What Is Inside the Double–Double Structure of the Radio Galaxy J0028+0035?
Abstract
:1. Introduction
2. VLBI Observation and Data Reduction
2.1. Phase-Referenced EVN Observation in Multi-Phase-Centre Mode
2.2. Data Calibration and Imaging
3. Results
3.1. The Core of the Radio Galaxy J0028+0035
3.2. The Northeastern Inner Lobe of J0028+0035
3.3. The Radio AGN 5BZU J0028+0035
4. Discussion
4.1. The Radio Galaxy J0028+0035
4.2. The Blazar Candidate 5BZU J0028+0035
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGN | active galactic nuclei |
AIPS | Astronomical Image Processing System |
BCG | brightest cluster galaxy |
BH | black hole |
DDRG | double–double radio galaxy |
DR | data release |
e-MERLIN | enhanced Multi Element Remotely Linked Interferometer Network |
EVN | European VLBI Network |
FIRST | Faint Images of the Radio Sky at Twenty cm |
FR | Fanaroff–Riley type |
FWHM | full width at half maximum |
IF | intermediate frequency channel |
mas | milliarcsecond |
NRAO | U.S. National Radio Astronomy Observatory |
PA | position angle |
SDSS | Sloan Digital Sky Survey |
SI | International System of Units |
VLA | Karl G. Jansky Very Large Array |
VLBI | very long baseline interferometry |
References
- Padovani, P.; Alexander, D.M.; Assef, R.J.; De Marco, B.; Giommi, P.; Hickox, R.C.; Richards, G.T.; Smolčić, V.; Hatziminaoglou, E.; Mainieri, V.; et al. Active galactic nuclei: What is in a name? Astron. Astrophys. Rev. 2017, 25, 2. [Google Scholar] [CrossRef]
- Ivezić, Ž.; Menou, K.; Knapp, G.R.; Strauss, M.A.; Lupton, R.H.; Vanden Berk, D.E.; Richards, G.T.; Tremonti, C.; Weinstein, M.A.; Anderson, S.; et al. Optical and Radio Properties of Extragalactic Sources Observed by the FIRST Survey and the Sloan Digital Sky Survey. Astron. J. 2002, 124, 2364–2400. [Google Scholar] [CrossRef]
- Padovani, P. On the two main classes of active galactic nuclei. Nat. Astron. 2017, 1, 0194. [Google Scholar] [CrossRef]
- Urry, C.M.; Padovani, P. Unified Schemes for Radio-Loud Active Galactic Nuclei. Publ. Astron. Soc. Pac. 1995, 107, 803. [Google Scholar] [CrossRef]
- Dabhade, P.; Saikia, D.J.; Mahato, M. Decoding the giant extragalactic radio sources. J. Astrophys. Astron. 2023, 44, 13. [Google Scholar] [CrossRef]
- Carilli, C.L.; Perley, R.A.; Dreher, J.W.; Leahy, J.P. Multifrequency Radio Observations of Cygnus A: Spectral Aging in Powerful Radio Galaxies. Astrophys. J. 1991, 383, 554. [Google Scholar] [CrossRef]
- Schawinski, K.; Koss, M.; Berney, S.; Sartori, L.F. Active galactic nuclei flicker: An observational estimate of the duration of black hole growth phases of ∼105 yr. Mon. Not. R. Astron. Soc. 2015, 451, 2517–2523. [Google Scholar] [CrossRef]
- Schoenmakers, A.P.; de Bruyn, A.G.; Röttgering, H.J.A.; van der Laan, H.; Kaiser, C.R. Radio galaxies with a ‘double-double morphology’—I. Analysis of the radio properties and evidence for interrupted activity in active galactic nuclei. Mon. Not. R. Astron. Soc. 2000, 315, 371–380. [Google Scholar] [CrossRef]
- Saikia, D.J.; Jamrozy, M. Recurrent activity in Active Galactic Nuclei. Bull. Astron. Soc. India 2009, 37, 63–89. [Google Scholar] [CrossRef]
