Mineralogy of an Appinitic Hornblende Gabbro and Its Significance for the Evolution of Rising Calc-Alkaline Magmas
Abstract
:1. Introduction
2. Geological Setting
3. Petrography
4. Materials and Methods
5. Results: Amphiboles
5.1. Optical and Chemical Classification of the Amphiboles
5.2. Textural Relationships of the Amphiboles
5.3. Coupled Substitutions
5.4. Geobarometry and Geothermometry Estimates
6. Results: Other Mineral Phases
6.1. Fe–Ti Oxides
6.2. Pyroxenes
6.3. Biotite
6.4. Feldspar
6.5. Sulphides and Carbonates
7. Discussion
7.1. Coupled Substitutions in Amphiboles
7.2. Magmatic and Hydrothermal Minerals
7.3. Conditions of the Crystallisation of Magmatic Minerals
7.4. Evolution of Fluids during the Crystallisation of Calc-Alkaline Plutons
8. Conclusions
- The presence of multiple dykes in the mafic lithologies of the Frog Lake pluton, in a progressively widening shear zone, indicates that multiple small mafic magma batches were responsible for the construction of the Frog Lake pluton. These small magma batches favoured the reduction of water content by the crystallisation of hydrous ferromagnesian minerals and the trapping of minor felsic magma.
- Some magma batches started to crystallise at a moderate oxygen fugacity, as indicated by the magnetite in some clinopyroxene cores and early hornblendites, but the main crystallisation of the amphiboles reduced the water saturation and took place under low oxygen fugacity. The magmatic amphiboles form a punctuated crystallisation sequence from pargasite to magnesiohornblende to actinolitic hornblende, with corresponding changes in chemical composition and optical properties. As the crystallisation came to its completion, the continuing supply of water from deeper devolatilising magma led to an increase in the oxygen fugacity in the residual felsic magma, and resulted in the precipitation of euhedral titanite crystals in the hornblendites and felsic pegmatites. The cooling of the Frog Lake pluton was slow, as indicated by the chemical composition of the magnetite, with almost no Ti, and is consistent with its mode of construction.
- The decrease in elements such as Na, K, Ti and Fe in the analysed amphiboles suggests that there might have been some partitioning of these elements in a coexisting fluid phase that then produced the observed hydrothermal alteration, including the formation of albite and chlorite.
- The comparison of the Frog Lake pluton with the coeval Jeffers Brook pluton, which was emplaced at a higher structural level based on its geological criteria, shows that the Jeffers Brook pluton crystallised at a higher oxygen fugacity. Thus, even for plutons broadly of the same chemical composition and same tectonic environment, other factors such as the structural level of the emplacement, the size and number of the magma batches, and the temperature and pressure conditions of the crystallisation influence their mineralogical evolution. These factors are dependent on the detailed structure of the particular pluton, and will affect their detailed mineralogy and petrology, and their potential to generate hydrothermal fluids.
Funding
Acknowledgments
Conflicts of Interest
References
- Mark, G.; Foster, D.R.W. Magmatic-hydrothermal albite-actinolite-apatite-rich rocks from the Cloncurry district, NW Queensland, Australia. Lithos 2000, 51, 223–245. [Google Scholar] [CrossRef]
