Review of the Main Factors Affecting the Flotation of Phosphate Ores
Abstract
:1. Introduction
2. Parameters Affecting Phosphate Flotation
2.1. Phosphate and Gangue Minerals’ Surface Properties
2.1.1. Phosphate Minerals’ Solubility and Surface Charge
- H+ and OH− ions are critical as they control the solution pH and eventually the mineral’s surface charge [19];
- Phosphate (PO43–) decreases the mineral’s surface charge under all pH conditions [20];
- Calcium makes the mineral more positively charged under all pH conditions [20];
- Fluoride is found to increase the surface charge in acidic medium and slightly decreases it in basic solutions following the possible formation of fluorite (CaF2) and fluorapatite (Ca5(PO4)3F), respectively [20].
2.1.2. Gangue Minerals’ Solubility and Surface Charge
- Calcite solubility and surface charge
- Dolomite solubility and surface charge
- Quartz solubility and surface charge
2.1.3. Wettability (Contact Angle)
2.2. Flotation Reagents
2.2.1. Gangue Minerals Reagents
- Calcite and Dolomite Reagents
- Quartz Reagents
2.2.2. Apatite Minerals Reagents
2.3. Influence of Particle Size
2.4. Influence of the Froth Stability
2.4.1. Froth Stability
2.4.2. Bubble’s Size
3. Conclusions
- Huge carbon dioxide emissions are the main downside of thermal beneficiation techniques such as calcination. Hence, froth flotation was developed to replace it in many cases.
- Water recycling is already applied in most phosphate concentrator plants.
- Phosphate waste valorization is an interesting recent topic with numerous industrial opportunities. Hakkou et al. [84] mentioned multiple methods of phosphate wastes valorization. One way is the use of alkaline phosphate wastes (APW) to inhibit the acid mine drainage (AMD). Regarding its high calcite content, 15% APW was used to neutralize the acidity produced by pyrrhotite tailings’ oxidation [85]. The APW were also assessed in the passive AMD water treatment [84]. Additionally, phosphate wastes with a size less than 1 mm, were tested in store-and-release (SR) covers to reclaim industrial mine sites [86].
- Flotation reagents can be environmentally harmful and highly toxic. For instance, different apatite depressants (organic and inorganic) are used in the reverse flotation of sedimentary phosphate ores. The most common ones are phosphoric and sulfuric acid and their derivatives. Using these inorganic depressants can entail, however, potential threats to the environment [87] (e.g., calcium phosphate scale formation and water eutrophication [88]). Organic depressants have been developed for apatite/carbonate separation, as well. Nevertheless, they are usually extremely toxic which limits their use [87].
Author Contributions
Funding
Conflicts of Interest
References
- Langton, T.G. Phosphate rock. In Natural Resources in U.S.-Canadian Relations, Volume 2: Patterns and Trends in Resource Supplies and Policies; Routledge: London, UK, 2019; pp. 123–142. [Google Scholar] [CrossRef]
- Haldar, S.K. Mineral Exploration; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9780128140222. [Google Scholar]
- Abouzeid, A.Z.M. Physical and thermal treatment of phosphate ores—An overview. Int. J. Miner. Process. 2008, 85, 59–84. [Google Scholar] [CrossRef]
- Jasinski, S.M. U.S. Geological Survey, Mineral Commodity Summaries: Phosphate Rock. Available online: https://www.usgs.gov/media/files/phosphate-rock-mcs-2019-data-sheet (accessed on 9 November 2020).