- Brocksopp, C.; Kaiser, C.R.; Schoenmakers, A.P.; de Bruyn, A.G. Double-double radio galaxies: Further insights into the formation of the radio structures. Mon. Not. R. Astron. Soc. 2011, 410, 484–498. [Google Scholar] [CrossRef]
- Nandi, S.; Saikia, D.J. Double-double radio galaxies from the FIRST survey. Bull. Astron. Soc. India 2012, 40, 121–137. [Google Scholar] [CrossRef]
- Kuźmicz, A.; Jamrozy, M.; Kozieł-Wierzbowska, D.; Weżgowiec, M. Optical and radio properties of extragalactic radio sources with recurrent jet activity. Mon. Not. R. Astron. Soc. 2017, 471, 3806–3826. [Google Scholar] [CrossRef]
- Mahatma, V.H.; Hardcastle, M.J.; Williams, W.L.; Best, P.N.; Croston, J.H.; Duncan, K.; Mingo, B.; Morganti, R.; Brienza, M.; Cochrane, R.K.; et al. LoTSS DR1: Double-double radio galaxies in the HETDEX field. Astron. Astrophys. 2019, 622, A13. [Google Scholar] [CrossRef]
- Marecki, A.; Jamrozy, M.; Machalski, J.; Pajdosz-Śmierciak, U. Multifrequency study of a double-double radio galaxy J0028+0035. Mon. Not. R. Astron. Soc. 2021, 501, 853–865. [Google Scholar] [CrossRef]
- Brocksopp, C.; Kaiser, C.R.; Schoenmakers, A.P.; de Bruyn, A.G. Three episodes of jet activity in the Fanaroff-Riley type II radio galaxy B0925+420. Mon. Not. R. Astron. Soc. 2007, 382, 1019–1028. [Google Scholar] [CrossRef]
- Hota, A.; Sirothia, S.K.; Ohyama, Y.; Konar, C.; Kim, S.; Rey, S.C.; Saikia, D.J.; Croston, J.H.; Matsushita, S. Discovery of a spiral-host episodic radio galaxy. Mon. Not. R. Astron. Soc. 2011, 417, L36–L40. [Google Scholar] [CrossRef]
- Singh, V.; Ishwara-Chandra, C.H.; Kharb, P.; Srivastava, S.; Janardhan, P. J1216+0709: A Radio Galaxy with Three Episodes of AGN Jet Activity. Astrophys. J. 2016, 826, 132. [Google Scholar] [CrossRef]
- Chavan, K.; Dabhade, P.; Saikia, D.J. A giant radio galaxy with three cycles of episodic jet activity from LoTSS DR2. Mon. Not. R. Astron. Soc. 2023, 525, L87–L92. [Google Scholar] [CrossRef]
- Massaro, E.; Giommi, P.; Leto, C.; Marchegiani, P.; Maselli, A.; Perri, M.; Piranomonte, S.; Sclavi, S. Roma-BZCAT: A multifrequency catalogue of blazars. Astron. Astrophys. 2009, 495, 691–696. [Google Scholar] [CrossRef]
- Massaro, E.; Maselli, A.; Leto, C.; Marchegiani, P.; Perri, M.; Giommi, P.; Piranomonte, S. The 5th edition of the Roma-BZCAT. A short presentation. Astrophys. Space Sci. 2015, 357, 75. [Google Scholar] [CrossRef]
- Adelman-McCarthy, J.K.; Agüeros, M.A.; Allam, S.S.; Allende Prieto, C.; Anderson, K.S.J.; Anderson, S.F.; Annis, J.; Bahcall, N.A.; Bailer-Jones, C.A.L.; Baldry, A.A.; et al. The Sixth Data Release of the Sloan Digital Sky Survey. Astrophys. J. Suppl. Ser. 2008, 175, 297–313. [Google Scholar] [CrossRef]
- Albareti, F.D.; Allende Prieto, C.; Almeida, A.; Anders, F.; Anderson, S.; Andrews, B.H.; Aragón-Salamanca, A.; Argudo-Fernández, M.; Armengaud, E.; Aubourg, E.; et al. The 13th Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point Observatory. Astrophys. J. Suppl. Ser. 2017, 233, 25. [Google Scholar] [CrossRef]
- Becker, R.H.; White, R.L.; Helfand, D.J. The FIRST Survey: Faint Images of the Radio Sky at Twenty Centimeters. Astrophys. J. 1995, 450, 559. [Google Scholar] [CrossRef]