- Keppie, J.D.; Dallmeyer, R.D.; Murphy, J.B. Tectonic implications of 40Ar/39Ar hornblende ages from late Proterozoic–Cambrian plutons in the Avalon composite terrane, Nova Scotia, Canada. Geol. Soc. Am. Bull. 1990, 102, 516–528. [Google Scholar] [CrossRef]
- Pe-Piper, G.; Piper, D.J.W. 1: 50,000 Geological Maps of the Cobequid Highlands. Nova Scotia Department of Natural Resources. 2005; Open File Map ME 2005-116 and Open File Map ME 2005-117. [Google Scholar]
- Pe-Piper, G.; Piper, D.J.W.; Tsikouras, B. The late Neoproterozoic Frog Lake hornblende gabbro pluton, Avalon Terrane of Nova Scotia: Evidence for the origins of appinites. Can. J. Earth Sci. 2010, 47, 103–120. [Google Scholar] [CrossRef]
- Pe-Piper, G.; Piper, D.J.W. The Jeffers Brook diorite–granodiorite pluton: Style of emplacement and role of volatiles at various crustal levels in Avalonian appinites, Canadian Appalachians. Int. J. Earth Sci. 2018, 107, 863–883. [Google Scholar] [CrossRef]
- Murphy, J.B.; Blais, S.A.; Tubrett, M.; McNeil, D.; Middleton, M. Microchemistry of amphiboles near the roof of a mafic magma chamber: Insights into high level melt evolution. Lithos 2012, 148, 162–175. [Google Scholar] [CrossRef]
- Murphy, J.B.; Hynes, A.J.; Cousens, B. Tectonic influence on late Proterozoic Avalonian magmatism: An example from the Greendale Complex, Antigonish Highlands, Nova Scotia, Canada. In The Nature of Magmatism in the Appalachian Orogen: Geological Survey of America Memoir; Sinha, A.K., Whalen, J.B., Hogan, J.P., Eds.; Geological Society of America: Boulder, CO, USA, 1997; Volume 191, pp. 255–274. ISBN 9780813711911. [Google Scholar]
- Murphy, J.B.; Pe-Piper, G.; Piper, D.J.W.; Nance, R.D.; Doig, R. Geology of the Eastern Cobequid Highlands. Geol. Surv. Can. Bull. 2001, 556, 1–61. [Google Scholar]
- Pe-Piper, G. The calcic amphiboles of mafic rocks of the Jeffers Brook plutonic complex, Nova Scotia, Canada. Am. Mineral. 1988, 73, 993–1006. [Google Scholar]
- Doig, R.; Murphy, J.B.; Nance, R.D. U-Pb geochronology of Late Proterozoic rocks of the eastern Cobequid Highlands, Avalon Composite Terrane, Nova Scotia. Can. J. Earth Sci. 1991, 28, 504–511. [Google Scholar] [CrossRef]
- Pe-Piper, G.; Piper, D.J.W.; Koukouvelas, I. The Precambrian plutons of the Cobequid Highlands, Nova Scotia. In Avalonian and Related Peri-Gondwanan Terranes of the Circum-North Atlantic; Special Paper 304; Nance, R.D., Thompson, M.D., Eds.; Geological Society of America: Boulder, CO, USA, 1996; pp. 121–132. [Google Scholar]
- Schumacher, J.C. Appendix 2: The estimation of ferric iron in electron microprobe analysis of amphiboles. Mineral. Mag. 1997, 61, 312–321. [Google Scholar]
- Ridolfi, F.; Renzulli, A.; Puerini, M. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: An overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib. Mineral. Petrol. 2010, 160, 45–66. [Google Scholar] [CrossRef]
- Leake, B.E.; Wooley, A.R.; Arps, C.E.S.; Birch, W.D.; Gilbert, M.C.; Grice, J.D.; Hawthorne, F.C.; Kato, A.; Kisch, H.J.; Krivovichev, V.G.; et al. Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Can. Mineral. 1997, 35, 219–233. [Google Scholar]
- Leake, B.E. Nomenclature of amphiboles. Mineral. Mag. 1978, 42, 533–563. [Google Scholar] [CrossRef]
- Czamanske, G.K.; Ishihara, S.; Atkin, S.A. Chemistry of rock forming minerals of the Cretaceous—Paleogene batholith in southwestern Japan and implications for magma genesis. J. Geophys. Res. 1981, 86, 10431–10469. [Google Scholar] [CrossRef]