- Marcin, E.J. The Formation of Phosphate Minerals and Deposits. Rocks Miner. 1963, 38, 457–459. [Google Scholar] [CrossRef]
- Santana, R.C.; Duarte, C.R.; Ataíde, C.H.; Barrozo, M.A.S. Flotation selectivity of phosphate ore: Effects of particle size and reagent concentration. Sep. Sci. Technol. 2011, 46, 1511–1518. [Google Scholar] [CrossRef]
- Kawatra, S.K.; Carlson, J.T. Beneficiation of Phosphate Ore; Society for Mining, Metallurgy & Exploration: Englewood, CO, USA, 2013; ISBN 0873353919. [Google Scholar]
- Lisiansky, L.; Baker, M.; Larmour-Ship, K.; Elyash, O. A Tailor Made Approach for the Beneficiation of Phosphate Rock. In Beneficiation of Phosphates; Zhang, P., Miller, J.B., Wingate, E., Filho, L.L., Eds.; Society for Mining, Metallurgy & Exploration: Englewood, CO, US, 2015. [Google Scholar]
- Wang, D. Flotation Reagents: Applied Surface Chemistry on Minerals Flotation and Energy Resources Beneficiation: Volume 1: Functional Principle; Springer: Berlin/Heidelberg, Germany, 2016; Volume 1, ISBN 9789811020308. [Google Scholar]
- Aslan, N.; Fidan, R. Optimization of Pb flotation using statistical technique and quadratic programming. Sep. Purif. Technol. 2008, 62, 160–165. [Google Scholar] [CrossRef]
- Barros, L.A.F.; Ferreira, E.E.; Peres, A.E.C. Floatability of apatites and gangue minerals of an igneous phosphate ore. Miner. Eng. 2008, 21, 994–999. [Google Scholar] [CrossRef]
- Bulatovic, S.M. Handbook of Flotation Reagents: Chemistry, Theory and Practice: Flotation of Industrial Minerals; Elsevier: Amsterdam, The Netherlands, 2014; Volume 3. [Google Scholar]
- Chernoff, C.B.; Orris, G.J. Data Set of World Phosphate Mines, Deposits, and Occurrences: Part A. Geologic Data; US Department of the Interior, US Geological Survey: Reston, VA, USA, 2002. [Google Scholar]
- Al-Fariss, T.F.; Ozbelge, H.O.; El-Shall, H.S. On the Phosphate Rock Beneficiation for the Production of Phosphoric Acid in Saudi Arabia. J. King Saud Univ. Eng. Sci. 1992, 4, 13–31. [Google Scholar] [CrossRef]
- Chaabouni, A.; Chtara, C.; Nzihou, A.; Feki, H.E.L. Study the Nature and the Effects of the Impurities of Phosphate Rock in the Plants of Production of Phosphoric Acid. J. Adv. Chem. 2014, 7, 1296–1299. [Google Scholar] [CrossRef]
- Mar, S.S.; Okazaki, M. Investigation of Cd contents in several phosphate rocks used for the production of fertilizer. Microchem. J. 2012, 104, 17–21. [Google Scholar] [CrossRef]
- Ulrich, A.E. Science of the Total Environment Cadmium governance in Europe’s phosphate fertilizers: Not so fast? Sci. Total Environ. 2019, 650, 541–545. [Google Scholar] [CrossRef]
- El-Arabi, A.E.-G.M.; Khalifa, I.H. Application of multivariate statistical analyses in the interpretation of geochemical behaviour of uranium in phosphatic rocks in the Red Sea, Nile Valley and Western Desert, Egypt. J. Environ. Radioact. 2002, 61, 169–190. [Google Scholar] [CrossRef]
- Wu, L.; Forsling, W.; Schindler, P.W. Surface complexation of calcium minerals in aqueous solution. 1. Surface protonation at fluorapatite-water interfaces. J. Colloid Interface Sci. 1991, 147, 178–185. [Google Scholar] [CrossRef]
- Somasundaran, P.; Wang, Y.H.C. Surface Chemical Characteristics and Adsorption Properties of Apatite. Adsorpt. Surf. Chem. Hydroxyapatite 1984, 129–149. [Google Scholar] [CrossRef]