- White, R.L.; Becker, R.H.; Helfand, D.J.; Gregg, M.D. A Catalog of 1.4 GHz Radio Sources from the FIRST Survey. Astrophys. J. 1997, 475, 479–493. [Google Scholar] [CrossRef]
- Fanaroff, B.L.; Riley, J.M. The morphology of extragalactic radio sources of high and low luminosity. Mon. Not. R. Astron. Soc. 1974, 167, 31P–36P. [Google Scholar] [CrossRef]
- Szabo, T.; Pierpaoli, E.; Dong, F.; Pipino, A.; Gunn, J. An Optical Catalog of Galaxy Clusters Obtained from an Adaptive Matched Filter Finder Applied to Sloan Digital Sky Survey Data Release 6. Astrophys. J. 2011, 736, 21. [Google Scholar] [CrossRef]
- Mahatma, V.H. The Dynamics and Energetics of Remnant and Restarting RLAGN. Galaxies 2023, 11, 74. [Google Scholar] [CrossRef]
- Blandford, R.D.; Znajek, R.L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 1977, 179, 433–456. [Google Scholar] [CrossRef]
- Volonteri, M.; Madau, P.; Quataert, E.; Rees, M.J. The Distribution and Cosmic Evolution of Massive Black Hole Spins. Astrophys. J. 2005, 620, 69–77. [Google Scholar] [CrossRef]
- Gergely, L.Á.; Biermann, P.L. The Spin-Flip Phenomenon in Supermassive Black hole binary mergers. Astrophys. J. 2009, 697, 1621–1633. [Google Scholar] [CrossRef]
- Tchekhovskoy, A.; Narayan, R.; McKinney, J.C. Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. Mon. Not. R. Astron. Soc. 2011, 418, L79–L83. [Google Scholar] [CrossRef]
- van Velzen, S.; Falcke, H. The contribution of spin to jet-disk coupling in black holes. Astron. Astrophys. 2013, 557, L7. [Google Scholar] [CrossRef]
- McNamara, B.R.; Rohanizadegan, M.; Nulsen, P.E.J. Are Radio Active Galactic Nuclei Powered by Accretion or Black Hole Spin? Astrophys. J. 2011, 727, 39. [Google Scholar] [CrossRef]
- Dabhade, P.; Mahato, M.; Bagchi, J.; Saikia, D.J.; Combes, F.; Sankhyayan, S.; Röttgering, H.J.A.; Ho, L.C.; Gaikwad, M.; Raychaudhury, S.; et al. Search and analysis of giant radio galaxies with associated nuclei (SAGAN). I. New sample and multi-wavelength studies. Astron. Astrophys. 2020, 642, A153. [Google Scholar] [CrossRef]
- Wright, E.L. A Cosmology Calculator for the World Wide Web. Publ. Astron. Soc. Pac. 2006, 118, 1711–1715. [Google Scholar] [CrossRef]
- Beasley, A.J.; Conway, J.E. VLBI Phase-Referencing. In Proceedings of the Very Long Baseline Interferometry and the VLBA, Socorro, NM, USA, 23–30 June 1993; Zensus, J.A., Diamond, P.J., Napier, P.J., Eds.; Astronomical Society of the Pacific Conference Series. Astronomical Society of the Pacific (ASP): San Francisco, CA, USA, 1995; Volume 82, p. 327. [Google Scholar]
- Charlot, P.; Jacobs, C.S.; Gordon, D.; Lambert, S.; de Witt, A.; Böhm, J.; Fey, A.L.; Heinkelmann, R.; Skurikhina, E.; Titov, O.; et al. The third realization of the International Celestial Reference Frame by very long baseline interferometry. Astron. Astrophys. 2020, 644, A159. [Google Scholar] [CrossRef]
- Deller, A.T.; Brisken, W.F.; Phillips, C.J.; Morgan, J.; Alef, W.; Cappallo, R.; Middelberg, E.; Romney, J.; Rottmann, H.; Tingay, S.J.; et al. DiFX-2: A More Flexible, Efficient, Robust, and Powerful Software Correlator. Publ. Astron. Soc. Pac. 2011, 123, 275. [Google Scholar] [CrossRef]
