Trajectory Tracking Control Based on Deep Reinforcement Learning for a Robotic Manipulator with an Input Deadzone
Abstract
:1. Introduction
2. System Description
Dynamics Model
3. Preliminaries
3.1. Reinforcement Learning and Soft Actor-Critic
3.2. Long Short-Term Memory
3.3. Attention Mechanism
3.4. Random Network Distillation
4. Controller Design
4.1. Design of System Input and Output
4.2. Network Architecture
4.3. SLR Algorithm Design
Algorithm 1 SLR. |
|
5. Simulation
5.1. Training Performance
5.2. Control Performance
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Karabegović, I.; Husak, E.; Karabegović, E.; Mahmić, M. Robotic Technology as the Basis of Implementation of Industry 4.0 in Production Processes in China. In International Conference “New Technologies, Development and Applications”; Springer Nature: Cham, Switzerland, 2023. [Google Scholar]
- He, N.; Li, Y.; Li, H.; He, D.; Cheng, F. PID-Based Event-Triggered MPC for Constrained Nonlinear Cyber-Physical Systems: Theory and Application. IEEE Trans. Ind. Electron. 2024, 71, 13103–13112. [Google Scholar] [CrossRef]
- Ulu, B.; Savaş, S.; Ergin, Ö.F.; Ulu, B.; Kırnap, A.; Bingöl, M.S.; Yıldırım, Ş. Tuning the Proportional–Integral–Derivative Control Parameters of Unmanned Aerial Vehicles Using Artificial Neural Networks for Point-to-Point Trajectory Approach. Sensors 2024, 24, 2752. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, D.; Wu, Z.G.; Li, H. Neural network-based adaptive second-order sliding mode control for uncertain manipulator systems with input saturation. ISA Trans. 2023, 136, 126–138. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Kong, L.; Zhang, S.; Yu, X.; Liu, Y. Improved sliding mode control for a robotic manipulator with input deadzone and deferred constraint. IEEE Trans. Syst. Man Cybern. Syst. 2023, 53, 7814–7826. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, H. Online model predictive control of robot manipulator with structured deep Koopman model. IEEE Robot. Autom. Lett. 2023, 8, 3102–3109. [Google Scholar] [CrossRef]
- Selvaggio, M.; Garg, A.; Ruggiero, F.; Oriolo, G.; Siciliano, B. Non-prehensile object transportation via model predictive non-sliding manipulation control. IEEE Trans. Control Syst. Technol. 2023, 31, 2231–2244. [Google Scholar] [CrossRef]
- Yu, J.; Wu, M.; Ji, J.; Yang, W. Neural network-based region tracking control for a flexible-joint robot manipulator. J. Comput. Nonlinear Dyn. 2024, 19, 021003. [Google Scholar] [CrossRef]
- Khan, G.D. Control of robot manipulators with uncertain closed architecture using neural networks. Intell. Serv. Robot. 2024, 17, 315–327. [Google Scholar] [CrossRef]
- Lopez-Sanchez, I.; Pérez-Alcocer, R.; Moreno-Valenzuela, J. Trajectory tracking double two-loop adaptive neural network control for a Quadrotor. J. Frankl. Inst. 2023, 360, 3770–3799. [Google Scholar] [CrossRef]
- Ben Hazem, Z. Study of Q-learning and deep Q-network learning control for a rotary inverted pendulum system. Discov. Appl. Sci. 2024, 6, 1–19. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, Y.; Gao, J.; Yan, W. Visual Servoing Gain Tuning by Sarsa: An Application with a Manipulator. In Proceedings of the 2023 3rd International Conference on Robotics and Control Engineering, Nanjing, China, 12–14 May 2023. [Google Scholar]
- Ma, R.; Wang, Y.; Tang, C.; Wang, S.; Wang, R. Position and Attitude Tracking Control of a Biomimetic Underwater Vehicle via Deep Reinforcement Learning. IEEE/ASME Trans. Mechatron. 2023, 28, 2810–2819. [Google Scholar] [CrossRef]
- Song, D.; Gan, W.; Yao, P. Search and tracking strategy of autonomous surface underwater vehicle in oceanic eddies based on deep reinforcement learning. Appl. Soft Comput. 2023, 132, 109902. [Google Scholar] [CrossRef]
- Yang, C.; Yang, J.; Wang, X.; Liang, B. Control of space flexible manipulator using soft actor-critic and random network distillation. In Proceedings of the 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali, China, 6–8 December 2019. [Google Scholar]
