Integrating Transformer Architecture and Householder Transformations for Enhanced Temporal Knowledge Graph Embedding in DuaTHP
Abstract
:1. Introduction
- Our approach blends Transformer block transformations with the TKGE model architecture, allowing for nuanced capture of entity and relationship characteristics and providing valuable context within the TKG.
- We innovate by incorporating Householder projections into the dual quaternion space, enabling our model to simultaneously map vital relational patterns and complex mapping properties in the TKG.
- Our model’s efficacy is demonstrated through comparisons with leading KGE and TKGE models in both link and time prediction tasks across five TKGs, consistently outperforming established benchmarks.
2. Related Work
2.1. Static KG Embeddings
2.2. Temporal Knowledge Graph Embeddings
3. Dual Quaternion and Householder Projections
3.1. Dual Quaternion
3.2. Householder Projections
4. Construction of the DuaTHP Model
4.1. Notations
4.2. Application of Householder Projections
4.3. Transformer Blocks
4.4. Neighbor Selector
4.5. Loss Function
5. Experiment
5.1. Datasets and Baselines
5.2. Implementation Details
5.3. Result and Analysis
5.4. Ablation Experiment
5.4.1. The Value of Householder Projections
5.4.2. The Number of Attention Heads
5.4.3. The Number of Modified Householder Matrices
5.4.4. The Neighbor Selector and Transformer Components
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bollacker, K.D.; Evans, C.; Paritosh, P.K.; Sturge, T.; Taylor, J. Freebase: A collaboratively created graph database for structuring human knowledge. In Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2008, Vancouver, BC, Canada, 10–12 June 2008; Wang, J.T., Ed.; ACM: New York, NY, USA, 2008; pp. 1247–1250. [Google Scholar]
- Xu, C.; Nayyeri, M.; Alkhoury, F.; Yazdi, H.S.; Lehmann, J. TeRo: A Time-aware Knowledge Graph Embedding via Temporal Rotation. In Proceedings of the 28th International Conference on Computational Linguistics, COLING 2020, Barcelona, Spain (Online), 8–13 December 2020; Scott, D., Bel, N., Zong, C., Eds.; International Committee on Computational Linguistics: New York, NY, USA, 2020; pp. 1583–1593. [Google Scholar]
- Chen, K.; Wang, Y.; Li, Y.; Li, A. RotateQVS: Representing Temporal Information as Rotations in Quaternion Vector Space for Temporal Knowledge Graph Completion. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland, 22–27 May 2022; Muresan, S., Nakov, P., Villavicencio, A., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2022; pp. 5843–5857. [Google Scholar]
- Nguyen, D.Q.; Vu, T.; Nguyen, T.D.; Nguyen, D.Q.; Phung, D.Q. A Capsule Network-based Embedding Model for Knowledge Graph Completion and Search Personalization. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, 2–7 June 2019; Volume 1 (Long and Short Papers). Burstein, J., Doran, C., Solorio, T., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2019; pp. 2180–2189. [Google Scholar]
