Lie Symmetry Classification of the Generalized Nonlinear Beam Equation
Abstract
:1. Introduction
2. Lie Symmetry Classification
3. Symmetry Reduction and Exact Solutions
4. Conclusions and Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ames, W.F. Nonlinear Partial Differential Equations in Engineering; Academic: New York, NY, USA, 1972; Volume II, pp. 50–52. [Google Scholar]
- Ames, W.F.; Adams, E.; Lohner, R.G. Group properties of utt = [f(u)ux]x. Int. J. Non-Linear Mech. 1981, 16, 439–447. [Google Scholar] [CrossRef]
- Galaktionov, V.A. The formation of shocks and fundamental solution of a fourth-order quasilinear Boussinesq-type equation. Nonlinearity 2009, 22, 239–257. [Google Scholar] [CrossRef]
- Favini, A.; Goldstein, G.R.; Goldstein, J.A.; Romanelli, S. Classification of general Wentzell boundary conditions for fourth order operators in one space dimension. J. Math. Anal. Appl. 2007, 335, 219–235. [Google Scholar] [CrossRef]
- McKenna, P.J.; Walter, W. Travelling waves in a suspension bridges. SIAM J. Appl. Math. 1990, 50, 703–715. [Google Scholar] [CrossRef]
- Ammann, O.H.; Karman, T.V.; Woodruff, G.B. The Failure of the Tacoma Narrow Bridge; Federal Works Agency: Washington, DC, USA, 1941. [Google Scholar]
- Champreys, A.R.; McKenna, P.J.; Zegeling, P.A. Solitary waves in nonlinear beam equations: Stability, fission and fusion. Nonlinear Dynam. 2000, 21, 31–53. [Google Scholar] [CrossRef]
- McKenna, P.J.; Walter, W. Nonlinear oscillations in a suspension bridge. Arch. Ration. Mech. Anal. 1987, 98, 167–177. [Google Scholar] [CrossRef]
- Chen, Y.; McKenna, P.J. Traveling waves in a nonlinearly suspended beam: Theoretical results and numerical observations. J. Differ. Equ. 1997, 136, 325–355. [Google Scholar] [CrossRef]
- Chen, Y.; McKenna, P.J. Traveling waves in a nonlinearly suspended beam: Some computational results and four open questions. Phil. Trans. R. Soc. Lond. A 1997, 355, 2175–2184. [Google Scholar] [CrossRef]
- Choy, Y.S.; Jen, K.S.; McKenna, P.J. The structure of the solution set for periodic oscillations in a suspension bridge model. IMA J. Appl. Math. 1991, 47, 283–306. [Google Scholar] [CrossRef]
- Humphreys, L.D. Numerical mountain pass solutions of a suspension bridge equation. Nonlinear Anal. TMA 1997, 35, 1811–1826. [Google Scholar] [CrossRef]
- Lazer, A.C.; McKenna, P.J. Large Amplitude periodic oscillation in suspension bridges: Some new connections with nonlinear analysis. SIAM Rev. 1990, 32, 537–578. [Google Scholar] [CrossRef]
- Humphreys, L.D.; McKenna, P.J. Multiple periodic solutions for a nonlinear suspension bridge equation. IMA J. Appl. Math. 1999, 63, 37–49. [Google Scholar] [CrossRef]
- Doole, S.H.; Hogan, S.J. The nonlinear dynamics of suspension bridges under harmonic forcing. Appl. Nonlinear Math. Rep. 1996, 76, 127–128. [Google Scholar]
- Doole, S.H.; Hogan, S.J. A piecewise linear suspension bridge model nonlinear dynamics and orbit continuation. Dynam. Stabil. Syst. 1996, 11, 19–47. [Google Scholar] [CrossRef]
- Bruzón, M.S.; Camacho, J.C.; Gandarias, M.L. Similarity reductions of a nonlinear model for vibrations of beams. PAMM Proc. Appl. Math. Mech. 2007, 7, 2040063–2040064. [Google Scholar] [CrossRef]
- Camacho, J.C.; Bruzón, M.S.; Ramírez, J.; Gandarias, M.L. Exact travelling wave solutions of a beam equation. J. Nonlinear Math. Phys. 2011, 18, 33–49. [Google Scholar] [CrossRef]
- Gao, Y.X. Quasi-periodic Solutions of the General Nonlinear Beam Equations. Commun. Math. Res. 2012, 28, 51–64. [Google Scholar]
- Ovsiannikov, L.V. Group properties of the nonlinear heat-conduction equation. Dokl. Akad. Nauk SSSR 1959, V.125, 492–495. (In Russian) [Google Scholar] [PubMed]
- Ovsiannikov, L.V. Group Analysis of Differential Equations; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Bluman, G.; Cheviakov, A.; Anco, S. Applications of Symmetry Methods to Partial Differential Equations; Springer: Berlin, Germany, 2010. [Google Scholar]