- Selvamani, V. Stability studies on nanomaterials used in drugs. In Characterization and Biology of Nanomaterials for Drug Delivery; Elsevier: Amsterdam, The Netherlands, 2019; pp. 425–444. [Google Scholar]
- Al Mahrouqi, D.; Vinogradov, J.; Jackson, M.D. Zeta potential of artificial and natural calcite in aqueous solution. Adv. Colloid Interface Sci. 2017, 240, 60–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Q.; Zou, H.; Chen, X.; Wen, S. Flotation selectivity of N-hexadecanoylglycine in the fluorapatite–dolomite system. Miner. Eng. 2019, 131, 353–362. [Google Scholar] [CrossRef]
- Wang, L.; Tian, M.; Khoso, S.A.; Hu, Y.; Sun, W.; Gao, Z. Improved Flotation Separation of Apatite from Calcite with Benzohydroxamic Acid Collector. Miner. Process. Extr. Metall. Rev. 2019, 40, 427–436. [Google Scholar] [CrossRef]
- Zheng, X.; Arps, P.J.; Smith, R.W. Adsorption of Bacillus subtilis to minerals: Effect on the flotation of dolomite and apatite. In Process Metallurgy; Elsevier: Amsterdam, The Netherlands, 1999; Volume 9, pp. 127–136. ISBN 1572-4409. [Google Scholar]
- Han, Y.; Han, S.; Kim, B.; Yang, J.; Choi, J.; Kim, K.; You, K.S.; Kim, H. Flotation separation of quartz from apatite and surface forces in bubble–particle interactions: Role of pH and cationic amine collector contents. J. Ind. Eng. Chem. 2019, 70, 107–115. [Google Scholar] [CrossRef]
- Ruan, Y.; Zhang, Z.; Luo, H.; Xiao, C.; Zhou, F.; Chi, R. Effects of metal ions on the flotation of apatite, dolomite and quartz. Minerals 2018, 8, 141. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Liu, Q.; Liu, X.; Li, W.; Feng, J.; Chi, R.A. Surface Electrical Behaviors of Apatite, Dolomite, Quartz, and Phosphate Ore. Front. Mater. 2020, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Filippova, I.V.; Filippov, L.O.; Duverger, A.; Severov, V.V. Synergetic effect of a mixture of anionic and nonionic reagents: Ca mineral contrast separation by flotation at neutral pH. Miner. Eng. 2014, 66, 135–144. [Google Scholar] [CrossRef]
- Perrone, J.; Fourest, B.; Giffaut, E. Surface characterization of synthetic and mineral carbonate fluoroapatites. J. Colloid Interface Sci. 2002, 249, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Abdel Khalek, M.A. Separation of dolomite from phosphate minerals by flotation with a new amphoteric surfactant as collector. Trans. Inst. Min. Metall. Sect. C Miner. Process. Extr. Metall. 2001, 110, 89–93. [Google Scholar] [CrossRef]
- Kou, J.; Tao, D.; Xu, G. Fatty acid collectors for phosphate flotation and their adsorption behavior using QCM-D. Int. J. Miner. Process. 2010, 95, 1–9. [Google Scholar] [CrossRef]
- Vučinić, D.R.; Radulović, D.S.; Deušić, S.Đ. Electrokinetic properties of hydroxyapatite under flotation conditions. J. Colloid Interface Sci. 2010, 343, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Ge, Y.; Guo, X.; Guo, W. The depression effect and mechanism of NSFC on dolomite in the flotation of phosphate ore. Sep. Purif. Technol. 2016, 161, 88–95. [Google Scholar] [CrossRef]