- Fu, G.; Meng, Z.; Han, Z.; Ding, Z.; Ma, Y.; Schubert, M.; Tresp, V.; Wattenhofer, R. TempCaps: A Capsule Network-based Embedding Model for Temporal Knowledge Graph Completion. In Proceedings of the Sixth Workshop on Structured Prediction for NLP, SPNLP@ACL 2022, Dublin, Ireland, 27 May 2022; Vlachos, A., Agrawal, P., Martins, A.F.T., Lampouras, G., Lyu, C., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2022; pp. 22–31. [Google Scholar]
- Zhang, S.; Liang, X.; Tang, H.; Zheng, X.; Zhang, A.X.; Ma, Y. DuCape: Dual Quaternion and Capsule Network-Based Temporal Knowledge Graph Embedding. ACM Trans. Knowl. Discov. Data 2023, 17, 104:1–104:19. [Google Scholar] [CrossRef]
- Zhang, S.; Liang, X.; Li, Z.; Feng, J.; Zheng, X.; Wu, B. BiQCap: A Biquaternion and Capsule Network-Based Embedding Model for Temporal Knowledge Graph Completion. In Proceedings of the Database Systems for Advanced Applications—28th International Conference, DASFAA 2023, Tianjin, China, 17–20 April 2023; Wang, X., Sapino, M.L., Han, W., Abbadi, A.E., Dobbie, G., Feng, Z., Shao, Y., Yin, H., Eds.; Proceedings, Part II; Lecture Notes in Computer Science. Springer: Cham, Switzerland, 2023; Volume 13944, pp. 673–688. [Google Scholar]
- Yang, J.; Ying, X.; Shi, Y.; Xing, B. Tensor decompositions for temporal knowledge graph completion with time perspective. Expert Syst. Appl. 2024, 237, 121267. [Google Scholar] [CrossRef]
- Liu, R.; Yin, G.; Liu, Z.; Tian, Y. Reinforcement learning with time intervals for temporal knowledge graph reasoning. Inf. Syst. 2024, 120, 102292. [Google Scholar] [CrossRef]
- Dai, Y.; Guo, W.; Eickhoff, C. Wasserstein adversarial learning based temporal knowledge graph embedding. Inf. Sci. 2024, 659, 120061. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, H.; Shi, Y.; Cheng, J.; Lin, J. Joint framework for tensor decomposition-based temporal knowledge graph completion. Inf. Sci. 2024, 654, 119853. [Google Scholar] [CrossRef]
- Chen, B.; Yang, K.; Tai, W.; Cheng, Z.; Liu, L.; Zhong, T.; Zhou, F. Interpreting Temporal Knowledge Graph Reasoning (Student Abstract). In Proceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI 2024), Vancouver, BC, Canada, 20–27 February 2024; AAAI Press: Washington, DC, USA, 2024; pp. 23451–23453. [Google Scholar] [CrossRef]
- Pan, J.; Nayyeri, M.; Li, Y.; Staab, S. HGE: Embedding Temporal Knowledge Graphs in a Product Space of Heterogeneous Geometric Subspaces. In Proceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI 2024), Vancouver, BC, Canada, 20–27 February 2024; AAAI Press: Washington, DC, USA, 2024; pp. 8913–8920. [Google Scholar] [CrossRef]
- Bordes, A.; Usunier, N.; García-Durán, A.; Weston, J.; Yakhnenko, O. Translating Embeddings for Modeling Multi-relational Data. In Proceedings of the Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013, Lake Tahoe, NV, USA, 5–8 December 2013; Burges, C.J.C., Bottou, L., Ghahramani, Z., Weinberger, K.Q., Eds.; Curran Associates Inc.: Red Hook, NY, USA, 2013; pp. 2787–2795. [Google Scholar]
- Wang, Z.; Zhang, J.; Feng, J.; Chen, Z. Knowledge Graph Embedding by Translating on Hyperplanes. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, Québec City, QC, Canada, 27–31 July 2014; Brodley, C.E., Stone, P., Eds.; AAAI Press: Washington, DC, USA, 2014; pp. 1112–1119. [Google Scholar]
