Nonclassical Symmetries of a Nonlinear Diffusion–Convection/Wave Equation and Equivalents Systems
Abstract
:1. Introduction
2. Nonclassical Symmetries
2.1. Nonlinear Diffusion–Convection Equation
2.2. Nonlinear Wave Equation
Case (i)
Case (ii)
3.
3.1. Nonlinear Diffusion Equation
3.2. Nonlinear Wave Equation
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lie, S. Klassifikation und Integration von gewohnlichen Differentialgleichen zwischen x, y die eine Gruppe von Transformationen gestatten. Math. Ann. 1888, 32, 213–281. [Google Scholar] [CrossRef]
- Arrigo, D.J. Symmetries Analysis of Differential Equations—An Introduction; Wiley: New York, NY, USA, 2015. [Google Scholar]
- Bluman, G.; Kumei, S. Symmetries and Differential Equations; Springer: New York, NY, USA, 1989. [Google Scholar]
- Olver, P.J. Applications of Lie Groups to Differential Equations, 2nd ed.; Springer: New York, NY, USA, 1993. [Google Scholar]
- Ovsiannikov, L.V. Group properties of nonlinear heat equation. Dokl. AN SSSR 1959, 125, 492–495. [Google Scholar]
- Ovsiannikov, L.V. Group Analysis of Differential Equations; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Bluman, G.W.; Reid, G.J.; Kumei, S. New classes of symmetries for partial differential equations. J. Math. Phys. 1988, 29, 806–881. [Google Scholar] [CrossRef]
- Bluman, G.W.; Cole, J.D. The general similarity solution of the heat equation. J. Math. Phys. 1969, 18, 1025–1042. [Google Scholar]
- Bradshaw-Hajek, B.H.; Edwards, M.P.; Broadbridge, P.; Williams, G.H. Nonclassical symmetry solutions for reaction diffusion equations with explicit spatial dependence. Nonliner Anal. 2007, 67, 2541–2552. [Google Scholar] [CrossRef]
- Cherniha, R. New Q-conditional symmetries and exact solutions of some reaction- diffusion-convection equations arising in mathematical biology. J. Math. Anal. Appl. 2007, 326, 783–799. [Google Scholar] [CrossRef]
- Popovych, R.O.; Vaneeva, O.O.; Ivanova, N.M. Potential nonclassical symmetries and solutions of fast diffusion equation. Phys. Lett. A 2007, 362, 166–173. [Google Scholar] [CrossRef]
- Bruzon, M.S.; Gandarias, M.L. Applying a new algorithm to derive nonclassical symmetries. Commun. Nonlinear Sci. Numer. Simul. 2008, 13, 517–523. [Google Scholar] [CrossRef]
- Arrigo, D.J.; Ekrut, D.A.; Fliss, J.R.; Le, L. Nonclassical symmetries of a class of Burgers’ systems. J. Math. Anal. Appl. 2010, 371, 813–820. [Google Scholar] [CrossRef]
- Bluman, G.W.; Tian, S.F.; Yang, Z. Nonclassical analysis of the nonlinear Kompaneets equation. J. Eng. Math. 2014, 84, 87–97. [Google Scholar] [CrossRef]
- Cherniha, R.; Davydovych, V. Conditional symmetries and exact solutions of nonlinear reaction-diffusion systems with nonconstant diffusivities, Commun. Nonlinear Sci. Numer. Simulat. 2012, 17, 3177–3188. [Google Scholar] [CrossRef]
- Hashemi, M.S.; Nucci, M.C. Nonclassical symmetries for a class of reaction-diffusion equations: The method of heir-equations. J. Non. Math Phys. 2012, 20, 44–60. [Google Scholar] [CrossRef]
- Huang, D.J.; Zhou, S. Group-theoretical analysis of variable coefficient nonlinear telegraph equations. Acta Appl. Math. 2012, 117, 135–183. [Google Scholar] [CrossRef]
- Vaneeva, O.O.; Popovych, R.O.; Sophocleous, C. Extended group analysis of variable coefficient reaction diffusion equations with exponential nonlinearities. J. Math. Anal. Appl. 2012, 396, 225–242. [Google Scholar] [CrossRef]
- Broadbridge, P.; Bradshaw-Hajek, B.H.; Triadis, D. Exact non-classical symmetry solutions of Arrhenius reaction-diffusion. Proc. R. Soc. Lond. 2015, 471. [Google Scholar] [CrossRef]
- Louw, K.; Moitsheki, R.J. Group-invariant solutions for the generalised fisher type equation. Nat. Sci. 2015, 7, 613–624. [Google Scholar] [CrossRef]
- Pliukhin, O. Q-conditional symmetries and exact solutions of nonlinear reaction-diffusion systems. Symmetry 2015, 7, 1841–1855. [Google Scholar] [CrossRef]
- Yun, Y.; Temuer, C. Classical and nonclassical symmetry classifications of nonlinear wave equation with dissipation. Appl. Math. Mech. Eng. Ed. 2015, 36, 365–378. [Google Scholar] [CrossRef]
