hydrogen cyanide. Chem. Phys. Lett. 2003, 373, 8–14. [Google Scholar] [CrossRef]
- Stein, T.; Bera, P.P.; Lee, T.J.; Head-Gordon, M. Molecular growth upon ionization of van der Waals cluster containing HCCH and HCN is a pathway to prebiotic molecules. Phys. Chem. Chem. Phys. 2020, 22, 20337–20348. [Google Scholar] [CrossRef] [PubMed]
- Hockey, E.K.; Vlahos, K.; Howard, T.; Palko, J.; Dodson, L.G. Weakly Bound Complex Formation between HCN and CH3Cl: A Matrix-Isolation and Computational Study. J. Phys. Chem. A 2022, 126, 3110–3123. [Google Scholar] [CrossRef] [PubMed]
- Barclay, A.J.; McKellar, A.R.W.; Pietropolli Charmet, A.; Moazzen-Ahmadi, N. Weakly-bound clusters of atmospheric molecules: Infrared spectra and structural calculations of (CO2)n–(CO)m–(N2)p, (n,m,p) = (2,1,0), (2,0,1), (1,2,0), (1,0,2), (1,1,1), (1,3,0), (1,0,3), (1,2,1), (1,1,2). Phys. Chem. Chem. Phys. 2022, 24, 7231–7242. [Google Scholar] [CrossRef] [PubMed]
- Bannwarth, C.; Ehlert, S.; Grimme, S. GFN2-xTB-An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. J. Chem. Theory Comput. 2019, 15, 1652–1671. [Google Scholar] [CrossRef] [PubMed]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Santra, G.; Sylvetsky, N.; Martin, J.M.L. Minimally Empirical Double-Hybrid Functionals Trained against the GMTKN55 Database: RevDSD-PBEP86-D4, revDOD-PBE-D4, and DOD-SCAN-D4. J. Phys. Chem. A 2019, 123, 5129–5143. [Google Scholar] [CrossRef]
- Papajak, E.; Truhlar, D.G. Convergent Partially Augmented Basis Sets for Post-Hartree−Fock Calculations of Molecular Properties and Reaction Barrier Heights. J. Chem. Theory Comput. 2011, 7, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Barone, V. DFT Meets Wave-Function Composite Methods for Characterizing Cytosine Tautomers in the Gas Phase. J. Chem. Theory Comput. 2023, 19, 4970–4981. [Google Scholar] [CrossRef]
- Pietropolli Charmet, A.; Ceselin, G.; Stoppa, P.; Tasinato, N. The Spectroscopic Characterization of Halogenated Pollutants through the Interplay between Theory and Experiment: Application to R1122. Molecules 2022, 27, 748. [Google Scholar] [CrossRef] [PubMed]
- Tasinato, N.; Pietropolli Charmet, A.; Ceselin, G.; Salta, Z.; Stoppa, P. In Vitro and In Silico Vibrational-Rotational Spectroscopic Characterization of the Next-Generation Refrigerant HFO-1123. J. Phys. Chem. A 2022, 126, 5328–5342. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- Fornaro, T.; Burini, D.; Biczysko, M.; Barone, V. Hydrogen bonding effects on infrared spectra from anharmonic computations: Uracil−water complexes and uracil dimers. J. Phys. Chem. A 2015, 119, 4224. [Google Scholar] [CrossRef] [PubMed]
- Scaranto, J.; Pietropolli Charmet, A.; Stoppa, P.; Giorgianni, S. Vinyl halides adsorbed on TiO2 surface: FTIR spectroscopy studies and ab initio calculations. J. Mol. Struct. 2005, 741, 213–219. [Google Scholar] [CrossRef]