- Anderson, J.L.; Smith, J.L. The effects of temperature and fO2 on the Al-in-hornblende barometer. Am. Mineral. 1995, 80, 549–559. [Google Scholar] [CrossRef]
- Wyllie, P.J.; Wolf, M.B. Amphibolite dehydration-melting: Sorting out the solidus. Geol. Soc. London Spec. Publ. 1993, 76, 405–416. [Google Scholar] [CrossRef]
- López, S.; Castro, A. Determination of the fluid–absent solidus and supersolidus phase relationships of MORB-derived amphibolites in the range 4–14 kbar. Am. Mineral. 2001, 86, 1396–1403. [Google Scholar] [CrossRef]
- Czamanske, G.K.; Mihalik, P. Oxidation during magmatic differentiation: Finnmarka Complex, Oslo area, Norway: Part 1, The Opaque Oxides. J. Petrol. 1972, 13, 493–509. [Google Scholar] [CrossRef]
- Broska, I.; Harlov, D.; Tropper, P.; Siman, P. Formation of magmatic titanite and titanite-ilmenite phase relations during granite alteration in the Tribec Mountains, Western Carpathians, Slovakia. Lithos 2007, 95, 58–71. [Google Scholar] [CrossRef]
- Buddington, A.F.; Lindsley, D.H. Iron-titanium oxide minerals and synthetic equivalents. J. Petrol. 1964, 5, 310–357. [Google Scholar] [CrossRef]
- LeTerrier, J.; Maury, R.C.; Thonon, P.; Girard, D.; Marchal, M. Clinopyroxene compositions as a method of identification of the magmatic affinities of paleovolcanic series. Earth Planet. Sci. Lett. 1982, 59, 139–154. [Google Scholar] [CrossRef]
- Hamm, H.-M.; Vieten, K. Zur Berechnung der Kristallchemischen Formel und des Fe3+ Gehaltes von Klinopyroxen aus Elektronenstrahl-Mikroanalysen. Neues Jahrb. Mineral. Mh. 1971, 7, 310–314. [Google Scholar]
- Thompson, J.B. Role of aluminium in the rock-forming silicates (abst.). Geol. Soc. Am. Bull. 1947, 58, 1232. [Google Scholar]
- Chivas, A.R. Geochemical evidence for magmatic fluids in porphyry copper mineralization. Part I. Mafic silicates from the Koloula Igneous Complex. Contrib. Mineral. Petrol. 1981, 78, 389–403. [Google Scholar] [CrossRef]
- Yamaguchi, Y. Hornblende-cummingtonite and hornblende-actinolite intergrowths from the Koyama calc-alkaline intrusion, Susa, southwest Japan. Am. Mineral. 1985, 70, 980–986. [Google Scholar]
- Zingg, A.J. Intra- and intercrystalline cation-exchange reactions in zoned calcic amphibole from the Bushveld complex. Can. Mineral. 1993, 31, 649–663. [Google Scholar]
- Czamanske, G.K.; Wones, D.R. Oxidation during magmatic differentiation, Finnmarka, Oslo area, Norway: Part 2, The mafic silicates. J. Petrol. 1973, 14, 349–380. [Google Scholar] [CrossRef]
- Helmy, H.M.; Ahmed, A.F.; El Mahallawi, M.M.; Ali, S.M. Pressure, temperature and oxygen fugacity conditions of calc-alkaline granitoids, Eastern Desert of Egypt, and tectonic implications. J. Afr. Earth Sci. 2004, 38, 255–268. [Google Scholar] [CrossRef]
- Green, D.H.; Mysen, B.O. Genetic relationship between eclogite and hornblende+ plagioclase pegmatite in western Norway. Lithos 1972, 5, 147–161. [Google Scholar] [CrossRef]
- Sisson, T.W.; Grove, T.L.; Coleman, D.S. Hornblende gabbro sill complex at Onion Valley, California, and a mixing origin for the Sierra Nevada batholith. Contrib. Mineral. Petrol. 1996, 126, 81–108. [Google Scholar] [CrossRef]
- Jahns, R.H. Internal evolution of pegmatite bodies. In Granitic Pegmatites in Science and Industry; Mineralogical Association of Canada Short Course Handbook 8; Černý, P., Ed.; Mineralogical Association of Canada: Quebec City, QC, Canada, 1982; pp. 293–327. [Google Scholar]