- Yu, J.; Ge, Y.; Guo, W.; Guo, X. Flotation collophane from high-iron phosphate ore by using sodium ligninsulfonate as depressant. Sep. Sci. Technol. 2017, 52, 557–566. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Q.; Hou, B.; Ye, J.; Mao, S.; Li, X. Flotation separation of quartz from collophane using an amine collector and its adsorption mechanisms. Powder Technol. 2017, 318, 224–229. [Google Scholar] [CrossRef]
- Karlkvist, T.; Patra, A.; Rao, K.H.; Bordes, R.; Holmberg, K. Flotation selectivity of novel alkyl dicarboxylate reagents for apatite-calcite separation. J. Colloid Interface Sci. 2015, 445, 40–47. [Google Scholar] [CrossRef]
- De Oliveira, P.; Mansur, H.; Mansur, A.; Da Silva, G.; Clark Peres, A.E. Apatite flotation using pataua palm tree oil as collector. J. Mater. Res. Technol. 2019, 8, 4612–4619. [Google Scholar] [CrossRef]
- Zhou, F.; Wang, L.; Xu, Z.; Liu, Q.; Chi, R. Reactive oily bubble technology for flotation of apatite, dolomite and quartz. Int. J. Miner. Process. 2015, 134, 74–81. [Google Scholar] [CrossRef]
- Xu, P.Y.; Li, J.; Hu, C.; Chen, Z.; Ye, H.Q.; Yuan, Z.Q.; Cai, W.J. Surface property variations in flotation performance of calcite particles under different grinding patterns. J. Cent. South Univ. 2018, 25, 1306–1316. [Google Scholar] [CrossRef]
- Jiao, F.; Dong, L.; Qin, W.; Liu, W.; Hu, C. Flotation separation of scheelite from calcite using pectin as depressant. Miner. Eng. 2019, 136, 120–128. [Google Scholar] [CrossRef]
- Liu, C.; Song, S.; Li, H.; Ai, G. Sulfidization flotation performance of malachite in the presence of calcite. Miner. Eng. 2019, 132, 293–296. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Z.; Gao, Y.; Sun, W.; Hu, Y.; Gao, Z. Reverse flotation separation of fluorite from calcite: A novel reagent scheme. Minerals 2018, 8, 313. [Google Scholar] [CrossRef] [Green Version]
- Pokrovsky, O.S.; Schott, J.; Thomas, F. Dolomite surface speciation and reactivity in aquatic systems. Geochim. Cosmochim. Acta 1999, 63, 3133–3143. [Google Scholar] [CrossRef]
- Espiritu, E.R.L.; Naseri, S.; Waters, K.E. Surface chemistry and flotation behavior of dolomite, monazite and bastnäsite in the presence of benzohydroxamate, sodium oleate and phosphoric acid ester collectors. Colloids Surfaces A Physicochem. Eng. Asp. 2018, 546, 254–265. [Google Scholar] [CrossRef]
- Sun, Z.-X.; Forsling, W. Mineral surface complexation in flotation. In Innovations in Flotation Technology; Springer: Berlin/Heidelberg, Germany, 1992; pp. 263–281. [Google Scholar]
- Niu, Y.P.; Sun, C.Y.; Yin, W.Z.; Zhang, X.R.; Xu, H.F.; Zhang, X. Selective flotation separation of andalusite and quartz and its mechanism. Int. J. Miner. Metall. Mater. 2019, 26, 1059–1068. [Google Scholar] [CrossRef]
- Yuan, Y.; Lee, T.R. Contact angle and wetting properties. In Surface ScienceTechniques; Springer: Berlin/Heidelberg, Germany, 2013; pp. 3–34. [Google Scholar]
- Zheng, X.P.; Smith, R.W.; Misra, M.; Mehta, R.K.; Raichur, A.M. Effect of a water soluble fraction derived from Mycobacterium phlei on the surface characteristics and flotation of apatite and dolomite. Miner. Process. Extr. Metall. Rev. 1998, 19, 355–368. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, Q.; Mao, S.; Li, X.; Shen, Z.; Li, L. Anisotropic crystal plane nature and wettability of fluorapatite. Appl. Surf. Sci. 2019, 493, 294–307. [Google Scholar] [CrossRef]