- Barone, A.; Esposito, F.; Magee, C.G.; Scott, A.C. Theory and applications of the sine-Gordon equation. Riv. Nuovo Cimento 1971, 1, 227–267. [Google Scholar] [CrossRef]
- Arrigo, D.J. Group properties of uxx − uyy = f(u). Int. J. Non-Linear Mech. 1991, 26, 619–629. [Google Scholar] [CrossRef]
- Pucci, E.; Salvatori, M.C. Group properties of a class of semilinear hyperbolic equations. Int. J. Non-Linear Mech. 1986, 21, 147–155. [Google Scholar] [CrossRef]
- Torrisi, M.; Valenti, A. Group properties and invariant solutions for infinitesimal transformations of a nonlinear wave equation. Int. J. Non-Linear Mech. 1985, 20, 135–144. [Google Scholar] [CrossRef]
- Donato, A. Similarity analysis and nonlinear wave propagation. Int. J. Non-Linear Mech. 1987, 22, 307–314. [Google Scholar] [CrossRef]
- Ibragimov, N.H.; Torrisi, M.; Valenti, A. Preliminary group classification of equations vtt = f(x, vx)vxx + g(x, vx). J. Math. Phys. 1991, 32, 2988–2995. [Google Scholar] [CrossRef]
- Ibragimov, N.H. (Ed.) Lie Group Analysis of Differential Equations—Symmetries, Exact Solutions and Conservation Laws, V.1.; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Oron, A.; Rosenau, P. Some symmetries of the nonlinear heat and wave equations. Phys. Lett. A 1986, 118, 172–176. [Google Scholar] [CrossRef]
- Chikwendu, S.C. Non-linear wave propagation solutions by Fourier transform perturbation. Int. J. Non-Linear Mech. 1981, 16, 117–128. [Google Scholar] [CrossRef]
- Gandarias, M.L.; Torrisi, M.; Valenti, A. Symmetry classification and optimal systems of a non-linear wave equation. Int. J. Non-Linear Mech. 2004, 39, 389–398. [Google Scholar] [CrossRef]
- Pucci, E. Group analysis of the equation utt + λuxx = g(u, ux). Riv. Mat. Univ. Parma 1987, 12, 71–87. [Google Scholar]
- Bluman, G.W.; Cheviakov, A.F. Nonlocally related systems, linearization and nonlocal symmetries for the nonlinear wave equation. J. Math. Anal. Appl. 2007, 333, 93–111. [Google Scholar] [CrossRef]
- Bluman, G. W.; Kumei, S. Symmetries and Differential Equations; Springer: Berlin, Germany, 1989. [Google Scholar]
- Bluman, G.W.; Temuerchaolu; Sahadevan, R. Local and nonlocal symmetries for nonlinear telegraph equation. J. Math. Phys. 2005, 46, 023505. [Google Scholar] [CrossRef]
- Huang, D.J.; Ivanova, N.M. Group analysis and exact solutions of a class of variable coefficient nonlinear telegraph equations. J. Math. Phys. 2007, 48, 073507. [Google Scholar] [CrossRef]
- Huang, D.J.; Zhou, S.G. Group properties of generalized quasi-linear wave equations. J. Math. Anal. Appl. 2010, 366, 460–472. [Google Scholar] [CrossRef]
- Huang, D.J.; Zhou, S.G. Group-theoretical analysis of variable coefficient nonlinear telegraph equations. Acta Appl. Math. 2012, 117, 135–183. [Google Scholar] [CrossRef]
- Lahno, V.; Zhdanov, R.; Magda, O. Group classification and exact solutions of nonlinear wave equations. Acta Appl. Math. 2006, 91, 253–313. [Google Scholar] [CrossRef]
- Sophocleous, C.; Kingston, J.G. Cyclic symmetries of one-dimensional non-linear wave equations. Int. J. Non-Linear Mech. 1999, 34, 531–543. [Google Scholar] [CrossRef]
- Suhubi, E.S.; Bakkaloglu, A. Group properties and similarity solutions for a quasi-linear wave equation in the plane. Int. J. Non-Linear Mech. 1991, 26, 567–584. [Google Scholar] [CrossRef]
- Vasilenko, O.F.; Yehorchenko, I.A. Group classification of multidimensional nonlinear wave equations. Proc. Inst. Math. NAS Ukr. 2001, 36, 63–66. [Google Scholar]
- Cherniha, R.; Serov, M.; Rassokha, I. Lie symmetries and form-preserving transformations of reaction-diffusion-convection equations. J. Math. Anal. Appl. 2008, 342, 1363–1379. [Google Scholar] [CrossRef]
- Basarab-Horwath, P.; Lahno, V.I.; Zhdanov, R.Z. The structure of Lie algebras and the classification problem for partial differential equations. Acta Appl. Math. 2001, 69, 43–94. [Google Scholar] [CrossRef]
- Zhdanov, R.Z.; Lahno, V.I. Group classification of heat conductivity equations with a nonlinear source. J. Phys. A 1999, 32, 7405–7418. [Google Scholar] [CrossRef]