- Cao, H.M.; Frey, S.; Gurvits, L.I.; Yang, J.; Hong, X.Y.; Paragi, Z.; Deller, A.T.; Ivezić, Ž. VLBI observations of the radio quasar J2228+0110 at z = 5.95 and other field sources in multiple-phase-centre mode. Astron. Astrophys. 2014, 563, A111. [Google Scholar] [CrossRef]
- Keimpema, A.; Kettenis, M.M.; Pogrebenko, S.V.; Campbell, R.M.; Cimó, G.; Duev, D.A.; Eldering, B.; Kruithof, N.; van Langevelde, H.J.; Marchal, D.; et al. The SFXC software correlator for very long baseline interferometry: Algorithms and implementation. Exp. Astron. 2015, 39, 259–279. [Google Scholar] [CrossRef]
- Greisen, E.W. AIPS, the VLA, and the VLBA. In Information Handling in Astronomy—Historical Vistas; Heck, A., Ed.; Astrophysics and Space Science Library; Springer: Berlin/Heidelberg, Germany, 2003; Volume 285, p. 109. [Google Scholar] [CrossRef]
- Diamond, P.J. VLBI Data Reduction in Practice. In Proceedings of the Very Long Baseline Interferometry and the VLBA, Socorro, NM, USA, 23–30 June 1993; Zensus, J.A., Diamond, P.J., Napier, P.J., Eds.; Astronomical Society of the Pacific Conference Series. Astronomical Society of the Pacific (ASP): San Francisco, CA, USA, 1995; Volume 82, p. 227. [Google Scholar]
- Schwab, F.R.; Cotton, W.D. Global fringe search techniques for VLBI. Astron. J. 1983, 88, 688–694. [Google Scholar] [CrossRef]
- Shepherd, M.C.; Pearson, T.J.; Taylor, G.B. DIFMAP: An interactive program for synthesis imaging. Bull. Am. Astron. Soc. 1994, 26, 987–989. [Google Scholar]
- Högbom, J.A. Aperture Synthesis with a Non-Regular Distribution of Interferometer Baselines. Astron. Astrophys. Suppl. 1974, 15, 417. [Google Scholar]
- Pearson, T.J.; Readhead, A.C.S. Image Formation by Self-Calibration in Radio Astronomy. Annu. Rev. Astron. Astrophys. 1984, 22, 97–130. [Google Scholar] [CrossRef]
- Pearson, T.J. Non-Imaging Data Analysis. In Proceedings of the Very Long Baseline Interferometry and the VLBA, Socorro, NM, USA, 23–30 June 1993; Zensus, J.A., Diamond, P.J., Napier, P.J., Eds.; Astronomical Society of the Pacific Conference Series. Astronomical Society of the Pacific (ASP): San Francisco, CA, USA, 1995; Volume 82, p. 267. [Google Scholar]
- Fomalont, E.B. Image Analysis. In Proceedings of the Synthesis Imaging in Radio Astronomy II, Socorro, NM, USA, 17–23 June 1998; Taylor, G.B., Carilli, C.L., Perley, R.A., Eds.; Astronomical Society of the Pacific Conference Series. Astronomical Society of the Pacific (ASP): San Francisco, CA, USA, 1999; Volume 180, p. 301. [Google Scholar]
- Lee, S.S.; Lobanov, A.P.; Krichbaum, T.P.; Witzel, A.; Zensus, A.; Bremer, M.; Greve, A.; Grewing, M. A Global 86 GHz VLBI Survey of Compact Radio Sources. Astron. J. 2008, 136, 159–180. [Google Scholar] [CrossRef]
- Condon, J.J.; Condon, M.A.; Gisler, G.; Puschell, J.J. Strong radio sources in bright spiral galaxies. II. Rapid star formation and galaxy-galaxy interactions. Astrophys. J. 1982, 252, 102–124. [Google Scholar] [CrossRef]
