Electrodynamics of a Cosmic Dark Fluid
Abstract
:1. Introduction
1.1. Preface
1.2. Ten Schemes of Description of Dark Fluid Coupling to Electromagnetic Field
- (1)
- Minimal coupling of photons to the axionic Dark Matter.
- (2)
- Non-stationary optical activity induced by the axionic Dark Matter.
- (3)
- Gradient-type interactions with the axionic Dark Matter.
- (4)
- Dynamo-optical interactions associated with the axionic Dark Matter.
- (5)
- Striction-type coupling via a scalar Dark Energy.
- (6)
- Piezo-type coupling via a scalar Dark Energy.
- (7)
- Pyro-type coupling via a scalar Dark Energy.
- (8)
- Dynamo-optical interactions associated with Dark Energy.
- (9)
- Non-minimal coupling of photons to the Dark Fluid.
- (10)
- Electromagnetic interactions induced by the Dark Fluid in a plasma with cooperative field.
2. General Formalism
2.1. The Action Functional and Decomposition of the Total Lagrangian
2.2. Master Equations for the Electromagnetic Field
2.3. Velocity Four-Vector and Decompositions of the Maxwell and Excitation Tensors
2.3.1. Eigen Four-Vector of the DE Stress-Energy Tensor
2.3.2. Eigen Four-Vector of the DF Stress-Energy Tensor
2.3.3. Unit Dynamic Vector Field
2.4. Irreducible Representations of Basic Quantities in Terms of Velocity Four-Vector
2.4.1. Irreducible Representation of the Tensor
2.4.2. Irreducible Representation of the Maxwell Tensor and its Dual
2.4.3. Irreducible Representation of the Induction Tensor
2.4.4. Irreducible Representation of the Tensor of Spontaneous Polarization-Magnetization
2.4.5. Irreducible Representation of the Linear Response Tensor
2.4.6. Reduction of Electrodynamic Equations
2.5. Gravity Field Equations
2.5.1. The Structure of Master Equations for the Gravity Field
2.5.2. Stress-Energy Tensor of the Dark Matter
2.6. Master Equation for the Axion Field
3. Model 1. Minimal Coupling of Photons to the Axionic Dark Matter
3.1. Basic Quantities and Equations
3.2. Relic Cosmological Axions, Cold Dark Matter and Terrestrial Magnetic and Electric Fields
3.2.1. Axion Magnetostatics
3.2.2. Axionically Induced Longitudinal Magneto-Electric Oscillations
- (1)
- Relic axions produce oscillations of a new type in the resonator “Earth-Ionosphere”. We indicated them as Longitudinal Magneto-Electric Oscillations, since they possess the following specific feature: the axionically coupled electric and magnetic fields are parallel to one another. When the axions are absent and q = 0, there exist only transversal electromagnetic oscillations, usual for the Faraday–Maxwell version of electrodynamics. Longitudinal Magneto-Electric Oscillations can be considered as a dynamic analog of a static axionically induced effect predicted by Wilczek in [72] (axions produce radial electric field in the vicinity of a monopole with radial magnetic field).
- (2)
- New “hybrid” frequencies of oscillations appear in the global resonator “Earth-Ionosphere” due to the axionic Dark Matter influence.
- (3)
- Estimations of the effect for and , give the value for the effective frequency of Longitudinal Magneto-Electric Oscillations in the Earth Magnetosphere.
3.3. Electromagnetic Response on the Action of Gravitational pp-Waves in an Axionic Environment
4. Model 2. Non-Stationary Optical Activity Induced by the Axionic Dark Matter
4.1. Extension of the Axion Electrodynamics: Inertia Effects and Field Theory
4.1.1. Susceptibility of Spatially Isotropic Moving Medium
4.1.2. Axionically Induced Spontaneous Magnetization of the Inertia-Type
4.1.3. Axionically Induced Optical Activity of the Inertia-Type
4.2. An Illustration
5. Model 3. Gradient-Type Interactions with the Axionic Dark Matter
5.1. Extended Axion Electrodynamics: Taking into Account Terms Quadratic in the Gradient Four-Vector
5.2. First Illustration: A Spatially Homogeneous Anisotropic Cosmological Model
- (i)
- When and , there is no anomaly in the electric field, and the quantity is always positive.
- (ii)
- When , and , there is no anomaly in the electric field, but the quantity can take infinite value at some moment , for which . For infinite refraction index, the phase velocity of electromagnetic waves and the group velocity take zero values, thus, the electromagnetic energy-information transfer stops. During the interval of cosmological time, for which the square of refraction index is negative. Such a situation is indicated in [93] as unlighted epoch in the Universe history, since electromagnetic waves can not propagate in the Universe, when n is pure imaginary quantity. Also, one can say, that it can be called a Dark Epoch of the first kind provided by the coupling of photons to the Dark Matter.