- Dong, L.; Wei, Q.; Qin, W.; Jiao, F. Selective adsorption of sodium polyacrylate on calcite surface: Implications for flotation separation of apatite from calcite. Sep. Purif. Technol. 2020, 241, 116415. [Google Scholar] [CrossRef]
- Rao, K.H.; Dwari, R.K.; Lu, S.; Vilinska, A.; Somasundaran, P. Mixed anionic/non-ionic collectors in phosphate gangue flotation from magnetite fines. Open Miner. Process. J. 2011, 4, 14–24. [Google Scholar] [CrossRef]
- Lu, Y.; Drelich, J.; Miller, J.D. Wetting of francolite and quartz and its significance in the flotation of phosphate rock. Miner. Eng. 1997, 10, 1219–1231. [Google Scholar] [CrossRef]
- Wu, Y.; Shuler, P.J.; Blanco, M.; Tang, Y.; Goddard, W.A. An experimental study of wetting behavior and surfactant EOR in carbonates with model compounds. Spe J. 2008, 13, 26–34. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Liu, W.; Han, C.; Hao, H. Effects of monohydric alcohols on the flotation of magnesite and dolomite by sodium oleate. J. Mol. Liq. 2018, 249, 1060–1067. [Google Scholar] [CrossRef]
- Gence, N. Wetting behavior of magnesite and dolomite surfaces. Appl. Surf. Sci. 2006, 252, 3744–3750. [Google Scholar] [CrossRef]
- Yuhua, W.; Jianwei, R. The flotation of quartz from iron minerals with a combined quaternary ammonium salt. Int. J. Miner. Process. 2005, 77, 116–122. [Google Scholar] [CrossRef]
- Luo, B.; Zhu, Y.; Sun, C.; Li, Y.; Han, Y. Flotation and adsorption of a new collector α-Bromodecanoic acid on quartz surface. Miner. Eng. 2015, 77, 86–92. [Google Scholar] [CrossRef]
- Ruan, Y.; He, D.; Chi, R. Review on beneficiation techniques and reagents used for phosphate ores. Minerals 2019, 9, 253. [Google Scholar] [CrossRef] [Green Version]
- Clerici, C.; Frisa Morandini, A.; Mancini, A.; Mancini, R. Flotation of a phosphate rock with carbonate-quartz gangue. In Reagents in the Minerals Industry; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Houot, R.; Joussemet, R.; Tracez, J.; Brouard, R. Selective flotation of phosphatic ores having a siliceous and/or a carbonated gangue. Int. J. Miner. Process. 1985, 14, 245–264. [Google Scholar] [CrossRef]
- Shao, X.; Jiang, C.L.; Parekh, B.K. Enhanced flotation separation of phosphate and dolomite using a new amphoteric collector. Mining Metall. Explor. 1998, 15, 11–14. [Google Scholar] [CrossRef]
- Zheng, X.; Smith, R.W. Dolomite depressants in the flotation of apatite and collophane from dolomite. Miner. Eng. 1997, 10, 537–545. [Google Scholar] [CrossRef]
- Zheng, X.; Arps, P.J.; Smith, R.W. Adhesion of two bacteria onto dolomite and apatite: Their effect on dolomite depression in anianic flotation. Int. J. Miner. Process. 2001, 62, 159–172. [Google Scholar] [CrossRef]
- Silva, J.P.P.; Baltar, C.A.M.; Gonzaga, R.S.G.; Peres, A.E.C.; Leite, J.Y.P. Identification of sodium silicate species used as flotation depressants. Miner. Metall. Process. 2012, 29, 207–210. [Google Scholar] [CrossRef]
- Pavlovic, S.; Brandao, P.R.G. Adsorption of starch, amylose, amylopectin and glucose monomer and their effect on the flotation of hematite and quartz. Miner. Eng. 2003, 16, 1117–1122. [Google Scholar] [CrossRef]
- Guimarães, R.C.; Araujo, A.C.; Peres, A.E.C. Reagents in igneous phosphate ores flotation. Miner. Eng. 2005, 18, 199–204. [Google Scholar] [CrossRef]