- Gazeau, J.P.; Winternitza, P. Symmetries of variable coefficient Korteweg-de Vries equations. J. Math. Phys. 1992, 33, 4087–4102. [Google Scholar] [CrossRef]
- Popovych, R.O.; Kunzinger, M.; Eshraghi, H. Admissible point transformations and normalized classes of nonlinear Schrödinger equations. Acta Appl. Math. 2010, 109, 315–359. [Google Scholar] [CrossRef]
- Nikitin, A.G.; Popovych, R.O. Group classification of nonlinear Schrödinger equations. Ukr. Math. J. 2001, 53, 1053–1060. [Google Scholar] [CrossRef]
- Popovych, R.O.; Ivanova, N.M. New results on group classification of nonlinear diffusion-convection equations. J. Phys. A 2004, 37, 7547–7565. [Google Scholar] [CrossRef]
- Ivanova, N.M.; Popovych, R.O.; Sophocleous, C. Group analysis of variable coefficient diffusion-convection equations. I. Enhanced group classification. Lobachevskii J. Math. 2010, 31, 100–122. [Google Scholar] [CrossRef]
- Huang, D.J.; Yang, Q.M.; Zhou, S.G. Lie symmetry classification and equivalence transformation of variable coefficient nonlinear wave equations with power nonlinearities. Chin. J. Contemp. Math. 2012, 33, 205–214. [Google Scholar]
- Huang, D.J.; Yang, Q.M.; Zhou, S.G. Conservation law classification of variable coefficient nonlinear wave equation with power Nonlinearity. Chin. Phys. B 2011, 20, 070202. [Google Scholar] [CrossRef]
- Huang, D.J.; Ivanova, N.M. Algorithmic framework for group analysis of differential equations and its application to generalized Zakharov-Kuznetsov equations. J. Differ. Equ. 2016, 260, 2354–2382. [Google Scholar] [CrossRef]
- Cherniha, R.; King, J.R. Lie symmetries of nonlinear multidimensional reaction-diffusion systems: I. J. Phys. A 2000, 33, 267–282. [Google Scholar] [CrossRef]
- Cherniha, R.; King, J.R. Lie symmetries of nonlinear multidimensional reaction-diffusion systems: II. J. Phys. A 2003, 36, 405–425. [Google Scholar] [CrossRef]
- Cherniha, R.; King, J.R. Lie symmetries and conservation laws of nonlinear multidimensional reaction-diffusion systems with variable diffusivities. IMA J. Appl. Math. 2006, 71, 391–408. [Google Scholar] [CrossRef]
- Cherniha, R.; Myroniuk, L. Lie Symmetries and Exact Solutions of the Generalized Thin Film Equation. J. Phys. Math. 2010, 2, P100508:1–P100508:19. [Google Scholar] [CrossRef]
- Olver, P.J. Application of Lie Groups to Differential Equations; Springer: New York, NY, USA, 1986. [Google Scholar]
- Patera, J.; Winternitz, P. Subalgebras of real three- and four-dimensional Lie algebras. J. Math. Phys. 1977, 18, 1449–1455. [Google Scholar] [CrossRef]
- Malfliet, W.; Hereman, W. The tanh method. I. Exact solutions of nonlinear evolution and wave equations. Phys. Scr. 1996, 54, 563–568. [Google Scholar] [CrossRef]
- Fan, E.G. Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 2000, 277, 212–218. [Google Scholar] [CrossRef]
N | Basis of A | |||
---|---|---|---|---|
1 | ∀ | ∀ | ∀ | |
2 | ∀ | 0 | 0 | |
3 | 0 | 0 | ||
4 | 0 | |||
5 | ||||
6 | ||||
7 | ||||
8 | ||||
9 | 0 | 0 | ||
10 | 0 | |||
11 | 0 | |||
12 | 0 | 0 | ||
13 | 0 | |||
14 | ||||
15 | 1 | 0 | 0 | |
where | ||||
16 | 1 | d | ||
where |
N | Ansatz for | Reduced ODE | ||
---|---|---|---|---|
1 | x | |||
2 | t | |||
3 | ||||
4 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, D.; Li, X.; Yu, S. Lie Symmetry Classification of the Generalized Nonlinear Beam Equation. Symmetry 2017, 9, 115. https://doi.org/10.3390/sym9070115
Huang D, Li X, Yu S. Lie Symmetry Classification of the Generalized Nonlinear Beam Equation. Symmetry. 2017; 9(7):115. https://doi.org/10.3390/sym9070115
Chicago/Turabian StyleHuang, Dingjiang, Xiangxiang Li, and Shunchang Yu. 2017. "Lie Symmetry Classification of the Generalized Nonlinear Beam Equation" Symmetry 9, no. 7: 115. https://doi.org/10.3390/sym9070115
APA StyleHuang, D., Li, X., & Yu, S. (2017). Lie Symmetry Classification of the Generalized Nonlinear Beam Equation. Symmetry, 9(7), 115. https://doi.org/10.3390/sym9070115