- Mysen, B. Water-melt interaction in hydrous magmatic systems at high temperature and pressure. Prog. Earth Planet. Sci. 2014, 1, 4. [Google Scholar] [CrossRef] [Green Version]
- Murphy, J.B. Appinite suites: A record of the role of water in the genesis, transport, emplacement and crystallization of magma. Earth-Sci. Rev. 2013, 119, 35–59. [Google Scholar] [CrossRef]
- Hanley, J.J.; Gladney, E.R. The presence of carbonic-dominant volatiles during the crystallization of sulfide-bearing mafic pegmatites in the North Roby Zone, Lac des Iles Complex, Ontario. Econ. Geol. 2011, 106, 33–54. [Google Scholar] [CrossRef]
- London, D.; Morgan, G.B. The pegmatite puzzle. Elements 2012, 8, 263–268. [Google Scholar] [CrossRef]
- Laumonier, M.; Gaillard, F.; Muir, D.; Blundy, J.; Unsworth, M. Giant magmatic water reservoirs at mid-crustal depth inferred from electrical conductivity and the growth of the continental crust. Earth Planet. Sci. Lett. 2017, 457, 173–180. [Google Scholar] [CrossRef] [Green Version]
- Grove, T.L.; Till, C.B.; Krawczynski, M.J. The role of H2O in subduction zone magmatism. Annu. Rev. Earth Planet. Sci. 2012, 40, 413–439. [Google Scholar] [CrossRef] [Green Version]
- Collins, W.J.; Murphy, J.B.; Johnson, T.E.; Huang, H.Q. Critical role of water in the formation of continental crust. Nat. Geosci. 2020, 13, 331–338. [Google Scholar] [CrossRef]
- Castro, A.; Corretge, L.G.; De la Rosa, J.D.; Fernandez, C.; Lopez, S.; Garcia-Moreno, O.; Chacon, H. The appinite–migmatite complex of Sanabria, NW Iberian massif, Spain. J. Petrol. 2003, 44, 1309–1344. [Google Scholar] [CrossRef] [Green Version]
- Lledo, H.L.; Jenkins, D.M. Experimental investigation of the upper thermal stability of Mg-rich actinolite; implications for Kiruna-type iron deposits. J. Petrol. 2008, 49, 225–238. [Google Scholar] [CrossRef] [Green Version]
Low-Ti Hornblende Gabbro | High-Ti Hornblende Gabbro | Hornblendite | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Analysis | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
Sample | C3137 | C3137 | C3137 | C3137 | C2969 | C2969 | C9697 | C2969 | C2969 | C3138 | C3138 | C3138 |
Mineral | Hbl1 | A-Hbl | Hbl | Hbl | P-Hbl | A-Hbl | Hbl | P-Hbl | Act | Hbl | Hbl | Act |
Location | core | rim | core | rim | core | core | rim | core | rim | |||
SiO2 | 49.59 | 50.61 | 45.4 | 44.69 | 42.95 | 49.59 | 44.89 | 42.34 | 53.38 | 45.87 | 47.92 | 53.48 |
TiO2 | 0.33 | 0.28 | 1.81 | 1.78 | 2.58 | 0.67 | 1.34 | 1.65 | 0.25 | 1.56 | 0.65 | 0.1 |
Al2O3 | 5.74 | 4.96 | 8.8 | 9.01 | 10.36 | 4.73 | 7.43 | 9.7 | 1.96 | 9.38 | 7.22 | 0.62 |
FeOt | 13.69 | 13.05 | 13.89 | 14.55 | 15.7 | 13.98 | 14.82 | 17.29 | 12.52 | 13.32 | 14.44 | 18.33 |
MnO | 0.34 | 0.44 | 0.25 | 0.29 | 0.37 | 0.31 | 0.4 | 0.25 | 0.35 | 0.32 | 0.26 | 0.86 |
MgO | 14.74 | 15.18 | 13.07 | 12.17 | 10.63 | 14.28 | 12.26 | 10.53 | 16.02 | 12.99 | 12.96 | 14.95 |
CaO | 11.57 | 11.45 | 11.67 | 11.69 | 11.83 | 12.3 | 11.58 | 11.94 | 12.84 | 11.45 | 12.59 | 7.17 |
Na2O | 0.72 | 0.64 | 1.04 | 0.95 | 1.57 | 0.59 | 1.11 | 1.37 | 0.27 | 1.04 | 0.83 | 0.07 |
K2O | 0.22 | 0.16 | 0.75 | 0.66 | 0.92 | 0.42 | 0.81 | 1.15 | 0.13 | 0.64 | 0 | 0 |
Total | 96.94 | 96.77 | 96.68 | 95.79 | 96.91 | 96.87 | 94.64 | 96.22 | 97.72 | 96.57 | 96.87 | 95.58 |
Structural formulae on the basis of 23 oxygen atoms and 13 cations | ||||||||||||
Si | 7.14 | 7.26 | 6.67 | 6.66 | 6.46 | 7.25 | 6.81 | 6.45 | 7.67 | 6.71 | 7.04 | 8.00 |