- Martí-Vidal, I.; Ros, E.; Pérez-Torres, M.A.; Guirado, J.C.; Jiménez-Monferrer, S.; Marcaide, J.M. Coherence loss in phase-referenced VLBI observations. Astron. Astrophys. 2010, 515, A53. [Google Scholar] [CrossRef]
- Gabányi, K.É.; Frey, S.; Satyapal, S.; Constantin, A.; Pfeifle, R.W. Very long baseline interferometry observation of the triple AGN candidate J0849+1114. Astron. Astrophys. 2019, 630, L5. [Google Scholar] [CrossRef]
- Krezinger, M.; Perger, K.; Gabányi, K.É.; Frey, S.; Gurvits, L.I.; Paragi, Z.; An, T.; Zhang, Y.; Cao, H.; Sbarrato, T. Radio-loud Quasars above Redshift 4: Very Long Baseline Interferometry (VLBI) Imaging of an Extended Sample. Astrophys. J. Suppl. Ser. 2022, 260, 49. [Google Scholar] [CrossRef]
- Krezinger, M.; Baldini, G.; Giroletti, M.; Sbarrato, T.; Ghisellini, G.; Giovannini, G.; An, T.; Gabányi, K.É.; Frey, S. Revealing faint compact radio jets at redshifts above 5 with very long baseline interferometry. Astron. Astrophys. 2024, 690, A321. [Google Scholar] [CrossRef]
- Kewley, L.J.; Heisler, C.A.; Dopita, M.A.; Sutherland, R.; Norris, R.P.; Reynolds, J.; Lumsden, S. Compact Radio Emission from Warm Infrared Galaxies. Astrophys. J. 2000, 530, 704–718. [Google Scholar] [CrossRef]
- Krezinger, M.; Frey, S.; Paragi, Z.; Deane, R. High-Resolution Radio Observations of Five Optically Selected Type 2 Quasars. Symmetry 2020, 12, 527. [Google Scholar] [CrossRef]
- Wang, A.; An, T.; Cheng, X.; Ho, L.C.; Kellermann, K.I.; Baan, W.A.; Yang, J.; Zhang, Y. VLBI observations of a sample of Palomar-Green quasars—I. Parsec-scale morphology. Mon. Not. R. Astron. Soc. 2023, 518, 39–53. [Google Scholar] [CrossRef]
- Gaia Collaboration; Prusti, T.; de Bruijne, J.H.J.; Brown, A.G.A.; Vallenari, A.; Babusiaux, C.; Bailer-Jones, C.A.L.; Bastian, U.; Biermann, M.; Evans, D.W.; et al. The Gaia mission. Astron. Astrophys. 2016, 595, A1. [Google Scholar] [CrossRef]
- Gaia Collaboration; Vallenari, A.; Brown, A.G.A.; Prusti, T.; de Bruijne, J.H.J.; Arenou, F.; Babusiaux, C.; Biermann, M.; Creevey, O.L.; Ducourant, C.; et al. Gaia Data Release 3. Summary of the content and survey properties. Astron. Astrophys. 2023, 674, A1. [Google Scholar] [CrossRef]
- Orosz, G.; Frey, S. Optical-radio positional offsets for active galactic nuclei. Astron. Astrophys. 2013, 553, A13. [Google Scholar] [CrossRef]
- Marecki, A.; Swoboda, B. The transition from quasar radio-loud to radio-quiet state in the framework of the black hole scalability hypothesis. Astron. Astrophys. 2011, 525, A6. [Google Scholar] [CrossRef]
- Wright, E.L.; Eisenhardt, P.R.M.; Mainzer, A.K.; Ressler, M.E.; Cutri, R.M.; Jarrett, T.; Kirkpatrick, J.D.; Padgett, D.; McMillan, R.S.; Skrutskie, M.; et al. The Wide-field Infrared Survey Explorer (WISE): Mission Description and Initial On-orbit Performance. Astron. J. 2010, 140, 1868–1881. [Google Scholar] [CrossRef]
- Cutri, R.M.; Wright, E.L.; Conrow, T.; Fowler, J.W.; Eisenhardt, P.R.M.; Grillmair, C.; Kirkpatrick, J.D.; Masci, F.; McCallon, H.L.; Wheelock, S.L.; et al. VizieR Online Data Catalog: AllWISE Data Release II/328. 2023. Available online: https://cdsarc.cds.unistra.fr/viz-bin/cat/II/328 (accessed on 14 December 2024).