- Boujlel, H.; Daldoul, G.; Tlil, H.; Souissi, R.; Chebbi, N.; Fattah, N.; Souissi, F. The beneficiation processes of low-grade sedimentary phosphates of tozeur-nefta deposit (Gafsa-metlaoui basin: South of Tunisia). Minerals 2019, 9, 2. [Google Scholar] [CrossRef] [Green Version]
- Dopico, P.; Lipowsky, G.; Mbonambi, M.; Mahlangu, L.; Makin, B.; Pedain, K.-U.; Silva, W. Phosphate Beneficiation with Novel Collectors for Direct and Reverse Flotation: Beyond Low Cost Fatty Acids; Society for Mining, Metallurgy & Exploration: Englewood, CO, USA, 2015. [Google Scholar]
- Gao, Z.; Gao, Y.; Zhu, Y.; Hu, Y.; Sun, W. Selective flotation of calcite from fluorite: A novel reagent schedule. Minerals 2016, 6, 114. [Google Scholar] [CrossRef] [Green Version]
- Sun, K.; Liu, T.; Zhang, Y.; Liu, X.; Wang, B.; Xu, C. Application and mechanism of anionic collector sodium dodecyl sulfate (SDS) in phosphate beneficiation. Minerals 2017, 7, 29. [Google Scholar] [CrossRef] [Green Version]
- Santos, E.P.; Dutra, A.J.B.; Oliveira, J.F. The effect of jojoba oil on the surface properties of calcite and apatite aiming at their selective flotation. Int. J. Miner. Process. 2015, 143, 34–38. [Google Scholar] [CrossRef]
- Fang, G.; Jun, L. Selective separation of silica from a siliceous–calcareous phosphate rock. Min. Sci. Technol. 2011, 21, 135–139. [Google Scholar] [CrossRef]
- Vieira, A.M.; Peres, A.E.C. The effect of amine type, pH, and size range in the flotation of quartz. Miner. Eng. 2007, 20, 1008–1013. [Google Scholar] [CrossRef]
- Al-Fariss, T.F.; Arafat, Y.; Abd El-Aleem, F.A.; El-Midany, A.A. Investigating sodium sulphate as a phosphate depressant in acidic media. Sep. Purif. Technol. 2014, 124, 163–169. [Google Scholar] [CrossRef]
- El-Mofty, S.E.; El-Midany, A.A. Role of calcium ions and their interaction with depressants in phosphate flotation. Chem. Pap. 2018, 72, 2641–2646. [Google Scholar] [CrossRef]
- Cytec Industries Mining Chemicals Handbook; Cytec Industries Inc.: Wayne, NJ, USA, 2002; pp. 103–150.
- Zhang, P.; Snow, R.; Song, W.; Ma, X.; Zheng, S. Evaluation of phosphate depressants in the phosphate/dolomite system. In Proceedings of the IMPC 2014—27th The International Mineral Processing Congress, Santiago, Chile, 20–24 October 2014; Volume 26, pp. 101–104. [Google Scholar]
- Liu, S.; Ge, Y.; Fang, J.; Yu, J.; Gao, Q. An investigation of froth stability in reverse flotation of collophane. Miner. Eng. 2020, 155, 106446. [Google Scholar] [CrossRef]
- Farrokhpay, S. The significance of froth stability in mineral flotation—A review. Adv. Colloid Interface Sci. 2011, 166, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Lunkenheimer, K.; Malysa, K. Simple and generally applicable method of determination and evaluation of foam properties. J. Surfactants Deterg. 2003, 6, 69–74. [Google Scholar] [CrossRef]
- Ran, J.; Qiu, X.; Hu, Z.; Liu, Q.; Song, B.; Yao, Y. Effect of Clay Slime on the Froth Stability and Flotation Performance of Bastnaesite with Different Particle Sizes 1. Russ. J. Non-Ferr. Met. 2019, 60, 107–117. [Google Scholar] [CrossRef]
- Hoang, D.H.; Heitkam, S.; Kupka, N.; Hassanzadeh, A.; Peuker, U.A.; Rudolph, M. Froth properties and entrainment in lab-scale flotation: A case of carbonaceous sedimentary phosphate ore. Chem. Eng. Res. Des. 2019, 142, 100–110. [Google Scholar] [CrossRef]