Ti | 0.04 | 0.03 | 0.20 | 0.20 | 0.29 | 0.07 | 0.15 | 0.19 | 0.03 | 0.17 | 0.07 | 0.01 |
AlIV | 0.86 | 0.74 | 1.33 | 1.34 | 1.54 | 0.75 | 1.19 | 1.55 | 0.33 | 1.29 | 0.96 | 0.00 |
AlVI | 0.11 | 0.10 | 0.20 | 0.25 | 0.30 | 0.07 | 0.14 | 0.19 | 0.00 | 0.33 | 0.29 | 0.10 |
Fe3+ | 0.87 | 0.85 | 0.62 | 0.56 | 0.20 | 0.44 | 0.49 | 0.47 | 0.23 | 0.62 | 0.34 | 0.00 |
Fe2+ | 0.78 | 0.72 | 1.09 | 1.25 | 1.77 | 1.27 | 1.39 | 1.74 | 1.27 | 1.01 | 1.44 | 2.29 |
Mn | 0.04 | 0.05 | 0.03 | 0.04 | 0.05 | 0.04 | 0.05 | 0.03 | 0.04 | 0.04 | 0.03 | 0.11 |
Mg | 3.16 | 3.25 | 2.86 | 2.70 | 2.38 | 3.11 | 2.77 | 2.39 | 3.43 | 2.83 | 2.84 | 3.33 |
Ca | 1.78 | 1.76 | 1.84 | 1.87 | 1.91 | 1.93 | 1.88 | 1.95 | 1.98 | 1.79 | 1.98 | 1.15 |
Na | 0.20 | 0.18 | 0.30 | 0.27 | 0.46 | 0.17 | 0.33 | 0.40 | 0.08 | 0.29 | 0.24 | 0.02 |
K | 0.04 | 0.03 | 0.14 | 0.13 | 0.18 | 0.08 | 0.16 | 0.22 | 0.02 | 0.12 | 0.00 | 0.00 |
Themobarometric estimates from Ridolfi et al. (2010) | ||||||||||||
P (MPa) | 78 | 64 | 172 | 187 | 270 | 62 | - | 235 | 31 | 197 | - | - |
± | 9 | 7 | 19 | 21 | 30 | 7 | - | 26 | 8 | 49 | - | - |
T (°C) | 753 | 739 | 850 | 852 | 900 | 742 | - | 888 | 674 | 848 | 793 | - |
± | 22 | 22 | 22 | 22 | 22 | 22 | - | 22 | 22 | 22 | 56 | - |
pegmatitic hornblendite | px-mica gabbro | metasomatised psammite | ||||||||||
Analysis | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
Sample | C2653 | C2653 | C2653 | C2653 | C2653 | C2653 | C2947 | C2947 | C2649 | C2649 | C2649 | C2649 |
Mineral | A-Hbl | Act | A-Hbl | Hbl | Hbl | Act | E-Arf | FeAct | P-Hbl | Hbl | Act | Act |
Location | host | lam. | lam. | |||||||||
SiO2 | 51.9 | 53.78 | 50.84 | 47.15 | 46.18 | 50.41 | 47.51 | 48.06 | 43.01 | 47.24 | 51.83 | 52.89 |
TiO2 | 0.33 | 0.2 | 0.35 | 0.43 | 0.18 | 0 | 2.87 | 0.25 | 2.66 | 2.08 | 0.56 | 0.12 |
Al2O3 | 3.47 | 2.94 | 3.86 | 6.82 | 8.71 | 1.06 | 2.23 | 0.88 | 10.81 | 7.35 | 4.91 | 2.62 |
FeOt | 11.34 | 10.7 | 11.02 | 13.31 | 14.12 | 16.47 | 27.77 | 33.79 | 11.44 | 9.57 | 7.11 | 9.61 |
MnO | 0.1 | 0.15 | 0.18 | 0.27 | 0.2 | 0.13 | 0.56 | 1.23 | 0.22 | 0.38 | 0.22 | 0.24 |
MgO | 16.12 | 17.15 | 16.02 | 13.95 | 13.06 | 12.78 | 3.97 | 2.88 | 12.66 | 14.49 | 16.94 | 15 |
CaO | 12.85 | 12.55 | 12.64 | 11.65 | 11.97 | 12.78 | 5.01 | 7.18 | 12.7 | 13.49 | 12.58 | 13.96 |
Na2O | 0.39 | 0.28 | 0.42 | 0.69 | 0.99 | 0.14 | 4.7 | 0.43 | 1.31 | 0.48 | 0.8 | 0.34 |
K2O | 0.04 | 0.01 | 0 | 0.14 | 0.09 | 0 | 1.1 | 0.15 | 0.89 | 0.3 | 0.32 | 0.11 |
Total | 96.54 | 97.76 | 95.33 | 94.41 | 95.5 | 93.77 | 95.72 | 94.85 | 95.7 | 95.38 | 95.27 | 94.89 |
Structural formulae on the basis of 23 oxygen atoms and 13 cations | ||||||||||||
Si | 7.51 | 7.60 | 7.43 | 6.99 | 6.82 | 7.69 | 7.54 | 7.96 | 6.47 | 7.03 | 7.53 | 7.93 |
Ti | 0.04 | 0.02 | 0.04 | 0.05 | 0.02 | 0.00 | 0.34 | 0.03 | 0.30 | 0.23 | 0.06 | 0.01 |
AlIV | 0.49 | 0.40 | 0.57 | 1.01 | 1.18 | 0.31 | 0.46 | 0.04 | 1.53 | 0.97 | 0.47 | 0.07 |
AlVI | 0.10 | 0.09 | 0.10 | 0.18 | 0.34 | -0.11 | -0.04 | 0.12 | 0.39 | 0.32 | 0.38 | 0.40 |
Fe3+ | 0.21 | 0.40 | 0.31 | 0.80 | 0.72 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Fe2+ | 1.16 | 0.87 | 1.04 | 0.85 | 1.03 | 2.04 | 3.69 | 4.68 | 1.44 | 1.19 | 0.86 | 1.21 |
Mn | 0.01 | 0.02 | 0.02 | 0.03 | 0.03 | 0.02 | 0.08 | 0.17 | 0.03 | 0.05 | 0.03 | 0.03 |
Mg | 3.48 | 3.61 | 3.49 | 3.08 | 2.88 | 2.91 | 0.94 | 0.71 | 2.84 | 3.21 | 3.67 | 3.35 |
Ca | 1.99 | 1.90 | 1.98 | 1.85 | 1.89 | 2.09 | 0.85 | 1.27 | 2.05 | 2.15 | 1.96 | 2.24 |