- Wan, L.; Pan, Y.J.; Shen, H. Improving synchronization performance of multiple Euler–Lagrange systems using nonsingular terminal sliding mode control with fuzzy logic. IEEE/ASME Trans. Mechatron. 2021, 27, 2312–2321. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, Z.; Huang, P. Fractional-order control for uncertain teleoperated cyber-physical system with actuator fault. IEEE/ASME Trans. Mechatron. 2020, 26, 2472–2482. [Google Scholar] [CrossRef]
- Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; PMLR: Birmingham, UK. [Google Scholar]
- Li, F.; Fu, M.; Chen, W.; Zhang, F.; Zhang, H.; Qu, H.; Yi, Z. Improving exploration in actor–critic with weakly pessimistic value estimation and optimistic policy optimization. IEEE Trans. Neural Netw. Learn. Syst. 2022, 35, 8783–8796. [Google Scholar] [CrossRef] [PubMed]
- Graves, A.; Graves, A. Long short-term memory. In Supervised Sequence Labelling with Recurrent Neural Networks. Studies in Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2012; pp. 37–45. [Google Scholar] [CrossRef]
- Bahloul, S.N.; Mahmoudi, Y. Rainbow-RND: A Value-based Algorithm Augmented with Intrinsic Curiosity. In Proceedings of the 2021 International Conference on Information Systems and Advanced Technologies (ICISAT), Tebessa, Algeria, 27–28 December 2021; IEEE: Piscataway, NJ, USA. [Google Scholar]
- Huang, F.; Xu, J.; Wu, D.; Cui, Y.; Yan, Z.; Xing, W.; Zhang, X. A general motion controller based on deep reinforcement learning for an autonomous underwater vehicle with unknown disturbances. Eng. Appl. Artif. Intell. 2023, 117, 105589. [Google Scholar] [CrossRef]
- Jiawei, X.; Xufang, Z.; Zhong, L.; Qingtao, X. LSTM-DPPO based deep reinforcement learning controller for path following optimization of unmanned surface vehicle. J. Syst. Eng. Electron. 2023, 34, 1343–1358. [Google Scholar] [CrossRef]
- Nikulin, A.; Kurenkov, V.; Tarasov, D.; Kolesnikov, S. Anti-exploration by random network distillation. In Proceedings of the International Conference on Machine Learning, Honolulu, HI, USA, 23–29 July 2023; PMLR: Birmingham, UK. [Google Scholar]
Algorithms | SAC | SAC-RND | SAC-LSTM | SLR | |
---|---|---|---|---|---|
Joint | |||||
joint1 | AAE | 0.0141 | 0.0076 | 0.0072 | 0.0055 |
AAT | 11.07 | 12.35 | 10.22 | 9.45 | |
RMSE | 0.0223 | 0.0123 | 0.0132 | 0.0097 | |
joint2 | AAE | 0.0053 | 0.0059 | 0.052 | 0.0045 |
AAT | 5.732 | 10.23 | 6.702 | 3.612 | |
RMSE | 0.0349 | 0.0108 | 0.0118 | 0.0131 | |
joint3 | AAE | 0.0112 | 0.0123 | 0.0092 | 0.0063 |
AAT | 8.713 | 7.349 | 4.032 | 1.692 | |
RMSE | 0.0665 | 0.0221 | 0.0184 | 0.0151 |
Algorithms | SAC | SAC-RND | SAC-LSTM | SLR | |
---|---|---|---|---|---|
Joint | |||||
joint1 | AAE | 0.0152 | 0.0088 | 0.0081 | 0.0064 |
AAT | 12.39 | 13.86 | 11.26 | 10.98 | |
RMSE | 0.0241 | 0.014 | 0.0145 | 0.0113 | |
joint2 | AAE | 0.0059 | 0.0067 | 0.058 | 0.0051 |
AAT | 6.663 | 11.26 | 7.468 | 3.781 | |
RMSE | 0.0393 | 0.0114 | 0.0126 | 0.0144 | |
joint3 | AAE | 0.013 | 0.0138 | 0.01 | 0.0076 |
AAT | 10.08 | 8.377 | 4.215 | 1.941 | |
RMSE | 0.0726 | 0.0248 | 0.0202 | 0.0172 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Hu, J.; Qin, Y.; Guo, F.; Jiang, M. Trajectory Tracking Control Based on Deep Reinforcement Learning for a Robotic Manipulator with an Input Deadzone. Symmetry 2025, 17, 149. https://doi.org/10.3390/sym17020149
Wang F, Hu J, Qin Y, Guo F, Jiang M. Trajectory Tracking Control Based on Deep Reinforcement Learning for a Robotic Manipulator with an Input Deadzone. Symmetry. 2025; 17(2):149. https://doi.org/10.3390/sym17020149
Chicago/Turabian StyleWang, Fujie, Jintao Hu, Yi Qin, Fang Guo, and Ming Jiang. 2025. "Trajectory Tracking Control Based on Deep Reinforcement Learning for a Robotic Manipulator with an Input Deadzone" Symmetry 17, no. 2: 149. https://doi.org/10.3390/sym17020149
APA StyleWang, F., Hu, J., Qin, Y., Guo, F., & Jiang, M. (2025). Trajectory Tracking Control Based on Deep Reinforcement Learning for a Robotic Manipulator with an Input Deadzone. Symmetry, 17(2), 149. https://doi.org/10.3390/sym17020149