- Lin, Y.; Liu, Z.; Sun, M.; Liu, Y.; Zhu, X. Learning Entity and Relation Embeddings for Knowledge Graph Completion. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015; Bonet, B., Koenig, S., Eds.; AAAI Press: Washington, DC, USA, 2015; pp. 2181–2187. [Google Scholar]
- Ji, G.; He, S.; Xu, L.; Liu, K.; Zhao, J. Knowledge Graph Embedding via Dynamic Mapping Matrix. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, ACL 2015, Beijing, China, 26–31 July 2015; Volume 1: Long Papers. The Association for Computer Linguistics: Stroudsburg, PA, USA, 2015; pp. 687–696. [Google Scholar]
- Sun, Z.; Deng, Z.; Nie, J.; Tang, J. RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space. In Proceedings of the 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Gao, C.; Sun, C.; Shan, L.; Lin, L.; Wang, M. Rotate3D: Representing relations as rotations in three-dimensional space for knowledge graph embedding. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management, Virtual, 19–23 October 2020; pp. 385–394. [Google Scholar]
- Zhang, S.; Tay, Y.; Yao, L.; Liu, Q. Quaternion Knowledge Graph Embeddings. In Proceedings of the Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, Vancouver, BC, Canada, 8–14 December 2019; Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R., Eds.; Curran Associates Inc.: Red Hook, NY, USA, 2019; pp. 2731–2741. [Google Scholar]
- Li, R.; Zhao, J.; Li, C.; He, D.; Wang, Y.; Liu, Y.; Sun, H.; Wang, S.; Deng, W.; Shen, Y.; et al. HousE: Knowledge Graph Embedding with Householder Parameterization. In Proceedings of the International Conference on Machine Learning, ICML 2022, Baltimore, MD, USA, 17–23 July 2022; Chaudhuri, K., Jegelka, S., Song, L., Szepesvári, C., Niu, G., Sabato, S., Eds.; PMLR: London, UK, 2022; Volume 162, pp. 13209–13224. [Google Scholar]
- Dettmers, T.; Minervini, P.; Stenetorp, P.; Riedel, S. Convolutional 2D Knowledge Graph Embeddings. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, LA, USA, 2–7 February 2018; McIlraith, S.A., Weinberger, K.Q., Eds.; AAAI Press: Washington, DC, USA, 2018; pp. 1811–1818. [Google Scholar]
- Leblay, J.; Chekol, M.W. Deriving Validity Time in Knowledge Graph. In Proceedings of the Companion of the Web Conference 2018 on The Web Conference 2018, WWW 2018, Lyon, France, 23–27 April 2018; Champin, P., Gandon, F., Lalmas, M., Ipeirotis, P.G., Eds.; ACM: New York, NY, USA, 2018; pp. 1771–1776. [Google Scholar]
- García-Durán, A.; Dumancic, S.; Niepert, M. Learning Sequence Encoders for Temporal Knowledge Graph Completion. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October–4 November 2018; Riloff, E., Chiang, D., Hockenmaier, J., Tsujii, J., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2018; pp. 4816–4821. [Google Scholar]
- Dasgupta, S.S.; Ray, S.N.; Talukdar, P.P. HyTE: Hyperplane-based Temporally aware Knowledge Graph Embedding. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October–4 November 2018; Riloff, E., Chiang, D., Hockenmaier, J., Tsujii, J., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2018; pp. 2001–2011. [Google Scholar]
- Xu, C.; Nayyeri, M.; Alkhoury, F.; Lehmann, J.; Yazdi, H.S. Temporal Knowledge Graph Embedding Model based on Additive Time Series Decomposition. arXiv 2019, arXiv:1911.07893. [Google Scholar]