- (iii)
- When and , a dynamic anomaly in the electric field can appear, if the time moment exists, for which . The quantity can change the sign at providing the existence of a Dark Epoch of the second kind. On the boundary of this Epoch = 0, = ∞, and the group velocity , i.e., the electromagnetic energy transfer stops.
- (iv)
- When , , and , again a dynamic anomaly in the electric field can appear, and the quantity can be negative, when
- (v)
- When , , and a dynamic anomaly in the electric field can appear, and the quantity also can be negative. On the boundary of the corresponding Dark Epoch = 0, = ∞, = 0.
- (vi)
- When , but , one obtains that , however, and . There are no Dark Epochs, nevertheless, the anomaly in the electric field can exist, if is negative and for some interval of the cosmological time.
5.3. Second Illustration: Static Model with Spherical Symmetry
6. Model 4. Dynamo-Optical Interactions Associated with the Axionic Dark Matter
6.1. Axionic Extension of the Theory of Dynamo-Optically Active Electrodynamic Systems: The Lagrangian
6.2. Susceptibility of the Axionically Active Dynamo-Optical Medium
6.3. An Illustration
7. Model 5: Striction-Type Coupling Via a Scalar Dark Energy
7.1. A Prologue
7.2. Electro-Striction and Magneto-Striction Induced by a Dark Energy
7.2.1. Extension of the Susceptibility Tensor
7.2.2. Extension of the Gravity Field Equations
7.3. Application to a Spatially Isotropic Homogeneous Dark Energy
7.3.1. Reduction of the Susceptibility Tensor
7.3.2. Reduction of the Striction Source in the Gravity Field Equations
7.3.3. An Illustration: Dark Epochs in the Universe History Caused by Striction-Type coupling
8. Model 6: Piezo-Type Coupling Via a Scalar Dark Energy
9. Model 7: Pyro-Type Coupling Via a Scalar Dark Energy
10. Model 8: Dynamo-Optical Interactions Associated with Dark Energy
10.1. Irreducible Representation of Basic Quantities
10.2. An Illustration: Dynamo-Optical Interactions with Dark Energy Provoked by Gravitational pp-Waves
10.2.1. Exact Solutions for the Transversal Electric and Magnetic Fields
10.2.2. Explicit Example of Anomaly
11. Model 9: Non-Minimal Coupling of Photons to the Dark Fluid
11.1. Mathematical Aspects of the Model
11.1.1. The Lagrangian
11.1.2. Contributions into the Master Equations of Electromagnetic Field
11.1.3. Contributions into the Master Equation for the Pseudoscalar Field
11.1.4. Non-Minimal Extension of the Gravity Field Equations
11.2. Three Illustrations of the Non-Minimal Model
11.2.1. Cosmological Dark Epochs Produced by Interacting DM and DE
11.2.2. Example of Regular Static Solution with Spherical Symmetry
11.2.3. Example of Regular Solution with pp-Wave Symmetry
12. Model 10: Electromagnetic Interactions Induced by the Dark Fluid in a Plasma with Cooperative Field
12.1. Axionic Extension of the Einstein-Maxwell-Vlasov Model
12.1.1. The Extended Kinetic Equation
12.1.2. Extended Non-Minimal Equations of Axion Electrodynamics
12.1.3. Extended Equation for the Pseudoscalar Field
12.1.4. Extended Gravity Field Equations and Reconstruction of the Effective Force Using the Compatibility Conditions
12.2. First Application: Propagation of Electromagnetic Waves in an Axionically Active Ultrarelativistic Plasma Non-Minimally Coupled to Gravity in a de Sitter Background
12.2.1. Dispersion Relations
12.2.2. Non-Minimal Coupling of Transversal Plasma Waves to a Stationary Axionic Dark Matter
12.2.3. Non-Minimal Coupling of Transversal Plasma Waves to a Non-stationary Axionic Dark Matter
12.3. Second Application: Cosmological Electric Field Induced by Axionic Dark Matter in a Bianchi-I Model with Magnetic Field
13. Conclusions
- The axionic Dark Matter, the first (pseudoscalar) constituent of the Dark Fluid, provides the global physical system to become the chiral one. One can distinguish three symptoms of chirality provided by the Dark Fluid.
- (i)
- The first symptom of chirality is the effect of optical activity of the axionically active vacuum, plasma, dielectric media. This effect reveals itself in a polarization rotation of running and standing electromagnetic waves.