- Pietropolli Charmet, A.; Stoppa, P.; Giorgianni, S.; Bloino, J.; Tasinato, N.; Carnimeo, I.; Biczysko, M.; Puzzarini, C. Accurate Vibrational–Rotational Parameters and Infrared Intensities of 1-Bromo-1-fluoroethene: A Joint Experimental Analysis and Ab Initio Study. J. Phys. Chem. A 2017, 121, 3305–3317. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S. Supramolecular binding thermodynamics by dispersion-corrected density functional theory. Chem.-Eur. J. 2012, 18, 9955–9964. [Google Scholar] [CrossRef]
- Sure, R.; Grimme, S. Comprehensive benchmark of association (free) energies of realistic host−guest complexes. J. Chem. Theory Comput. 2015, 11, 3785–3801. [Google Scholar] [CrossRef] [PubMed]
- Tasinato, N.; Turchetto, A.; Stoppa, P.; Pietropolli Charmet, A.; Giorgianni, S. The energetic of (CH2F2)2 investigated by TDL IR spectroscopy and DFT computations: From collision induced relaxation of ro-vibrational transitions to non-covalent interactions. J. Chem. Phys. 2015, 142, 134310. [Google Scholar] [CrossRef] [PubMed]
- Møller, C.; Plesset, M.S. Note on an Approximation Treatment for Many-Electron Systems. Phys. Rev. 1934, 46, 618–622. [Google Scholar] [CrossRef]
- Purvis, G.D.; Bartlett, R.J. A full coupled-cluster singles and doubles model: The inclusion of disconnected triples. J. Chem. Phys. 1982, 76, 1910–1918. [Google Scholar] [CrossRef]
- Dunning, T.H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar] [CrossRef]
- Kendall, R.A.; Dunning, T.H.; Harrison, R.J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992, 96, 6796–6806. [Google Scholar] [CrossRef]
- Woon, D.E.; Dunning, T.H. Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon. J. Chem. Phys. 1995, 103, 4572–4585. [Google Scholar] [CrossRef]
- Alessandrini, S.; Barone, V.; Puzzarini, C. Extension of the “Cheap” Composite Approach to Noncovalent Interactions: The jun-ChS Scheme. J. Chem. Theory Comput. 2020, 16, 988–1006. [Google Scholar] [CrossRef]
- Barclay, A.J.; McKellar, A.R.W.; Pietropolli Charmet, A.; Moazzen-Ahmadi, N. Water–carbon disulfide dimers: Observation of a new isomer and ab initio structure theory. Phys. Chem. Chem. Phys. 2024, 26, 23053–23061. [Google Scholar] [CrossRef]
- Barclay, A.J.; McKellar, A.R.W.; Pietropolli Charmet, A.; Moazzen-Ahmadi, N. Spectroscopic observation and ab initio calculations of a new isomer of the CS2 trimer. J. Mol. Spectrosc. 2024, 401, 111899. [Google Scholar] [CrossRef]
- Krupa, J.; Wierzejewska, M.; Lundell, J. Matrix Isolation FTIR and Theoretical Study of Weakly Bound Complexes of Isocyanic Acid with Nitrogen. Molecules 2022, 27, 495. [Google Scholar] [CrossRef]
- Bader, R.F.W. A Quantum Theory of Molecular Structure and its Applications. Chem. Rev. 1991, 91, 893–928. [Google Scholar] [CrossRef]
- Johnson, E.R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A.J.; Yang, W. Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506. [Google Scholar] [CrossRef] [PubMed]