- Yang, B.; Yih, W.; He, X.; Gao, J.; Deng, L. Embedding Entities and Relations for Learning and Inference in Knowledge Bases. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015; Conference Track Proceedings. Bengio, Y., LeCun, Y., Eds.; 2015. [Google Scholar]
- Goel, R.; Kazemi, S.M.; Brubaker, M.A.; Poupart, P. Diachronic Embedding for Temporal Knowledge Graph Completion. In Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, 7–12 February 2020; AAAI Press: Washington, DC, USA, 2020; pp. 3988–3995. [Google Scholar]
- Kazemi, S.M.; Poole, D. SimplE Embedding for Link Prediction in Knowledge Graphs. In Proceedings of the Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, Montréal, QC, Canada, 3–8 December 2018; Bengio, S., Wallach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R., Eds.; Curran Associates Inc.: Red Hook, NY, USA, 2018; pp. 4289–4300. [Google Scholar]
- Wang, J.; Zhang, W.; Chen, X.; Lei, J.; Lai, X. 3DRTE: 3D Rotation Embedding in Temporal Knowledge Graph. IEEE Access 2020, 8, 207515–207523. [Google Scholar] [CrossRef]
- Sadeghian, A.; Armandpour, M.; Colas, A.; Wang, D.Z. ChronoR: Rotation Based Temporal Knowledge Graph Embedding. In Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, 2–9 February 2021; AAAI Press: Washington, DC, USA, 2021; pp. 6471–6479. [Google Scholar]
- Han, Z.; Ma, Y.; Chen, P.; Tresp, V. Dyernie: Dynamic evolution of riemannian manifold embeddings for temporal knowledge graph completion. arXiv 2020, arXiv:2011.03984. [Google Scholar]
- Chami, I.; Wolf, A.; Juan, D.-C.; Sala, F.; Ravi, S.; Ré, C. Low-dimensional hyperbolic knowledge graph embeddings. arXiv 2020, arXiv:2005.00545. [Google Scholar]
- Montella, S.; Rojas-Barahona, L.M.; Heinecke, J. Hyperbolic Temporal Knowledge Graph Embeddings with Relational and Time Curvatures. In Proceedings of the Findings of the Association for Computational Linguistics: ACL/IJCNLP 2021, Online, 1–6 August 2021; pp. 3296–3308. [Google Scholar]
- Zhang, S.; Liang, X.; Tang, H.; Guan, Z. Hybrid Interaction Temporal Knowledge Graph Embedding Based on Householder Transformations. In Proceedings of the 31st ACM International Conference on Multimedia, MM 2023, Ottawa, ON, Canada, 29 October–3 November 2023; El-Saddik, A., Mei, T., Cucchiara, R., Bertini, M., Vallejo, D.P.T., Atrey, P.K., Hossain, M.S., Eds.; ACM: New York, NY, USA, 2023; pp. 8954–8962. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2015, arXiv:1412.6980. [Google Scholar]
- Trouillon, T.; Welbl, J.; Riedel, S.; Gaussier, É.; Bouchard, G. Complex embeddings for simple link prediction. In Proceedings of the International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; PMLR: London, UK, 2016; pp. 2071–2080. [Google Scholar]
- Baghershahi, P.; Hosseini, R.; Moradi, H. Self-attention presents low-dimensional knowledge graph embeddings for link prediction. Knowl. Based Syst. 2023, 260, 110124. [Google Scholar] [CrossRef]
Datatset | No. of Entities | No. of Relations | No. of Trainings | No. of Validations | No. of Tests | Time Span |
---|---|---|---|---|---|---|