- Broadbridge, P.; Bradshaw-Hajek, B.H. Exact solutions for logistic reaction-diffusion equations in biology. ZAMP 2016. [Google Scholar] [CrossRef]
- Bluman, G.W.; Yan, Y.S. Nonclassical potential solutions of partial differential equations. Eur. J. Appl. Math. 2005, 16, 239–261. [Google Scholar] [CrossRef]
- Gandarias, M.L.; Bruzon, M.S. Solutions through nonclassical potential symmetries for a generalized inhomogeneous nonlinear diffusion equation. Math. Meth. Appl. Sci. 2008, 31, 753–767. [Google Scholar] [CrossRef]
- Broadbridge, P.; White, I. Constant rate rainfall infiltration: A versatile nonlinear model 1. Analytic solution. Water Res. Res. 1988, 24, 145–154. [Google Scholar] [CrossRef]
- Rogers, C.; Stallybrass, M.P.; Clements, D.L. On two phase filtration under gravity and with boundary infiltration: Application of a Ba äcklund transformation. J. Nonliner Anal. Meth. Appl. 1983, 7, 785–799. [Google Scholar] [CrossRef]
- Katayev, I.G. Electromagnetic Shock Waves; Iliffe: London, UK, 1966. [Google Scholar]
- Jeffery, A. Acceleration wave propagation in hyperelastic rods of variable cross-section. Wave Motion 1982, 4, 173–180. [Google Scholar] [CrossRef]
- Broadbridge, P.; Arrigo, D.J. All solutions of standard symmetric linear partial differential equations have classical Lie symmetry. J. Math. Anal. Appl. 1999, 234, 109–122. [Google Scholar] [CrossRef]
- Cherniha, R.; Serov, M. Symmetries, ansätze and exact solutions of nonlinear second-order evolution equations with convection terms. Eur. J. Appl. Math. 1998, 72, 21–39. [Google Scholar] [CrossRef]
- Arrigo, D.J.; Hill, J.M. Nonclassical symmetries for nonlinear diffusion and absorption. Stud. Appl. Math. 1995, 72, 21–39. [Google Scholar] [CrossRef]
- Arrigo, D.J.; Beckham, J.R. Nonclassical symmetries of evolutionary partial differential equations and compatibility. J. Math. Anal. Appl. 2004, 289, 55–65. [Google Scholar] [CrossRef]
- Niu, X.H.; Pan, Z.L. Nonclassical symmetries of a class of nonlinear partial differential equations with arbitrary order and compatibility. J. Math. Anal. Appl. 2005, 311, 479–488. [Google Scholar] [CrossRef]
- Wan, W.T.; Chen, Y. A note on nonclassical symmetries of a class of nonlinear partial differential equations and compatibility. Commun. Theor. Phys. 2009, 52, 398–402. [Google Scholar]
- El-Sabbagh, M.F.; Ali, A.T. Nonclassical symmetries for nonlinear partial differential equations via compatibility. Commun. Theor. Phys. 2011, 56, 611–616. [Google Scholar] [CrossRef]
- Bluman, G.W.; Shtelen, V. Developments in similarity methods related to pioneering work of Julian Cole. In Mathematics Is for Solving Problems; Cook, S.L.P., Roytburd, V., Tulin, M., Eds.; SIAM: Philadelphia, PA, USA, 1996; pp. 105–118. [Google Scholar]
- Näslund, R.N. On Conditional Q-Symmetries of Some Quasi-Linear Hyperbolic Wave Equations; Reprint Department of Mathematics, Lulea University of Technology: Lulea, Sweden, 2003. [Google Scholar]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arrigo, D.J.; Ashley, B.P.; Bloomberg, S.J.; Deatherage, T.W. Nonclassical Symmetries of a Nonlinear Diffusion–Convection/Wave Equation and Equivalents Systems. Symmetry 2016, 8, 140. https://doi.org/10.3390/sym8120140
Arrigo DJ, Ashley BP, Bloomberg SJ, Deatherage TW. Nonclassical Symmetries of a Nonlinear Diffusion–Convection/Wave Equation and Equivalents Systems. Symmetry. 2016; 8(12):140. https://doi.org/10.3390/sym8120140
Chicago/Turabian StyleArrigo, Daniel J., Brandon P. Ashley, Seth J. Bloomberg, and Thomas W. Deatherage. 2016. "Nonclassical Symmetries of a Nonlinear Diffusion–Convection/Wave Equation and Equivalents Systems" Symmetry 8, no. 12: 140. https://doi.org/10.3390/sym8120140
APA StyleArrigo, D. J., Ashley, B. P., Bloomberg, S. J., & Deatherage, T. W. (2016). Nonclassical Symmetries of a Nonlinear Diffusion–Convection/Wave Equation and Equivalents Systems. Symmetry, 8(12), 140. https://doi.org/10.3390/sym8120140