- Frontera, A.; Bauzá, A. Biological halogen bonds in protein–ligand complexes: A combined QTAIM and NCIPlot study in four representative cases. Org. Biomol. Chem. 2021, 19, 6858–6864. [Google Scholar] [CrossRef]
- Jena, S.; Dutta, J.; Devi Tulsiyan, K.; Kumar Sahu, A.; Shekhar Choudhury, S.; Biswal, H.S. Noncovalent interactions in proteins and nucleic acids: Beyond hydrogen bonding and π-stacking. Chem. Soc. Rev. 2022, 51, 4261–4286. [Google Scholar] [CrossRef]
- Reed, A.E.; Curtiss, L.A.; Weinhold, F. Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chem. Rev. 1988, 88, 899–926. [Google Scholar] [CrossRef]
- Jeziorski, B.; Moszynski, R.; Szalewicz, K. Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes. Chem. Rev. 1994, 94, 1887–1930. [Google Scholar] [CrossRef]
- Parker, T.M.; Burns, L.A.; Parrish, R.M.; Ryno, A.G.; Sherrill, C.D. Levels of symmetry adapted perturbation theory (SAPT). I. Efficiency and performance for interaction energies. J. Chem. Phys. 2014, 140, 94106. [Google Scholar] [CrossRef]
- Deng, Z.; Liu, C.; Li, Z.; Zhang, Y. An efficient method by combining different basis sets and SAPT levels. J. Comput. Chem. 2024, 45, 1936–1944. [Google Scholar] [CrossRef]
- Phan Dang, C.-T.; Minh Tam, N.; Huynh, T.-N.; Tien Trung, N. Revisiting conventional noncovalent interactions towards a complete understanding: From tetrel to pnicogen, chalcogen, and halogen bond. RSC Adv. 2023, 13, 31507–31517. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.G.A.; Burns, L.A.; Simmonett, A.C.; Parrish, R.M.; Schieber, M.C.; Galvelis, R.; Kraus, P.; Kruse, H.; Di Remigio, R.; Alenaizan, A.; et al. Psi4 1.4: Open-Source Software for High-Throughput Quantum Chemistry. J. Chem. Phys. 2020, 152, 184108. [Google Scholar] [CrossRef] [PubMed]
- Koch, U.; Popelier, P.L.A. Characterization of C-H-O Hydrogen Bonds on the Basis of the Charge Density. J. Chem. Phys. 1995, 99, 9747–9754. [Google Scholar] [CrossRef]
- Fatima, M.; Maué, D.; Pérez, C.; Tikhonov, D.S.; Bernhard, D.; Stamm, A.; Medcraft, C.; Gerhards, M.; Schnell, M. Structures and internal dynamics of diphenylether and its aggregates with water. Phys. Chem. Chem. Phys. 2020, 22, 27966–27978. [Google Scholar] [CrossRef] [PubMed]
- Barclay, A.J.; Pietropolli Charmet, A.; McKellar, A.R.W.; Moazzen-Ahmadi, N. Exploring the next step in micro-solvation of CO in water: Infrared spectra and structural calculations of (H2O)4-CO and (D2O)4-CO. J. Chem. Phys. 2021, 154, 044310. [Google Scholar] [CrossRef] [PubMed]
- Silva, W.G.D.P.; van Wijngaarden, J. Hydrogen bonding networks and cooperativity effects in the aqueous solvation of trimethylene oxide and sulfide rings by microwave spectroscopy and computational chemistry. J. Chem. Phys. 2021, 155, 034305. [Google Scholar] [CrossRef]
Isomer A | Isomer B | Isomer C | Isomer D | |
A | 2851 | 2461 | 2508 | |
B | 248 | 858 | 953 | 877 |