ICEWS14 | 6869 | 230 | 72,826 | 8941 | 8963 | 2014 |
ICEWS05-15 | 10,094 | 251 | 368,962 | 46,275 | 46,092 | 2005–2015 |
YAGO11k | 10,623 | 10 | 16,406 | 2050 | 2051 | −453–2844 |
Wikidata12k | 12,554 | 24 | 32,497 | 4062 | 4062 | 1479–2018 |
GDELT | 500 | 20 | 2,735,685 | 341,961 | 341,961 | 31 March 2015–31 March 2016 |
Model | ICEWS14 | ICEWS05-15 | ||||||
---|---|---|---|---|---|---|---|---|
MRR | Hit@1 | Hit@3 | Hit@10 | MRR | Hit@1 | Hit@3 | Hit@10 | |
TransE | 0.280 | 0.094 | - | 0.637 | 0.294 | 0.090 | - | 0.663 |
DistMult | 0.439 | 0.323 | - | 0.672 | 0.456 | 0.337 | - | 0.691 |
RotatE | 0.418 | 0.291 | 0.478 | 0.690 | 0.304 | 0.164 | 0.355 | 0.595 |
QuatE | 0.471 | 0.353 | 0.530 | 0.712 | 0.482 | 0.370 | 0.529 | 0.727 |
HousE | 0.427 | 0.367 | 0.537 | 0.769 | 0.451 | 0.342 | 0.527 | 0.731 |
TTransE | 0.255 | 0.074 | - | 0.601 | 0.271 | 0.084 | - | 0.616 |
TA-TransE | 0.275 | 0.095 | - | 0.625 | 0.299 | 0.096 | - | 0.668 |
HyTE | 0.297 | 0.108 | 0.416 | 0.655 | 0.316 | 0.116 | 0.445 | 0.681 |
TA-DistMult | 0.477 | 0.363 | - | 0.686 | 0.474 | 0.346 | - | 0.728 |
DE-SimplE | 0.526 | 0.418 | 0.592 | 0.725 | 0.513 | 0.392 | 0.578 | 0.748 |
ATiSE | 0.550 | 0.436 | 0.629 | 0.750 | 0.519 | 0.378 | 0.606 | 0.794 |
TeRo | 0.562 | 0.468 | 0.621 | 0.732 | 0.586 | 0.469 | 0.668 | 0.795 |
ChronoR | 0.625 | 0.547 | 0.669 | 0.773 | 0.675 | 0.593 | 0.723 | 0.820 |
DYERNIE | 0.58.8 | 0.498 | 0.638 | 0.761 | 0.687 | 0.618 | 0.728 | 0.825 |
HERCULES | 0.612 | 0.543 | 0.647 | 0.741 | 0.685 | 0.621 | 0.720 | 0.809 |
ATTH | 0.617 | 0.545 | 0.654 | 0.754 | 0.685 | 0.620 | 0.719 | 0.806 |
RotateQVS | 0.591 | 0.507 | 0.642 | 0.754 | 0.633 | 0.529 | 0.709 | 0.813 |
HyIE | 0.631 | 0.543 | 0.671 | 0.786 | 0.684 | 0.615 | 0.728 | 0.831 |
TempCaps | 0.489 | 0.388 | 0.544 | 0.679 | 0.521 | 0.423 | 0.576 | 0.705 |
DuCape | 0.587 | 0.549 | 0.661 | 0.776 | 0.686 | 0.609 | 0.726 | 0.821 |
BiQCap | 0.592 | 0.548 | 0.664 | 0.780 | 0.681 | 0.612 | 0.730 | 0.825 |
DuaTHPR | 0.495 | 0.412 | 0.547 | 0.729 | 0.531 | 0.435 | 0.611 | 0.741 |
DuaTHPA | 0.611 | 0.528 | 0.661 | 0.768 | 0.655 | 0.578 | 0.719 | 0.827 |
DuaTHP | 0.637 | 0.553 | 0.674 | 0.788 | 0.689 | 0.618 | 0.726 | 0.835 |
Model | YAGO11k | Wikidata12k | GDELT | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MRR | Hit@1 | Hit@3 | Hit@10 | MRR | Hit@1 | Hit@3 | Hit@10 | MRR | Hit@1 | Hit@3 | Hit@10 | |
TransE | 0.100 | 0.015 | 0.138 | 0.244 | 0.178 | 0.100 | 0.192 | 0.339 | 0.132 | 0.000 | - | 0.158 |
DistMult | 0.158 | 0.107 | 0.161 | 0.268 | 0.222 | 0.119 | 0.238 | 0.460 | 0.196 | 0.117 | 0.208 | 0.348 |
RotatE | 0.167 | 0.103 | 0.167 | 0.305 | 0.221 | 0.116 | 0.236 | 0.461 | - | - | - | - |
QuatE | 0.164 | 0.107 | 0.148 | 0.270 | 0.230 | 0.125 | 0.243 | 0.416 | - | - | - | - |
HousE | 0.158 | 0.089 | 0.124 | 0.264 | 0.269 | 0.147 | 0.271 | 0.416 | 0.207 | 0.169 | 0.241 | 0.367 |
TTransE | 0.108 | 0.020 | 0.150 | 0.251 | 0.172 | 0.096 | 184 | 0.329 | 0.115 | 0.000 | 0.160 | 0.318 |
TA-TransE | 0.127 | 0.027 | 160 | 0.326 | 0.178 | 0.030 | 0.267 | 0.429 | - | - | - | - |
HyTE | 0.105 | 0.015 | 0.143 | 0.272 | 0.180 | 0.098 | 0.197 | 0.333 | 0.118 | 0.000 | 0.165 | 0.326 |