Na | 0.11 | 0.08 | 0.12 | 0.20 | 0.28 | 0.04 | 1.45 | 0.14 | 0.38 | 0.14 | 0.23 | 0.10 |
K | 0.01 | 0.00 | 0.00 | 0.03 | 0.02 | 0.00 | 0.22 | 0.03 | 0.17 | 0.06 | 0.06 | 0.02 |
Themobarometric estimates from Ridolfi et al. (2010) | ||||||||||||
P (MPa) | 45 | 39 | - | - | - | - | - | - | - | - | - | - |
± | 5 | 4 | - | - | - | - | - | - | - | - | - | - |
T (°C) | 713 | 695 | - | - | 826 | - | - | - | - | - | - | - |
± | 22 | 22 | - | - | 56 | - | - | - | - | - | - | - |
Hornblendites | High-Ti Hornblende Gabbro | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Analysis | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 10 | 11 | 12 | 13 |
Sample | C2996 | C2996 | C2996 | C3138 | C3138 | C3138 | C3138 | C3138 | C2969 | C2969 | C2969 | C2969 |
−3 | −6 | −5 | −3 | −9 | −1 | −1b | −6 | −5 | −2 | −7 | −6 | |
SiO2 | - | - | - | - | - | - | 0.03 | - | - | - | - | - |
TiO2 | 0.2 | 45.59 | 0.4 | 0.19 | 49.16 | 42.62 | 3.62 | 3.01 | 0.14 | 45.7 | 0.35 | 48.8 |
Al2O3 | 0.43 | 0.1 | 0.14 | 0.24 | 0.03 | 0.06 | 0.08 | 0.16 | 0.17 | 0.07 | 0.17 | 0.07 |
FeOt | 92.27 | 51.87 | 91.59 | 91.83 | 47.92 | 53.5 | 90.89 | 89.69 | 92.8 | 48.24 | 91.93 | 46.06 |
MnO | 0.2 | 1.78 | 0.21 | 0.16 | 1.49 | 1.48 | 0.15 | 0.18 | 0.2 | 3.63 | 0.18 | 3.76 |
MgO | 0.03 | 0.07 | 0.01 | - | 0.02 | 0.04 | - | 0.01 | - | 0.05 | - | 0.08 |
CaO | 0.03 | 0.05 | 0.08 | 0.05 | 0.03 | 0.03 | 0.03 | 0.05 | 0.04 | 0.03 | 0.05 | 0.01 |
Na2O | 0.17 | 0.15 | 0.17 | 0.17 | 0.14 | 0.15 | - | 0.17 | 0.17 | 0.14 | 0.17 | 0.14 |
Cr2O3 | 0.34 | 0.22 | 0.78 | 0.25 | 0.19 | 0.17 | 0.15 | 0.26 | 0.25 | 0.18 | 0.27 | 0.18 |
Total | 93.67 | 99.83 | 93.38 | 92.89 | 98.98 | 98.05 | 94.95 | 93.53 | 93.77 | 98.04 | 93.12 | 99.1 |
Recalculated Analyses | ||||||||||||
Ilmenite-Hematite basis | ||||||||||||
Fe2O3 | 14.13 | 5.81 | 18.54 | 12.06 | 6.75 | |||||||
FeO | 39.14 | 42.68 | 36.8 | 37.38 | 39.98 | |||||||
Total | 100.81 | 99.2 | 99.54 | 98.88 | 99.44 | |||||||
Mol.%R2O3 | 13.57 | 5.63 | 17.97 | 11.77 | 6.57 | |||||||
Magnetite-Ulvospinel basis | ||||||||||||
Fe2O3 | 67.98 | 67.34 | 67.7 | 61.6 | 62.43 | 68.55 | 67.61 | |||||
FeO | 31.03 | 30.92 | 30.84 | 33.91 | 33.45 | 31.05 | 31.02 | |||||
Total | 99.87 | 99.02 | 99.13 | 99.47 | 99.24 | 100.1 | 99.33 | |||||
Mol.%Usp | 0.58 | 1.17 | 0.55 | 10.38 | 8.75 | 1.02 | ||||||
High-Ti hornblende gabbros | Px-Mica gabbro | Pegmatitic hornblendite | Granite | |||||||||
Analysis | 14 | 15 | 16 | 17 | 18 | 19 | 23 | 24 | 25 | 26 | 27 | |
Sample | C3150 | C3150 | C3150 | C3150 | C3150 | C3150 | C2947 | C2947 | C2947 | C2653 | C3119 | |
−4 | −12 | −6 | −5 | −7 | −8 | −3 | −10 | −12 | −9 | −2 | ||
SiO2 | 0.04 | 0.04 | 0.06 | - | - | - | 0.07 | 28.33 | 0.04 | - | 0.06 | |
TiO2 | 0.07 | 48.9 | 0.08 | 49.7 | 0.71 | 48.7 | 49.91 | 37.31 | 48.58 | 48.37 | 0.03 | |
Al2O3 | 0.09 | 0.04 | 0.08 | 0.01 | 0.08 | 0.05 | 0.03 | 1.08 | 0.02 | 0.05 | 0.11 | |
FeOt | 93.31 | 44.1 | 92.8 | 47.6 | 92.7 | 44.8 | 44.44 | 5.2 | 43.49 | 45.92 | 93.52 | |
MnO | 0.01 | 4.42 | 0.02 | 2.29 | 0.09 | 4.09 | 3.38 | 0.24 | 3.53 | 3.71 | - | |
MgO | 0.03 | 0.07 | 0.03 | 0.06 | 0.02 | 0.08 | 0.06 | 0.08 | 0.06 | 0.1 | 0.04 | |
CaO | - | 0.25 | 0.12 | 0.03 | 0.09 | 0.06 | 0.06 | 27.34 | 0.23 | 0.07 | - | |
Na2O | - | - | - | - | - | - | - | - | - | 0.14 | - | |
Cr2O3 | 0.13 | - | 0.1 | 0.05 | 0.1 | - | - | - | - | 0.35 | 0.09 | |
Total | 93.68 | 97.8 | 93.2 | 99.8 | 93.8 | 97.8 | 97.95 | 99.56 | 95.94 | 98.71 | 93.85 | |
Recalculated Analyses | ||||||||||||