- (ii)
- The second symptom of chirality is the generation of specific Longitudinal Magneto-Electric Clusters. The term “Longitudinal” means that due to the coupling to the axionic Dark Matter, the magnetic field generates an electric field parallel to the initial magnetic field. This effect is typical for the axion electrodynamics, but does not appear in the standard Faraday-Maxwell electrodynamics. The Longitudinal Magneto-Electric Clusters are shown to appear in models for anisotropic cosmology, in static models with spherical symmetry, in models with pp-wave symmetry. Such axionically produced Longitudinal Clusters can appear (e.g., in the Earth Ionosphere) as specific oscillations, in which time-depending magnetic and electric fields are collinear.
- (iii)
- The third symptom of chirality is connected with a specific contribution into the dynamo-optical phenomena, activated by the axionic Dark Matter. Such effects can appear, when the Dark Fluid moves non-uniformly, and the pseudoscalar (axion) field is non-stationary or inhomogeneous.
- The second typical consequence of photon coupling to the Dark Fluid is the generation of anomalous response of electrodynamic systems, in appropriate physical conditions. We have shown that the interaction of axionic Dark Matter with initially constant magnetic field in the field of gravitational waves, produces anomalously amplified electric field. Anomalies can appear in anisotropic expanding Universe with magnetic field, as well as, a static anomaly can be formed in the vicinity of axionic monopoles and stars.
- In the cosmological context, the interaction of photons with Dark Fluid can organize specific Dark Epochs in the Universe history, during which the effective refraction index of the cosmic medium becomes an imaginary quantity. This means that electromagnetic waves can not propagate during such Dark Epochs, and the corresponding electromagnetic energy-information transfer is stopped. We have shown that the formation of Dark Epochs can be caused by both constituents of the Dark Fluid: by the axionic Dark Matter (e.g., in the model of gradient-type extension of axion electrodynamics), and by the non-stationary Dark Energy (e.g., in the model of striction-type activity, and in the model of Archimedean-type coupling to the Dark Matter).
Acknowledgments
Conflicts of Interest
References
- Turner, M.S. The dark side of the universe: From Zwicky to accelerated expansion. Phys. Rep. 2000, 333, 619–635. [Google Scholar] [CrossRef]
- Del Popolo, A. Non-baryonic dark matter in cosmology. Int. J. Mod. Phys. D 2014, 23. [Google Scholar] [CrossRef]
- Yepes, G.; Gottlober, S.; Hoffman, Y. Dark matter in the Local Universe. New Astron. Rev. 2014, 58, 1–18. [Google Scholar] [CrossRef]
- Zurek, K.M. Asymmetric dark matter: Theories, signatures, and constraints. Phys. Rep. 2014, 537, 91–121. [Google Scholar] [CrossRef]
- Perlmutter, S.; Aldering, G.; Valle, M.D.; Deustua, S.; Ellis, R.S.; Fabbro, S.; Fruchter, A.; Goldhaber, G.; Groom, D.E.; Hook, I.M.; et al. Discovery of a supernova explosion at half the age of the Universe. Nature 1998, 391, 51–54. [Google Scholar] [CrossRef]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef]
- Schmidt, B.P.; Suntzeff, N.B.; Phillips, M.M.; Schommer, R.A.; Clocchiatti, A.; Kirshner, R.P.; Garnavich, P.; Challis, P.; Leibundgut, B.; Spyromilio, J.; et al. The high-Z supernova search: Measuring cosmic deceleration and global curvature of the universe using type Ia Supernovae. Astrophys. J. 1998, 507, 46–63. [Google Scholar] [CrossRef]
- Peebles, P.J.E.; Ratra, B. The cosmological constant and dark energy. Rev. Mod. Phys. 2003, 75, 559–606. [Google Scholar] [CrossRef]
- Copeland, E.J.; Sami, M.; Tsujikawa, S. Dynamics of dark energy. Int. J. Mod. Phys. D 2006, 15, 1753–1935. [Google Scholar] [CrossRef]