C | 659 | 687 | 650 | |
Overall dipole moment (|μ|) | 8.82 | 1.06 | 0.980 | 6.36 |
Dipole moment component (μx, μy, μz) | 0.0, 0.0, 8.82 | −1.06, 0.77, 0.0 | −6.34, −0.75, 0.0 | 6.36, −0.27, 0.23 |
BE/CBS-1 a | −7.85 | −7.55 | −7.52 | −6.98 |
BE/jun-ChS b | −7.65 | −7.54 | −7.47 | −6.94 |
IE/CP-revDSD c | −7.82 | −7.57 | −7.60 | −6.97 |
Isomer E | Isomer F | Isomer G | Isomer H | |
A | 2310 | 2164 | 1851 | |
B | 658 | 739 | 654 | 229 |
C | 512 | 551 | 484 | |
Overall dipole moment (|μ|) | 7.92 | 5.61 | 7.62 | 0.889 |
Dipole moment component (μx, μy, μz) | 7.75, −1.65, 0.0 | −5.61, 0.09, 0.0 | −7.3, −2.27, 0.0 | 0.0, 0.0, −0.889 |
BE/CBS-1 a | −6.43 | −6.16 | −5.62 | −4.44 |
BE/jun-ChS a | −6.34 | −6.13 | −5.54 | −4.25 |
IE/CP-revDSD b | −6.38 | −6.14 | −5.59 | −4.41 |
Isomer I | ||||
A | 35184 | |||
B | 264 | |||
C | 262 | |||
Overall dipole moment (|μ|) | 0.755 | |||
Dipole moment component (μx, μy, μz) | 0.76, 0.0, 0.0 | |||
BE/CBS-1 a | −3.68 | |||
BE/jun-ChS a | −3.71 | |||
IE/CP-revDSD b | −3.76 |
Freq (cm−1) | Intensity (km mol−1) | Freq (cm−1) | Intensity (km mol−1) | Freq (cm−1) | Intensity (km mol−1) |
---|---|---|---|---|---|
9.7 | 1.58 | 511.8 | 5.90 | 2111.5 | 27.97 |
9.7 | 1.58 | 511.8 | 5.90 | 2115.8 | 15.04 |
30.4 | 0.01 | 647.2 | 10.95 | 2309.7 | 49.09 |
30.4 | 0.01 | 647.2 | 10.95 | 3336.1 | 655.37 |
69.2 | 2.06 | 694.8 | 36.31 | 3373.9 | 215.92 |
100.0 | 5.18 | 694.8 | 36.31 | 3456.8 | 81.35 |
100.0 | 5.18 | 813.2 | 62.91 | 3492.3 | 1.35 |
136.1 | 0.35 | 813.2 | 62.91 | ||
144.4 | 19.34 | 830.7 | 41.15 | ||
144.4 | 19.34 | 830.7 | 41.15 | ||
230.5 | 0.52 | 894.2 | 0.24 | ||
230.5 | 0.52 | 2001.7 | 13.76 |
Isomer A | Isomer B | Isomer C | Isomer D | |
A | 1505 | 35219 | 2484 | |
B | 670 | 153 | 159 | 379 |
C | 464 | 158 | 329 | |
Overall dipole moment (|μ|) | 0.15 | 9.84 | 9.69 | 7.75 |
Dipole moment component (μx, μy, μz) | 0.14, −0.05, 0.0 | −9.84, 0.0, 0.0 | −9.69, 0.0, 0.0 | −7.75, −0.06, 0.0 |
BE/CBS-1 a | −8.29 | −7.12 | −6.76 | −6.11 |
BE/jun-ChS b | −8.33 | −6.90 | −6.63 | −6.07 |
IE/CP-revDSD c | −8.39 | −7.13 | −6.86 | −6.11 |
Isomer E | Isomer F | Isomer G | ||
A | 2310 | 2164 | 1851 | |
B | 658 | 739 | 654 | |
C | 512 | 551 | 484 | |
Overall dipole moment (|μ|) | 8.87 | 8.75 | 3.97 | |
Dipole moment component (μx, μy, μz) | 8.77, −1.41, 0.0 | 8.74, −0.21, 0.0 | 1.23, −3.77, 0.0 | |
BE/CBS-1 a | −5.94 | −5.70 | −5.19 | |
BE/jun-ChS b | −5.87 | −5.65 | −5.16 | |
IE/CP-revDSD c | −5.94 | −5.72 | −5.15 |
Freq (cm−1) | Intensity (km mol−1) | Freq (cm−1) | Intensity (km mol−1) | Freq (cm−1) | Intensity (km mol−1) |
---|---|---|---|---|---|
24.7 | 3.55 | 241.2 | 1.06 | 805.6 | 137.46 |
41.7 | 5.50 | 512.2 | 6.36 | 889.4 | 0.61 |
47.8 | 1.05 | 512.8 | 0.99 | 891.3 | 0.12 |
61.4 | 6.61 | 514.2 | 8.35 | 2002.0 | 3.26 |
75.4 | 1.21 | 514.6 | 8.43 | 2098.5 | 14.94 |
83.6 | 3.75 | 648.1 | 6.56 | 2107.4 | 3.02 |
