Path Embeddings with Prescribed Edge in the Balanced Hypercube Network
Abstract
:1. Introduction
2. Preliminaries
- 1.
- ,, and
- 2.
- ,.
3. Main Results
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Abraham, S.; Padmanabhan, K. The twisted cube topology for multiprocessors: A study in network asymmetry. J. Parall. Distrib. Comput. 1991, 13, 104–110. [Google Scholar] [CrossRef]
- Choudum, S.A.; Sunitha, V. Augmented cubes. Networks 2002, 40, 71–84. [Google Scholar] [CrossRef]
- Cull, P.; Larson, S.M. The Möbius cubes. IEEE Trans. Comput. 1995, 44, 647–659. [Google Scholar] [CrossRef]
- Dally, W.J. Performance analysis of k-ary n-cube interconnection networks. IEEE Trans. Comput. 1990, 39, 775–785. [Google Scholar] [CrossRef]
- Efe, K. The crossed cube architecture for parallel computation. IEEE Trans. Parall. Distr. Syst. 1992, 3, 513–524. [Google Scholar] [CrossRef]
- El-amawy, A.; Latifi, S. Properties and performance of folded hypercubes. IEEE Trans. Parall. Distrib. Syst. 1991, 2, 31–42. [Google Scholar] [CrossRef]
- Li, T.K.; Tan, J.J.M.; Hsu, L.H.; Sung, T.Y. The shuffle-cubes and their generalization. Inform. Process. Lett. 2001, 77, 35–41. [Google Scholar] [CrossRef]
- Preparata, F.P.; Vuillemin, J. The cube-connected cycles: A versatile network for parallel computation. Comput. Arch. Syst. 1981, 24, 300–309. [Google Scholar] [CrossRef]
- Xiang, Y.; Stewart, I.A. Augmented k-ary n-cubes. Inform. Sci. 2011, 181, 239–256. [Google Scholar] [CrossRef]
- Wu, J.; Huang, K. The balanced hypercube: A cube-based system for fault-tolerant applications. IEEE Trans. Comput. 1997, 46, 484–490. [Google Scholar]
- Huang, K.; Wu, J. Fault-tolerant resource placement in balanced hypercubes. Inform. Sci. 1997, 99, 159–172. [Google Scholar] [CrossRef]
- Xu, M.; Hu, H.; Xu, J. Edge-pancyclicity and Hamiltonian laceability of the balanced hypercubes. Appl. Math. Comput. 2007, 189, 1393–1401. [Google Scholar] [CrossRef]
- Yang, M. Bipanconnectivity of balanced hypercubes. Comput. Math. Appl. 2010, 60, 1859–1867. [Google Scholar] [CrossRef]
- Huang, K.; Wu, J. Area efficient layout of balanced hypercubes. Int. J. High Speed Electr. Syst. 1995, 6, 631–645. [Google Scholar] [CrossRef]
- Yang, M. Super connectivity of balanced hypercubes. Appl. Math. Comput. 2012, 219, 970–975. [Google Scholar] [CrossRef]
- Lü, H.; Li, X.; Zhang, H. Matching preclusion for balanced hypercubes. Theor. Comput. Sci. 2012, 465, 10–20. [Google Scholar] [CrossRef]
- Lü, H.; Zhang, H. Hyper-Hamiltonian laceability of balanced hypercubes. J. Supercomput. 2014, 68, 302–314. [Google Scholar] [CrossRef]
- Lü, H.; Gao, X.; Yang, X. Matching extendability of balanced hypercubes. Ars Combinatoria 2016, 129, 261–274. [Google Scholar]
- Lü, H. On extra connectivity and extra edge-connectivity of balanced hypercubes. Int. J. Comput. Math. 2017, 94, 813–820. [Google Scholar] [CrossRef]
- Zhou, J.-X.; Wu, Z.-L.; Yang, S.-C.; Yuan, K.-W. Symmetric property and reliability of balanced hypercube. IEEE Trans. Comput. 2015, 64, 876–881. [Google Scholar] [CrossRef]
- Zhou, J.-X.; Kwak, J.; Feng, Y.-Q.; Wu, Z.-L. Automorphism group of the balanced hypercube. Ars Math. Contemp. 2017, 12, 145–154. [Google Scholar]
- Jha, P.K.; Prasad, R. Hamiltonian decomposition of the rectangular twisted torus. IEEE Trans. Comput. 2012, 23, 1504–1507. [Google Scholar] [CrossRef]
- Chang, N.-W.; Tsai, C.-Y.; Hsieh, S.-Y. On 3-extra connectivity and 3-extra edge connectivity of folded hypercubes. IEEE Trans. Comput. 2014, 63, 1594–1600. [Google Scholar] [CrossRef]