- Sahni, V.; Starobinsky, A. Reconstructing dark energy. Int. J. Mod. Phys. D 2006, 15, 2105–2132. [Google Scholar] [CrossRef]
- Frieman, J.; Turner, M.; Huterer, D. Dark Energy and the accelerating universe. Ann. Rev. Astron. Astrophys. 2008, 46, 385–432. [Google Scholar] [CrossRef]
- Padmanabhan, T. Dark energy and gravity. Gen. Relativ. Gravit. 2008, 40, 529–564. [Google Scholar] [CrossRef]
- Sahni, V. Dark matter and dark energy. Lect. Notes Phys. 2004, 653, 141–180. [Google Scholar]
- Farrar, G.R.; Peebles, P.J.E. Interacting dark matter and dark energy. Astrophys. J. 2004, 604, 1–11. [Google Scholar] [CrossRef]
- Gergely, L.A.; Tsujikawa, S. Effective field theory of modified gravity with two scalar fields: Dark energy and dark matter. Phys. Rev. D 2014, 89, 064059. [Google Scholar] [CrossRef]
- Gleyzes, J.; Langlois, D.; Vernizzi, F. A unifying description of dark energy. Int. J. Mod. Phys. D 2015, 23. [Google Scholar] [CrossRef]
- Landim, R.C.G. Coupled dark energy: A dynamical analysis with complex scalar field. Eur. Phys. J. C. 2016, 76, 31. [Google Scholar] [CrossRef]
- Sigurdson, K.; Doran, M.; Kurylov, A.; Caldwell, R.R.; Kamionkowski, M. Dark-matter electric and magnetic dipole moments. Phys. Rev. D 2004, 70, 083501. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rep. 2011, 505, 59–144. [Google Scholar] [CrossRef]
- Bamba, K.; Capozziello, S.; Odintsov, S.D. Dark energy cosmology: The equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 2012, 342, 155–228. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Meth. Mod. Phys. 2007, 4, 115–146. [Google Scholar] [CrossRef]
- Bamba, K.; Odintsov, S.D. Inflationary cosmology in modified gravity theories. Symmetry 2015, 7, 220–240. [Google Scholar] [CrossRef]
- Capozziello, S.; Nojiri, S.; Odintsov, S.D. Unified phantom cosmology: Inflation, dark energy and dark matter under the same standard. Phys. Lett. B 2006, 632, 597–604. [Google Scholar] [CrossRef]
- Castro, D.R.; Velten, H.; Zimdahl, W. Scaling cosmology with variable dark-energy equation of state. J. Cosmol. Astropart. Phys. 2012, 6, 024. [Google Scholar] [CrossRef]
- Izquierdo, G.; Pavon, D. Limits on the parameters of the equation of state for interacting dark energy. Phys. Lett. B 2010, 688, 115–124. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. The new form of the equation of state for dark energy fluid and accelerating universe. Phys. Lett. B 2006, 639, 144–150. [Google Scholar] [CrossRef]
- Prasanna, A.R. A new invariant for electromagnetic fields in curved space-time. Phys. Lett. A 1971, 37, 331–332. [Google Scholar] [CrossRef]
- Drummond, I.T.; Hathrell, S.J. QED vacuum polarization in a background gravitational field and its effect on the velocity of photons. Phys. Rev. D 1980, 22, 343–355. [Google Scholar] [CrossRef]
- Lafrance, R.; Myers, R.C. Gravity’s rainbow: Limits for the applicability of the equivalence principle. Phys. Rev. D 1995, 51, 2584–2590. [Google Scholar] [CrossRef]
- Amendola, L. Cosmology with non-minimal derivative couplings. Phys. Lett. B 1993, 301, 175–182. [Google Scholar] [CrossRef]
- Capozziello, S.; Lambiase, G.; Schmidt, H.-J. Non-minimal derivative couplings and inflation in generalized theories of gravity. Ann. Phys. 2000, 9, 39–48. [Google Scholar] [CrossRef]
- Hehl, F.W.; Obukhov, Y.N. How does the electromagnetic field couple to gravity, in particular to metric, nonmetricity, torsion, and curvature? Lect. Notes Phys. 2001, 562, 479–512. [Google Scholar]
- Balakin, A.B.; Lemos, J.P.S. Non-minimal coupling for the gravitational and electromagnetic fields: A general system of equations. Class. Quantum Gravity 2005, 22, 1867–1880. [Google Scholar] [CrossRef]
- Bamba, K.; Odintsov, S.D. Inflation and late-time cosmic acceleration in non-minimal Maxwell-F(R) gravity and the generation of large-scale magnetic fields. J. Cosmol. Astropart. Phys. 2008. [Google Scholar] [CrossRef]