TA-DistMult | 0.161 | 0.103 | 0.171 | 0.292 | 0.218 | 0.122 | 0.232 | 0.447 | 0.206 | 0.124 | 0.219 | 0.365 |
DESimplE | - | - | - | - | - | - | - | - | 0.230 | 0.141 | 0.248 | 0.403 |
ATiSE | 0.170 | 0.110 | 0.171 | 0.288 | 0.280 | 0.175 | 0.317 | 0.481 | - | - | - | - |
TeRo | 0.187 | 0.121 | 0.197 | 0.319 | 0.299 | 0.198 | 0.329 | 0.507 | 0.245 | 0.154 | 0.264 | 0.420 |
DYERNIE | - | - | - | - | - | - | - | - | 0.289 | 0.192 | 0.307 | 0.467 |
HERCULES | - | - | - | - | - | - | - | - | 0.294 | 0.187 | 0.305 | 0.464 |
RotateQVS | 0.189 | 0.124 | 0.199 | 0.323 | - | - | - | - | 0.270 | 0.175 | 0.293 | 0.458 |
HyIE | 0.191 | 0.121 | 0.201 | 0.326 | 0.301 | 0.197 | 0.328 | 0.506 | 0.272 | 0.182 | 0.292 | 0.468 |
TempCaps | - | - | - | - | - | - | - | - | 0.258 | 0.180 | 0.277 | 0.404 |
DuCape | 0.183 | 0.121 | 0.201 | 0.324 | 0.272 | 0.181 | 0.315 | 0.469 | - | - | - | - |
BiQCap | 0.186 | 0.129 | 0.198 | 0.325 | 0.283 | 0.184 | 0.314 | 0.476 | - | - | - | - |
DuaTHPR | 0.169 | 0.115 | 0.152 | 0.294 | 0.246 | 0.141 | 0.262 | 0.453 | 0.232 | 0.148 | 0.265 | 0.421 |
DuaTHPA | 0.187 | 0.121 | 0.197 | 0.321 | 0.298 | 0.197 | 0.319 | 0.487 | 0.263 | 0.171 | 0.291 | 0.452 |
DuaTHP | 0.195 | 0.123 | 0.207 | 0.329 | 0.304 | 0.209 | 0.331 | 0.509 | 0.275 | 0.183 | 0.309 | 0.462 |
Model | ICEWS14 | ICEWS05-15 | GDELT | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MRR | Hit@1 | Hit@3 | Hit@10 | MRR | Hit@1 | Hit@3 | Hit@10 | MRR | Hit@1 | Hit@3 | Hit@10 | |
DualT | 0.631 | 0.548 | 0.667 | 0.781 | 0.684 | 0.617 | 0.725 | 0.823 | 0.261 | 0.172 | 0.292 | 0.452 |
DuaTHPH | 0.630 | 0.550 | 0.664 | 0.780 | 0.681 | 0.614 | 0.723 | 0.815 | 0.265 | 0.174 | 0.293 | 0.451 |
DuaTHPR | 0.632 | 0.547 | 0.667 | 0.780 | 0.682 | 0.611 | 0.719 | 0.821 | 0.267 | 0.175 | 0.301 | 0.459 |
DuaTHPD | 0.631 | 0.549 | 0.668 | 0.782 | 0.682 | 0.613 | 0.718 | 0.823 | 0.266 | 0.175 | 0.296 | 0.454 |
DuaTHP | 0.637 | 0.553 | 0.674 | 0.788 | 0.689 | 0.618 | 0.726 | 0.835 | 0.275 | 0.183 | 0.309 | 0.462 |
Modle | ICEWS14 | |||
---|---|---|---|---|
MRR | Hit@1 | Hit@3 | Hit@10 | |
DualH1 | 0.628 | 0.542 | 0.661 | 0.776 |
DualH2 | 0.621 | 0.539 | 0.658 | 0.772 |
DuaTHP | 0.637 | 0.553 | 0.674 | 0.788 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Li, X.; Liu, Y.; Hu, T. Integrating Transformer Architecture and Householder Transformations for Enhanced Temporal Knowledge Graph Embedding in DuaTHP. Symmetry 2025, 17, 173. https://doi.org/10.3390/sym17020173
Chen Y, Li X, Liu Y, Hu T. Integrating Transformer Architecture and Householder Transformations for Enhanced Temporal Knowledge Graph Embedding in DuaTHP. Symmetry. 2025; 17(2):173. https://doi.org/10.3390/sym17020173
Chicago/Turabian StyleChen, Yutong, Xia Li, Yang Liu, and Tiangui Hu. 2025. "Integrating Transformer Architecture and Householder Transformations for Enhanced Temporal Knowledge Graph Embedding in DuaTHP" Symmetry 17, no. 2: 173. https://doi.org/10.3390/sym17020173
APA StyleChen, Y., Li, X., Liu, Y., & Hu, T. (2025). Integrating Transformer Architecture and Householder Transformations for Enhanced Temporal Knowledge Graph Embedding in DuaTHP. Symmetry, 17(2), 173. https://doi.org/10.3390/sym17020173