Ilmenite-Hematite basis | ||||||||||||
Fe2O3 | 5.12 | 5.93 | 5.82 | 3.31 | 3.8 | 7.02 | ||||||
FeO | 39.5 | 42.3 | 39.5 | 41.46 | 40.07 | 39.6 | ||||||
Total | 98 | 100 | 98.3 | 98.22 | 96.1 | 98.85 | ||||||
Mol.%R2O3 | 5.04 | 5.65 | 3.26 | 3.8 | 6.85 | |||||||
Magnetite-Ulvospinel basis | ||||||||||||
Fe2O3 | 68.88 | 68.5 | 67.7 | 69.05 | ||||||||
FeO | 31.25 | 31.1 | 31.7 | 31.31 | ||||||||
Total | 100.4 | 99.9 | 100 | 100.6 | ||||||||
Mol.%Usp | 0.36 | 0.46 | 2.05 | 0.32 |
Hornblendite | Px-Mica Gabbro | Psammite + | ||||||
---|---|---|---|---|---|---|---|---|
Analysis | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 9 |
Sample | C2996 | C2996 | C2996 | C3138 | C3138 | C2947 | C2947 | C2648A |
Mineral | Opx | Opx | Cpx | Cpx | Cpx | Cpx | Cpx | Cpx |
Location | core | rim | ||||||
SiO2 | 52.85 | 56.01 | 52.4 | 51.76 | 52.59 | 47.21 | 47.59 | 53.39 |
TiO2 | 0.16 | 0.04 | 0.28 | 0.36 | 0.23 | 2.91 | 2.13 | |
Al2O3 | 1.46 | 0.34 | 1.89 | 2.26 | 1.71 | 5.38 | 4.49 | 1.09 |
FeOt | 23.85 | 20.82 | 8.89 | 8.94 | 8 | 11.89 | 12.36 | 5.2 |
MnO | 0.77 | 1.04 | 0.35 | 0.41 | 0.38 | 0.34 | 0.36 | 0.24 |
MgO | 20.99 | 19.63 | 13.68 | 13.26 | 13.46 | 10.38 | 10.51 | 16.07 |
CaO | 0.49 | 1.02 | 22.79 | 22.7 | 24.09 | 21.28 | 20.38 | 24.64 |
Na2O | 0.04 | 0.07 | 0.39 | 0.38 | 0.35 | 0.69 | 0.68 | 0.09 |
K2O | - | - | - | - | - | 0.04 | 0.04 | 0.04 |
Cr2O3 | 0.08 | 0.04 | 0.08 | 0.06 | 0.07 | 0.08 | 0.11 | 0.08 |
Total | 100.69 | 99.01 | 100.75 | 100.13 | 100.89 | 100.2 | 98.65 | 101.12 |
Structural formulae on the basis of 6 Oxygen atoms | ||||||||
Si | 1.971 | 2.129 | 1.937 | 1.98 | 1.941 | 1.787 | 1.829 | 1.94 |
AlIV | 0.029 | 0.129 | 0.063 | 0.072 | 0.059 | 0.213 | 0.171 | 0.047 |
AlVI | 0.036 | 0.144 | 0.02 | 0.027 | 0.015 | 0.027 | 0.032 | - |
Ti | 0.004 | 0.001 | 0.008 | 0.1 | 0.006 | 0.083 | 0.062 | 0.008 |
Fe3+ * | - | - | 0.053 | 0.05 | 0.055 | 0.071 | 0.065 | 0.063 |
Fe2+ | 0.744 | 0.662 | 0.222 | 0.228 | 0.192 | 0.305 | 0.332 | 0.095 |
Mn | 0.024 | 0.033 | 0.011 | 0.013 | 0.012 | 0.002 | 0.012 | 0.007 |
Mg | 1.167 | 1.112 | 0.754 | 0.736 | 0.74 | 0.585 | 0.602 | 0.87 |
Ca | 0.02 | 0.042 | 0.903 | 0.906 | 0.953 | 0.863 | 0.839 | 0.959 |
Na | 0.003 | 0.005 | 0.028 | 0.027 | 0.025 | 0.051 | 0.051 | 0.006 |
K | - | - | - | - | - | 0.002 | 0.002 | 0.002 |
Cr | 0.002 | 0.001 | 0.002 | 0.002 | 0.002 | 0.002 | 0.003 | 0.002 |
100 Mg/ | ||||||||
Mg + Fe | 61.07 | 62.68 | 73.27 | 72.58 | 74.97 | 60.87 | 60.02 | 84.63 |
Hornblendite | Hi-Ti Hornblende Gabbros | Px-Mica Gabbro | Granite | Granite | |||
---|---|---|---|---|---|---|---|
Analysis | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Sample | C2996 | C3150 | C3150 | C2946 | C2947 | C2984 | C3136 |
SiO2 | 36.58 | 36.45 | 36.17 | 35.31 | 35.93 | 35.1 | 35.76 |
TiO2 | 2.96 | 2.41 | 2.57 | 3.55 | 4.62 | 2.74 | 2.5 |
Al2O3 | 15.94 | 15.86 | 15.97 | 14.72 | 13.54 | 17.65 | 16.35 |
FeOt | 18.29 | 19.27 | 20.38 | 25.67 | 26.43 | 23.23 | 18.52 |
MnO | 0.14 | 0.19 | 0.23 | 0.16 | 0.21 | 0.63 | 0.31 |
MgO | 12.11 | 11.53 | 10.79 | 7.41 | 6.58 | 7.41 | 11.27 |
CaO | - | 0.05 | 0.07 | 0.08 | 0.08 | 0.04 | 0.1 |
Na2O | 0.22 | - | 0.11 | 0.04 | 0.16 | 0.05 | 0.11 |
K2O | 9.21 | 9.88 | 9.63 | 9.66 | 9.69 | 9.27 | 9.37 |
Total | 95.45 | 95.64 | 95.92 | 96.6 | 97.24 | 96.12 | 94.29 |
Structural formulae on the basis of 22 Oxygen atoms | |||||||
Si | 5.531 | 5.546 | 5.522 | 5.504 | 5.588 | 5.41 | 5.498 |