- Peccei, R.D.; Quinn, H.R. CP conservation in the presence of instantons. Phys. Rev. Lett. 1977, 38, 1440–1443. [Google Scholar] [CrossRef]
- Weinberg, S. A new light boson? Phys. Rev. Lett. 1978, 40, 223–226. [Google Scholar] [CrossRef]
- Wilczek, F. Problem of strong P and T invariance in the presence of instantons. Phys. Rev. Lett. 1978, 40, 279–282. [Google Scholar] [CrossRef]
- Ni, W.-T. Equivalence principles and electromagnetism. Phys. Rev. Lett. 1977, 38, 301–304. [Google Scholar] [CrossRef]
- Sikivie, P. Experimental tests of the “invisible” axion. Phys. Rev. Lett. 1983, 51, 1415–1417. [Google Scholar] [CrossRef]
- Raffelt, G.G. Astrophysical methods to constrain axions and other novel particle phenomena. Phys. Rep. 1990, 198, 1–113. [Google Scholar] [CrossRef]
- Turner, M.S. Windows on the axion. Phys. Rep. 1990, 197, 67–97. [Google Scholar] [CrossRef]
- Shellard, E.P.S.; Battye, R.A. On the origin of dark matter axions. Phys. Rep. 1998, 307, 227–234. [Google Scholar] [CrossRef]
- Bassett, B.A.; Kunz, M. Cosmic acceleration versus axion-photon mixing. Astrophys. J. 2004, 607, 661–664. [Google Scholar] [CrossRef]
- Battesti, R.; Beltran, B.; Davoudiasl, H.; Kuster, M.; Pugnat, P.; Rabadan, R.; Ringwald, A.; Spooner, N.; Zioutas, K. Axion searches in the past, at present, and in the near future. Lect. Notes Phys. 2008, 741, 199–237. [Google Scholar]
- Steffen, F.D. Dark Matter candidates—Axions, neutralinos, gravitinos, and axinos. Eur. Phys. J. C 2009, 59, 557–588. [Google Scholar] [CrossRef]
- Duffy, L.D.; van Bibber, K. Axions as dark matter particles. New J. Phys. 2009, 11, 1050088. [Google Scholar] [CrossRef]
- Sikivie, P.; Yang, Q. Bose-Einstein condensation of dark matter axions. Phys. Rev. Lett. 2009, 103, 111301. [Google Scholar] [CrossRef] [PubMed]
- Khlopov, M. Fundamentals of Cosmic Particle Physics; CISP-Springer: Cambridge, UK, 2012. [Google Scholar]
- Battesti, R.; Fouche, M.; Detlefs, C.; Roth, T.; Berceau, P.; Duc, F.; Frings, P.; Rikken, G.L.J.A.; Rizzo, C. Photon regeneration experiment for axion search using X-rays. Phys. Rev. Lett. 2010, 105, 250405. [Google Scholar] [CrossRef] [PubMed]
- Chou, A.S.; Wester, W.; Baumbaugh, A.; Gustafson, H.R.; Irizarry-Valle, Y.; Mazur, P.O.; Steffen, J.H.; Tomlin, R.; Yang, X.; Yoo, J. Search for axionlike particles using a variable-baseline photon-regeneration technique. Phys. Rev. Lett. 2008, 100, 080402. [Google Scholar] [CrossRef] [PubMed]
- Andriamonje, S.; Aune, S.; Autiero, D.; Barth, K.; Belov, A.; Carmona, J.M.; Collar, J.I.; Dafni, T.; Davenport, M.; Di Lella, L.; et al. An improved limit on the axion-photon coupling from the CAST experiment. J. Cosmol. Astropart. Phys. 2007. [Google Scholar] [CrossRef]
- Pugnat, P.; Duvillaret, L.; Jost, R.; Vitrant, G.; Romanini, D.; Siemko, A.; Ballou, R.; Barbara, B.; Finger, M.; Finger, M.; et al. First results from the OSQAR photon regeneration experiment: No light shining through a wall. Phys. Rev. D 2008, 78, 092003. [Google Scholar] [CrossRef]
- Chen, S.-J.; Mei, H.-H.; Ni, W.-T. Q & A experiment to search for vacuum dichroism, pseudoscalar-photon interaction and millicharged fermions. Mod. Phys. Lett. A 2007, 22, 2815–2831. [Google Scholar]
- Eringen, A.C.; Maugin, G.A. Electrodynamics of Continua; Springer-Verlag: New York, NY, USA, 1989. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M.; Pitaevskii, L.P. Electrodynamics of Continuous Media; Butterworth Heinemann: Oxford, UK, 1996. [Google Scholar]
- Hehl, F.W.; Obukhov, Y.N. Foundations of Classical Electrodynamics: Charge, Flux, and Metric; Birkhäuser: Boston, MA, USA, 2003. [Google Scholar]
- O’Dell, T.H. The Electrodynamics of Magneto-Electric Media; North-Holland: Amsterdam, The Netherlands, 1970. [Google Scholar]