- Hsieh, S.-Y.; Yu, P.-Y. Fault-free mutually independent Hamiltonian cycles in hypercubes with faulty edges. J. Combin. Optim. 2007, 13, 153–162. [Google Scholar] [CrossRef]
- Park, C.; Chwa, K. Hamiltonian properties on the class of hypercube-like networks. Inform. Process. Lett. 2004, 91, 11–17. [Google Scholar] [CrossRef]
- Wang, S.; Li, J.; Wang, R. Hamiltonian paths and cycles with prescribed edges in the 3-ary n-cube. Inform. Sci. 2011, 181, 3054–3065. [Google Scholar] [CrossRef]
- Simmons, G. Almost all n-dimensional rectangular lattices are Hamilton–Laceable. Congr. Numer. 1978, 21, 103–108. [Google Scholar]
- West, D.B. Introduction to Graph Theory, 2nd ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 2001. [Google Scholar]
- Xu, J.M. Topological Structure and Analysis of Interconnection Networks; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Cheng, D.; Hao, R.-X.; Feng, Y.-Q. Two node-disjoint paths in balanced hypercubes. Appl. Math. Comput. 2014, 242, 127–142. [Google Scholar] [CrossRef]
x | y | Hamiltonian Paths Passing through e with Neither x nor y Being Incident to e | |
---|---|---|---|
(1) | (3,0) | (2,0) | (3,0)(0,3)(3,3)(2,3)(1,3)(0,2)(3,2)(2,2)(1,2)(2,1)(3,1)(0,1)(1,1)(0,0)(1,0)(2,0) |
(2) | (3,0) | (0,1) | (3,0)(0,0)(1,0)(2,3)(3,3)(0,3)(1,3)(0,2)(3,2)(2,2)(1,2)(2,1)(3,1)(2,0)(1,1)(0,1) |
(3) | (3,0) | (2,2) | (3,0)(0,3)(3,3)(2,3)(1,0)(0,0)(3,1)(2,0)(1,1)(0,1)(1,2)(2,1)(3,2)(0,2)(1,3)(2,2) |
(4) | (3,0) | (0,3) | (3,0)(0,0)(1,0)(2,0)(3,1)(0,1)(1,1)(2,1)(1,2)(2,2)(3,2)(0,2)(1,3)(2,3)(3,3)(0,3) |
(5) | (1,1) | (2,1) | (1,1)(0,1)(3,1)(2,0)(1,0)(0,0)(3,0)(0,3)(3,3)(2,3)(1,3)(0,2)(3,2)(2,2)(1,2)(2,1) |
(6) | (1,1) | (2,2) | (1,1)(0,1)(3,1)(2,0)(1,0)(0,0)(3,0)(0,3)(3,3)(2,3)(1,3)(0,2)(3,2)(2,1)(1,2)(2,2) |
(7) | (1,1) | (2,3) | (1,1)(0,0)(3,1)(0,1)(1,2)(2,1)(3,2)(2,2)(1,3)(0,2)(3,3)(0,3)(1,0)(2,0)(3,0)(2,3) |
(8) | (1,2) | (2,2) | (1,2)(2,1)(1,1)(0,1)(3,1)(2,0)(1,0)(0,0)(3,0)(0,3)(3,3)(2,3)(1,3)(0,2)(3,2)(2,2) |
(9) | (1,2) | (2,3) | (1,2)(2,1)(1,1)(0,1)(3,1)(2,0)(1,0)(0,0)(3,0)(0,3)(1,3)(2,2)(3,2)(0,2)(3,3)(2,3) |
(10) | (1,3) | (2,3) | (1,3)(0,3)(3,0)(0,0)(1,0)(2,0)(1,1)(2,1)(3,1)(0,1)(3,2)(2,2)(1,2)(0,2)(3,3)(2,3) |
x | y | Hamiltonian Paths Passing through e with x or y Being Incident to e | |
---|---|---|---|
(1) | (1,0) | (2,0) | (1,0)(0,0)(3,0)(0,3)(3,3)(2,3)(1,3)(0,2)(3,2)(2,2)(1,2)(2,1)(1,1)(0,1)(3,1)(2,0) |
(2) | (1,0) | (0,1) | (1,0)(0,0)(3,0)(0,3)(3,3)(2,3)(1,3)(0,2)(3,2)(2,2)(1,2)(2,1)(1,1)(2,0)(3,1)(0,1) |
(3) | (1,0) | (0,2) | (1,0)(0,0)(3,0)(0,3)(1,3)(2,3)(3,3)(2,2)(3,2)(2,1)(1,1)(2,0)(3,1)(0,1)(1,2)(0,2) |
(4) | (1,0) | (0,3) | (1,0)(0,0)(3,0)(2,0)(3,1)(0,1)(1,1)(2,1)(1,2)(2,2)(3,2)(0,2)(1,3)(2,3)(3,3)(0,3) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, D.; Lu, Z.; Shen, Z.; Zhang, G.; Chen, C.; Zhou, Q. Path Embeddings with Prescribed Edge in the Balanced Hypercube Network. Symmetry 2017, 9, 79. https://doi.org/10.3390/sym9060079
Chen D, Lu Z, Shen Z, Zhang G, Chen C, Zhou Q. Path Embeddings with Prescribed Edge in the Balanced Hypercube Network. Symmetry. 2017; 9(6):79. https://doi.org/10.3390/sym9060079
Chicago/Turabian StyleChen, Dan, Zhongzhou Lu, Zebang Shen, Gaofeng Zhang, Chong Chen, and Qingguo Zhou. 2017. "Path Embeddings with Prescribed Edge in the Balanced Hypercube Network" Symmetry 9, no. 6: 79. https://doi.org/10.3390/sym9060079
APA StyleChen, D., Lu, Z., Shen, Z., Zhang, G., Chen, C., & Zhou, Q. (2017). Path Embeddings with Prescribed Edge in the Balanced Hypercube Network. Symmetry, 9(6), 79. https://doi.org/10.3390/sym9060079