AlIV | 2.469 | 2.454 | 2.478 | 2.496 | 2.412 | 2.59 | 2.502 |
AlVI | 0.371 | 0.391 | 0.472 | 0.208 | 0.069 | 0.615 | 0.461 |
Ti | 0.334 | 0.275 | 0.244 | 0.416 | 0.539 | 0.317 | 0.288 |
Fe | 2.312 | 2.453 | 2.4 | 3.346 | 3.439 | 2.994 | 2.383 |
Mn | 0.015 | 0.024 | 0.018 | 0.02 | 0.026 | 0.081 | 0.04 |
Mg | 2.73 | 2.616 | 2.671 | 1.72 | 1.525 | 1.701 | 2.581 |
Ca | - | 0.007 | 0.018 | 0.013 | 0.011 | 0.004 | 0.015 |
Na | 0.064 | - | 0.024 | 0.011 | 0.046 | 0.013 | 0.033 |
K | 1.777 | 1.918 | 1.789 | 1.921 | 1.925 | 1.824 | 1.839 |
100 Mg/(Mg + Fe) | 54.15 | 51.61 | 52.67 | 33.96 | 30.72 | 36.22 | 50.89 |
(MgO/FeO)rock | 0.68 | 0.38 | 0.38 | 0.32 | 0.36 | 0.48 | 1.77 |
General Geology | Frog Lake Pluton | Jeffers Brook Pluton |
---|---|---|
Age | ~622 Ma | ~606 Ma |
Outcrop dimensions | 4 km2 | 3 km2 |
Country rock | medium-grade Mesoproterozoic Gamble Brook Fm. quartzite and metapelite | low-grade Neoproterozoic Jeffers Group volcanic and volcaniclastic rocks |
Style of intrusion | vertical sheets within country rock | laccolith, underlying sills |
Predominant rock type | hornblende gabbro | tonalite and granodiorite |
Important minor rock types | hornblendite, tonalite, mafic and felsic pegmatites | diorite pods and enclaves, granite and aplite dykes, gabbro sills and enclaves |
Irregular felsic patches | common | rare |
Mineral composition of mafic rocks | ||
Magmatic amphiboles | pargasite, hornblende, actinolitic hornblende, minor actinolite | pargasite, hornblende, minor actinolitic hornblende |
Subsolidus amphiboles | actinolite, some Fe-rich | actinolite, some Mg-rich |
Amphibole chemistry | generally similar, but IVAl higher | generally similar, but IVAl lower |
Fe-Ti oxides | ilmenite predominant, but late magmatic magnetite | magnetite predominant, but common early ilmenite |
Subsolidus exsolution textures of Fe-Ti oxides | Ti-magnetite exsolution in ilmenite; exsolution of ilmenite in hornblende and actinolite; replacement of titanite by ilmenite | not seen |
Physical and chemical properties of magmas | ||
Inferred oxygen fugacity | Moderate in early crystals, becoming low as Hbl crystallized | Moderate in early crystals, becoming high as main rocks crystallized. |
Ridolfi et al. (2010) ampbibole geothermometry and geobarometry | 900–670 °C, 270–30 MPa; hornblende pegmatite 820–710 °C, ~45 MPa. | 950–670 °C, 300–25 MPa |
Behaviour of hydrous components | Mafic magma undersaturated in H2O due to crystallisation of amphibole; felsic magma saturated. | At least the tonalite-granodiorite magma water saturated by trapped rising hydrothermal fluids. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pe-Piper, G. Mineralogy of an Appinitic Hornblende Gabbro and Its Significance for the Evolution of Rising Calc-Alkaline Magmas. Minerals 2020, 10, 1088. https://doi.org/10.3390/min10121088
Pe-Piper G. Mineralogy of an Appinitic Hornblende Gabbro and Its Significance for the Evolution of Rising Calc-Alkaline Magmas. Minerals. 2020; 10(12):1088. https://doi.org/10.3390/min10121088
Chicago/Turabian StylePe-Piper, Georgia. 2020. "Mineralogy of an Appinitic Hornblende Gabbro and Its Significance for the Evolution of Rising Calc-Alkaline Magmas" Minerals 10, no. 12: 1088. https://doi.org/10.3390/min10121088
APA StylePe-Piper, G. (2020). Mineralogy of an Appinitic Hornblende Gabbro and Its Significance for the Evolution of Rising Calc-Alkaline Magmas. Minerals, 10(12), 1088. https://doi.org/10.3390/min10121088