- Brevik, I. Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor. Phys. Rep. 1979, 52, 133–201. [Google Scholar] [CrossRef]
- Jimenez, J.B.; Maroto, A.L. The dark magnetism of the universe. Mod. Phys. Lett. A 2011, 26, 3025–3039. [Google Scholar] [CrossRef]
- Kostelecky, A.; Mewes, M. Electrodynamics with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 2009, 80, 015020. [Google Scholar] [CrossRef]
- Lämmerzahl, C.; Macias, A.; Müller, H. Lorentz invariance violation and charge (non-)conservation: A general theoretical frame for extensions of the Maxwell equations. Phys. Rev. D 2005, 71, 025007. [Google Scholar] [CrossRef]
- Jacobson, T.; Mattingly, D. Gravity with a dynamical preferred frame. Phys. Rev. D 2001, 64, 024028. [Google Scholar] [CrossRef]
- Heinicke, C.; Baekler, P.; Hehl, F.W. Einstein-aether theory, violation of Lorentz invariance, and metric-affine gravity. Phys. Rev. D 2005, 72, 025012. [Google Scholar] [CrossRef]
- Jacobson, T. Einstein-aether gravity: A status report. 2007; arXiv:0801.1547. [Google Scholar]
- Jacobson, T.; Mattingly, D. Einstein-aether waves. Phys. Rev. D 2004, 70, 024003. [Google Scholar] [CrossRef]
- Obukhov, Y.N.; Hehl, F.W. On possible skewon effects on light propagation. Phys. Rev. D 2004, 70, 125015. [Google Scholar] [CrossRef]
- Ni, W.-T. Skewon field and cosmic wave propagation. Phys. Lett. A 2014, 378, 1217–1223. [Google Scholar] [CrossRef]
- Itin, Y. On skewon modification of light cone structure. Phys. Rev. D 2015, 91, 085002. [Google Scholar] [CrossRef]
- Hehl, F.W.; Obukhov, Y.N. Linear media in classical electrodynamics and the Post constraint. Phys. Lett. A 2005, 334, 249–259. [Google Scholar] [CrossRef]
- Sushkov, S.V. Realistic cosmological scenario with non–minimal kinetic coupling. Phys. Rev. D 2012, 85, 123520. [Google Scholar] [CrossRef]
- Balakin, A.B.; Grunskaya, L.V. Axion electrodynamics and dark matter fingerprints in the terrestrial magnetic and electric fields. Rep. Math. Phys. 2013, 71, 45–67. [Google Scholar] [CrossRef]
- Wilczek, F. Two applications of axion electrodynamics. Phys. Rev. Lett. 1987, 58, 1799–1802. [Google Scholar] [CrossRef] [PubMed]
- Stephani, H.; Kramer, D.; MacCallum, M.A.H.; Hoenselaers, C.; Herlt, E. Exact Solutions to Einstein’s Field Equations; Cambridge University Press: New York, NY, USA, 2003. [Google Scholar]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; Freeman: San Francisco, CA, USA, 1973. [Google Scholar]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observations of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balakin, A.B.; Ni, W.-T. Anomalous character of the axion-photon coupling in a magnetic field distorted by a pp-wave gravitational background. Class. Quantum Gravity 2014, 31, 105002. [Google Scholar] [CrossRef]
- Bocaletti, D.; De Sabbata, V.; Fortini, P.; Gualdi, C. Conversion of photons into gravitons and vice versa in a static electromagnetic field. II Nuovo Cimento B 1970, 70, 129–146. [Google Scholar] [CrossRef]
- Balakin, A.B.; Lemos, J.P.S. Singular behaviour of electric and magnetic fields in dielectric media in a nonlinear gravitational wave background. Class. Quantum Gravity 2001, 18, 941–953. [Google Scholar] [CrossRef]
- Balakin, A.B. Extended Einstein-Maxwell model. Gravit. Cosmol. 2007, 13, 163–177. [Google Scholar]
- Balakin, A.B. Magnetic relaxation in the Bianchi-I universe. Class. Quantum Gravity 2007, 24, 5221–5245. [Google Scholar] [CrossRef]
- Balakin, A.B.; Muharlyamov, R.K.; Zayats, A.E. Non-minimal Einstein-Maxwell-Vlasov-axion model. Class. Quantum Gravity 2014, 31, 025005. [Google Scholar] [CrossRef]
- Balakin, A.B.; Tarasova, N.O. Extended axion electrodynamics: Optical activity induced by nonstationary dark matter. Gravit. Cosmol. 2012, 18, 54–56. [Google Scholar] [CrossRef]