- Hakkou, R.; Benzaazoua, M.; Bussière, B. Valorization of phosphate waste rocks and sludge from the Moroccan phosphate mines: Challenges and perspectives. Procedia Eng. 2016, 138, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Hakkou, R.; Benzaazoua, M.; Bussiere, B. Laboratory evaluation of the use of alkaline phosphate wastes for the control of acidic mine drainage. Mine Water Environ. 2009, 28, 206. [Google Scholar] [CrossRef]
- Bossé, B.; Bussiere, B.; Hakkou, R.; Maqsoud, A.; Benzaazoua, M. Assessment of phosphate limestone wastes as a component of a store-and-release cover in a semiarid climate. Mine Water Environ. 2013, 32, 152–167. [Google Scholar] [CrossRef]
- Yang, B.; Zhu, Z.; Sun, H.; Yin, W.; Hong, J.; Cao, S.; Tang, Y.; Zhao, C.; Yao, J. Improving flotation separation of apatite from dolomite using PAMS as a novel eco-friendly depressant. Miner. Eng. 2020, 156, 106492. [Google Scholar] [CrossRef]
- Jaffer, Y.; Clark, T.A.; Pearce, P.; Parsons, S.A. Potential phosphorus recovery by struvite formation. Water Res. 2002, 36, 1834–1842. [Google Scholar] [CrossRef]
Top Phosphate Mine Producers | Deposit Types | Phosphate Minerals | Gangue Minerals | 2019 Production (Million Tons) | Reserves (Million Tons) |
---|---|---|---|---|---|
China | Sedimentary (marine, weathered), Igneous (carbonatite/alkalic), Metamorphic, Guano | Collophane, fluorapatite, francolite, monazite | Dolomite, quartz, clay, calcite, goethite, chlorite, zircon | 110 | 3200 |
Morocco | Marine sedimentary | Apatite | Quartz, dolomite, calcite, aluminum silicate minerals | 36 | 50,000 |
United States | Sedimentary (marine, weathered), Igneous (carbonatite/alkalic), Metamorphic (metasedimentary), Guano | Francolite, monazite, wavellite, crandallite | Quartz, dolomite, calcite, magnetite, aluminum silicate minerals, goethite, ankerite | 23 | 1000 |
Russia | Marine sedimentary, Igneous (carbonatite/alkalic) | Fluorapatite, hydroxylapatite, francolite, monazite | Magnetite, ilmenite, titanium magnetite, baddeleyite, forsterite, calcite, phlogopite, mica, titanium-augite, pyrite | 14 | 600 |
Jordan | Marine sedimentary | N.A. | N.A. | 8 | 1000 |
Saudi Arabia | Marine sedimentary | N.A. | N.A. | 6.2 | 1400 |
Vietnam | Sedimentary (marine, weathered) Metamorphic (metasedimentary), Guano | Apatite | N.A. | 5.5 | 30 |
Brazil | Igneous (carbonatite/alkalic), Guano | Fluorapatite, francolite, collophane, dahllite, monazite-(Ce), phoscorite, metavariscite, strengite, variscite | Calcite, magnetite, quartz, aluminum silicate minerals, pyrite, ankerite, fluorite, barite, quartz, carbonate | 5.3 | 1700 |
Egypt | Marine sedimentary | Collophane, francolite, dahllite, wavellite, manganapatite | Pyrite, quartz, calcite, dolomite, goethite, chlorite, zircon, montmorillonite, gypsum, glauconite | 5 | 1300 |
Peru | Marine sedimentary | Fluorapatite | Carbonates (calcite, dolomite), diatomite | 3.7 | 210 |
Israel | Marine sedimentary | N.A. | N.A. | 3.5 | 62 |
Tunisia | Marine sedimentary | N.A. | N.A. | 3 | 100 |