89.1 | 0.12 | 656.9 | 1.86 | 2294.4 | 32.76 |
102.5 | 4.32 | 694.0 | 44.40 | 2302.0 | 49.50 |
133.7 | 1.72 | 704.6 | 31.89 | 3378.2 | 158.15 |
230.9 | 0.12 | 742.6 | 14.34 | 3387.8 | 314.70 |
232.3 | 0.10 | 756.9 | 34.41 | 3452.2 | 76.60 |
236.2 | 0.34 | 799.6 | 82.67 | 3488.0 | 1.90 |
Isomer A | Isomer B | Isomer C | Isomer D | |
A | 2573 | 35221 | 1729 | 1908 |
B | 842 | 279 | 1057 | 716 |
C | 634 | 277 | 656 | 521 |
Overall dipole moment (|μ|) | 3.88 | 5.24 | 3.78 | 4.12 |
Dipole moment component (μx, μy, μz) | 3.64, 1.39, 0.0 | 5.24, 0.0, 0.0 | −3.24, −1.94, 0.0 | 3.95, 1,11, 0.0 |
BE/CBS-1 a | −5.33 | −4.85 | −4.79 | −4.67 |
BE/jun-ChS b | −5.32 | −4.79 | −4.80 | −4.71 |
IE/CP-revDSD c | −5.31 | −4.90 | −4.82 | −4.76 |
Isomer E | ||||
A | 35242 | |||
B | 247 | |||
C | 245 | |||
Overall dipole moment (|μ|) | 4.25 | |||
Dipole moment component (μx, μy, μz) | 4.25, 0.0, 0.0 | |||
BE/CBS-1 a | −3.84 | |||
BE/jun-ChS b | −3.74 | |||
IE/CP-revDSD c | −3.84 |
Freq (cm−1) | Intensity (km mol−1) | Freq (cm−1) | Intensity (km mol−1) | Freq (cm−1) | Intensity (km mol−1) |
---|---|---|---|---|---|
14.5 | 3.51 | 509.8 | 7.07 | 800.8 | 107.45 |
41.5 | 3.49 | 512.4 | 4.38 | 889.9 | 0.08 |
53.4 | 0.18 | 638.2 | 5.22 | 2002.8 | 1.85 |
69.4 | 0.25 | 639.7 | 10.44 | 2005.5 | 8.06 |
70.3 | 0.76 | 646.6 | 6.80 | 2110.3 | 1.19 |
78.7 | 0.24 | 652.7 | 0.62 | 2305.3 | 25.25 |
88.5 | 0.00 | 684.5 | 35.82 | 3384.8 | 162.00 |
102.8 | 3.21 | 684.6 | 39.51 | 3391.6 | 233.70 |
135.3 | 0.43 | 781.4 | 24.04 | 3461.0 | 77.84 |
229.8 | 1.68 | 788.9 | 106.58 | 3492.3 | 2.27 |
230.1 | 0.03 | 799.1 | 117.80 | 3497.1 | 1.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pietropolli Charmet, A.; Stoppa, P.; De Lorenzi, A.; Canton, P. Quantum-Chemical Investigations on the Structure and Stability of Mixed Trimers Containing HC3N in Combination with H2C2 and/or HCN Analyzed by QTAIM, NBO and SAPT Methods. Symmetry 2025, 17, 140. https://doi.org/10.3390/sym17010140
Pietropolli Charmet A, Stoppa P, De Lorenzi A, Canton P. Quantum-Chemical Investigations on the Structure and Stability of Mixed Trimers Containing HC3N in Combination with H2C2 and/or HCN Analyzed by QTAIM, NBO and SAPT Methods. Symmetry. 2025; 17(1):140. https://doi.org/10.3390/sym17010140
Chicago/Turabian StylePietropolli Charmet, Andrea, Paolo Stoppa, Alessandra De Lorenzi, and Patrizia Canton. 2025. "Quantum-Chemical Investigations on the Structure and Stability of Mixed Trimers Containing HC3N in Combination with H2C2 and/or HCN Analyzed by QTAIM, NBO and SAPT Methods" Symmetry 17, no. 1: 140. https://doi.org/10.3390/sym17010140
APA StylePietropolli Charmet, A., Stoppa, P., De Lorenzi, A., & Canton, P. (2025). Quantum-Chemical Investigations on the Structure and Stability of Mixed Trimers Containing HC3N in Combination with H2C2 and/or HCN Analyzed by QTAIM, NBO and SAPT Methods. Symmetry, 17(1), 140. https://doi.org/10.3390/sym17010140