- Ni, W.-T. From equivalence principles to cosmology: Cosmic polarization rotation, CMB observation, neutrino number asymmetry, Lorentz invariance and CPT. Prog. Theor. Phys. Suppl. 2008, 172, 49–60. [Google Scholar] [CrossRef]
- Ni, W.-T. Cosmic polarization rotation, cosmological models, and the detectability of primordial gravitational waves. Int. J. Mod. Phys. A 2009, 24, 3493–3500. [Google Scholar] [CrossRef]
- Balakin, A.B.; Bochkarev, V.V.; Tarasova, N.O. Gradient models of the axion-photon coupling. Eur. Phys. J. C 2012, 72, 1895. [Google Scholar] [CrossRef]
- Balakin, A.B.; Dehnen, H.; Zayats, A.E. Non-minimal Einstein-Yang-Mills-Higgs theory: Associated, color and color-acoustic metrics for the Wu-Yang monopole model. Phys. Rev. D 2007, 76, 124011. [Google Scholar] [CrossRef]
- Balakin, A.B.; Dehnen, H.; Zayats, A.E. Effective metrics in the non-minimal Einstein-Yang-Mills-Higgs theory. Ann. Phys. 2008, 323, 2183–2207. [Google Scholar] [CrossRef]
- Balakin, A.B.; Dehnen, H.; Zayats, A.E. Non-minimal pp-wave Einstein-Yang-Mills-Higgs model: Color cross-effects induced by curvature. Gen. Relativ. Gravit. 2008, 40, 2493–2513. [Google Scholar] [CrossRef]
- Turner, M.S.; Widrow, L.M. Inflation-produced, large-scale magnetic fields. Phys. Rev. D 1988, 37, 2743–2769. [Google Scholar] [CrossRef]
- Lee, D.-S.; Lee, W.; Ng, K.-W. Primordial magnetic fields from dark energy. Phys. Lett. B 2002, 542, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Sharif, M.; Zubair, M. Dynamics of Bianchi I universe with magnetized anisotropic dark energy. Astrophys. Space Sci. 2010, 330, 399–405. [Google Scholar] [CrossRef]
- Yadav, A.K.; Rahaman, F.; Ray, S.; Goswami, G.K. Magnetized dark energy and the late time acceleration. Eur. Phys. J. Plus 2012, 127. [Google Scholar] [CrossRef]
- Balakin, A.B.; Bochkarev, V.V.; Lemos, J.P.S. Light propagation with non-minimal couplings in a two-component cosmic dark fluid with an Archimedean-type force, and unlighted cosmological epochs. Phys. Rev. D 2012, 85, 064015. [Google Scholar] [CrossRef]
- Alpin, T.Y.; Balakin, A.B. Einstein-Maxwell theory and dynamo-optical phenomena. Gravit. Cosmol. 2006, 12, 307–310. [Google Scholar]
- Balakin, A.B.; Alpin, T.Y. Extended axion electrodynamics: Anomalous dynamo-optical response induced by gravitational pp-waves. Gravit. Cosmol. 2014, 20, 152–156. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Fine-structure constant: Is it really a constant? Phys. Rev. D 1982, 25, 1527–1539. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Conformal anomaly for dilaton coupled electromagnetic field. Phys. Lett. B 1998, 426, 29–35. [Google Scholar] [CrossRef]
- Bronnikov, K.A.; Chudaeva, E.N.; Shikin, G.N. Magneto-dilatonic Bianchi-I cosmology: Isotropization and singularity problems. Class. Quantum Gravity 2004, 21, 3389–3403. [Google Scholar] [CrossRef]
- Balakin, A.B.; Dolbilova, N.N. Electrodynamic phenomena induced by a dark fluid: Analogs of pyromagnetic, piezoelectric, and striction effects. Phys. Rev. D 2014, 89, 104012. [Google Scholar] [CrossRef]
- Balakin, A.B.; Bochkarev, V.V. Archimedean-type force in a cosmic dark fluid. I. Exact solutions for the late-time accelerated expansion. Phys. Rev. D 2011, 83, 024035. [Google Scholar] [CrossRef]
- Balakin, A.B.; Bochkarev, V.V. Archimedean-type force in a cosmic dark fluid. II. Qualitative and numerical study of a multistage universe expansion. Phys. Rev. D 2011, 83, 024036. [Google Scholar] [CrossRef]
- Balakin, A.B.; Bochkarev, V.V. Archimedean-type force in a cosmic dark fluid. III. Big rip, little rip and cyclic solutions. Phys. Rev. D 2013, 87, 024006. [Google Scholar] [CrossRef]
- Balakin, A.B.; Lemos, J.P.S. Einstein-aether theory with a Maxwell field: General formalism. Ann. Phys. 2014, 350, 454–484. [Google Scholar] [CrossRef]