- Marecki, A. Activity restart - a key to explaining the morphology of J1211+743. Astron. Astrophys. 2012, 544, L2. [Google Scholar] [CrossRef]
- Readhead, A.C.S. Equipartition Brightness Temperature and the Inverse Compton Catastrophe. Astrophys. J. 1994, 426, 51. [Google Scholar] [CrossRef]
- Homan, D.C.; Cohen, M.H.; Hovatta, T.; Kellermann, K.I.; Kovalev, Y.Y.; Lister, M.L.; Popkov, A.V.; Pushkarev, A.B.; Ros, E.; Savolainen, T. MOJAVE. XIX. Brightness Temperatures and Intrinsic Properties of Blazar Jets. Astrophys. J. 2021, 923, 67. [Google Scholar] [CrossRef]
- Kozák, B.; Frey, S.; Gabányi, K.É. Superluminal Motion and Jet Parameters in the Gamma-ray-Emitting Narrow-Line Seyfert 1 Galaxy TXS 1206+549. Galaxies 2024, 12, 8. [Google Scholar] [CrossRef]
- Xie, Z.L.; Bañados, E.; Belladitta, S.; Mazzucchelli, C.; Schindler, J.T.; Davies, F.; Venemans, B.P. Recognizing Blazars Using Radio Morphology from the VLA Sky Survey. Astrophys. J. 2024, 964, 98. [Google Scholar] [CrossRef]
- Mateos, S.; Alonso-Herrero, A.; Carrera, F.J.; Blain, A.; Watson, M.G.; Barcons, X.; Braito, V.; Severgnini, P.; Donley, J.L.; Stern, D. Using the Bright Ultrahard XMM-Newton survey to define an IR selection of luminous AGN based on WISE colours. Mon. Not. R. Astron. Soc. 2012, 426, 3271–3281. [Google Scholar] [CrossRef]
- Massaro, F.; D’Abrusco, R.; Tosti, G.; Ajello, M.; Gasparrini, D.; Grindlay, J.E.; Smith, H.A. The WISE Gamma-Ray Strip Parameterization: The Nature of the Gamma-Ray Active Galactic Nuclei of Uncertain Type. Astrophys. J. 2012, 750, 138. [Google Scholar] [CrossRef]
- Lindegren, L.; Lammers, U.; Hobbs, D.; O’Mullane, W.; Bastian, U.; Hernández, J. The astrometric core solution for the Gaia mission. Overview of models, algorithms, and software implementation. Astron. Astrophys. 2012, 538, A78. [Google Scholar] [CrossRef]
Source | Flux Density | Size FWHM | Brightness Temperature | Radio Power |
---|---|---|---|---|
(mJy) | (mas) | (K) | (W Hz−1) | |
C | ||||
B |
Source | Band | Band | Band | Band |
---|---|---|---|---|
3.35 μm | 4.6 μm | 11.6 μm | 22.1 μm | |
DDRG J0028+0035 | ||||
5BZU J0028+0035 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frey, S.; Marecki, A.; Gabányi, K.É.; Jamrozy, M. What Is Inside the Double–Double Structure of the Radio Galaxy J0028+0035? Symmetry 2025, 17, 171. https://doi.org/10.3390/sym17020171
Frey S, Marecki A, Gabányi KÉ, Jamrozy M. What Is Inside the Double–Double Structure of the Radio Galaxy J0028+0035? Symmetry. 2025; 17(2):171. https://doi.org/10.3390/sym17020171
Chicago/Turabian StyleFrey, Sándor, Andrzej Marecki, Krisztina Éva Gabányi, and Marek Jamrozy. 2025. "What Is Inside the Double–Double Structure of the Radio Galaxy J0028+0035?" Symmetry 17, no. 2: 171. https://doi.org/10.3390/sym17020171
APA StyleFrey, S., Marecki, A., Gabányi, K. É., & Jamrozy, M. (2025). What Is Inside the Double–Double Structure of the Radio Galaxy J0028+0035? Symmetry, 17(2), 171. https://doi.org/10.3390/sym17020171