- Alpin, T.Y.; Balakin, A.B. The Einstein-Maxwell-aether-axion theory: Dynamo-optical anomaly in the electromagnetic response. Int. J. Mod. Phys. D 2016, 25, 1650048. [Google Scholar] [CrossRef]
- Petrov, A.Z. Einstein Spaces; Pergamon Press: Oxford, UK, 1969. [Google Scholar]
- Kohlrausch, R. Theorie des elektrischen Ruckstandes in der Leidner Flasche. Ann. Phys. Chem. 1854, 91, 56–82. [Google Scholar] [CrossRef]
- Balakin, A.B.; Zayats, A.E. Ray optics in the field of non–minimal Dirac monopole. Gravit. Cosmol. 2008, 14, 86–94. [Google Scholar] [CrossRef]
- Balakin, A.B.; Bochkarev, V.V.; Lemos, J.P.S. Non-minimal coupling for the gravitational and electromagnetic fields: Black hole solutions and solitons. Phys. Rev. D 2008, 77, 084013. [Google Scholar] [CrossRef]
- Balakin, A.B.; Dehnen, H.; Zayats, A.E. Non-minimal monopoles of the Dirac type as realization of the censorship conjecture. Phys. Rev. D 2009, 79, 024007. [Google Scholar] [CrossRef]
- Balakin, A.B.; Lemos, J.P.S.; Zayats, A.E. Nonminimal coupling for the gravitational and electromagnetic fields: Traversable electric wormholes. Phys. Rev. D 2010, 81, 084015. [Google Scholar] [CrossRef]
- Balakin, A.B.; Zayats, A.E. Nonminimal black holes with regular electric field. Int. J. Mod. Phys. D 2015, 24, 1542009. [Google Scholar] [CrossRef]
- Balakin, A.B.; Ni, W.-T. Non-minimal coupling of photons and axions. Class. Quantum Gravity 2010, 27, 055003. [Google Scholar] [CrossRef]
- Balakin, A.B.; Muharlyamov, R.K. Non-minimal electrodynamics and resonance interactions in relativistic plasma. Gravit. Cosmol. 2009, 15, 16–19. [Google Scholar] [CrossRef]
- Balakin, A.B.; Muharlyamov, R.K.; Zayats, A.E. Electromagnetic waves in an axion-active relativistic plasma non-minimally coupled to gravity. Eur. Phys. J. C 2013, 73, 2647. [Google Scholar] [CrossRef]
- Balakin, A.B.; Muharlyamov, R.K.; Zayats, A.E. Axion-induced oscillations of cooperative electric field in a cosmic magneto-active plasma. Eur. Phys. J. D 2014, 68, 159. [Google Scholar] [CrossRef]
- Itin, Y. Wave propagation in axion electrodynamics. Gen. Relativ. Gravit. 2008, 40, 1219–1238. [Google Scholar] [CrossRef]
- Ade, P.A.R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; et al. Planck 2013 results. XXIII. Isotropy and statistics of the CMB. Astron. Astrophys. 2014, 571, 1–48. [Google Scholar]
- Grunskaya, L.V.; Isakevich, V.V.; Isakevich, D.V.; Sushkova, L.T. Detecting Components Spectrally Localized at Astrophysical Process Frequencies in Time Series of the Electric Field Vertical Component of the Earth Atmosphere Boundary Layer. Available online: http://arxiv.org/pdf/physics.gen-ph/1604.08785 (accessed on 29 April 2016).
- Chu, P.-H.; Dennis, A.; Fu, C.; Gao, H.; Khatiwada, R.; Laskaris, G.; Li, K.; Smith, E.; Snow, W.M.; Yan, H.; et al. Laboratory search for spin-dependent short-range force from axion-like-particles using optically polarized 3 He gas. Phys. Rev. D 2013, 87, 011105(R). [Google Scholar] [CrossRef]
- Budker, D.; Graham, P.W.; Ledbetter, M.; Rajendran, S.; Sushkov, A. Proposal for a cosmic axion spin precession experiment (CASPEr). Phys. Rev. X 2014, 4, 021030. [Google Scholar] [CrossRef]
- Balakin, A.B.; Popov, V.A. Spin-axion coupling. Phys. Rev. D 2015, 92, 105025. [Google Scholar] [CrossRef]
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balakin, A.B. Electrodynamics of a Cosmic Dark Fluid. Symmetry 2016, 8, 56. https://doi.org/10.3390/sym8070056
Balakin AB. Electrodynamics of a Cosmic Dark Fluid. Symmetry. 2016; 8(7):56. https://doi.org/10.3390/sym8070056
Chicago/Turabian StyleBalakin, Alexander B. 2016. "Electrodynamics of a Cosmic Dark Fluid" Symmetry 8, no. 7: 56. https://doi.org/10.3390/sym8070056
APA StyleBalakin, A. B. (2016). Electrodynamics of a Cosmic Dark Fluid. Symmetry, 8(7), 56. https://doi.org/10.3390/sym8070056