Australia | Sedimentary (Marine, weathered), Metamorphic (metasedimentary), Igneous (carbonatite/alkalic), Guano | Fluorapatite, collophane, monazite, wavellite, dufrenite, millisite, churchite, xenotime, florencite, goyazite | Calcite, dolomite, quartz, hematite, goethite, quartz, Aluminum silicate minerals | 2.7 | 1200 |
Syria | Sedimentary (marine, weathered) | N.A. | N.A. | 2 | 1800 |
South Africa | Igneous (carbonatite/alkalic), Marine sedimentary | Fluorapatite, francolite, collophane, dahllite, monazite-(Ce), phoscorite, metavariscite, strengite, variscite | Calcite, magnetite, quartz, aluminium silicate minerals, pyrite, ankerite, fluorite, barite, quartz, carbonate, anatase, Au, Mn, aegirine, amphibole, pyroxene, arfvedsonite, vermiculite, serpentine, carbonatite minerals enriched in copper and iron | 1.9 | 1400 |
Name | Types | Formula | Occurrence |
---|---|---|---|
Apatite | Chlorapatite | Ca5(PO4)3 Cl | Ig, Mt. |
Hydroxylapatite | Ca5(PO4)3 OH | Ig, Mt, Sd. | |
Dahllite or Carbonate-hydroxylapatite | Ca5(PO4,CO3)3 (OH,O) | Sd, Mt. | |
Fluorapatite | Ca5(PO4)3 F | Ig, Mt, Sd. | |
Francolite or Carbonate-fluorapatite | Ca5(PO4,CO3)3 (F,O) | Sd, Mt. | |
Monazite | Monazite-(Ce) | CePO4 | Ig, Mt, Sd. (Phosphate minerals containing REE). |
Xenotime | Xenotime-(Y) | YPO4 | Ig, Mt. (Phosphate minerals containing REE). |
Vivianite | Fe3(PO4)2 8(H2O) | Ig, Mt, Sd. Occurs in organically rich sedimentary deposits (clays and sandstones), hydrothermal replacement deposits, and in phosphate-rich granite pegmatites. | |
Variscite | AlPO4 2(H2O) | Sd, Mt. Occurs as a secondary mineral in hydrothermal replacement deposits and brecciated sandstones. | |
Wavellite | Al3(PO4)2(OH,F)3 5(H2O) | Sd, Mt. Occurs as a secondary mineral in the oxidized low-grade metamorphic rocks, epithermal veins, and in phosphate-rich sedimentary deposits. | |
Monetite | CaHPO4 | Ig, Sd. Occurs as coatings and cements in guano rocks and as coatings on phosphate minerals in granite pegmatite. | |
Whitlockite | Ca9Mg (PO4)6(HPO4) | Sd, Mt. Occurs in granite pegmatites; may be formed in caves from leached guano. | |
Brushite | Ca(HPO4) 2H2O | Sd. Occurs in cave guano deposits. | |
Struvite | (NH4)Mg(PO4) 6H2O | Sd. Occurs in guano deposits; peat beds; organically rich sediments. | |
Variscite | Al(PO4) 2H2O | Sd, Mt. Occurs in guano beds and metamorphosed sedimentary rocks. |
Impurity | Potential Sources | Acceptable Level | Desirable Properties | Undesirable Properties |
---|---|---|---|---|
Al2O3 | Aluminum silicate minerals, wavellite, metavariscite, crandallite, variscite. | Up to 3% [7,14] | Low Al2O3 content improves the filtration rate by promoting the growth of gypsum crystals [15]. Reduces corrosion caused by fluoride ion [14]. | High Al2O3 content impairs filtration, increases acid viscosity [14], decreases plant capacity, and P2O5 recovery [7]. |
Fe2O3 | Goethite, magnetite, hematite, strengite. | Up to 2% [14] | Recoverable in case of excessive presence [14]. | High Fe2O3 content causes excessive sludge formation, decreases the filtration rate, and influences the acid viscosity [14]. |
MgO | Dolomite, ankerite, phoscorite. | Less than 1% [7] | May have a nutrient value [14]. | Increases the sulfuric acid consumption and impairs gypsum filtration [7]. |
Fluorine | Fluorite, fluorapatite, francolite. | Up to 4% [14] | Can be recovered as a by-product [14]. | Causes corrosion, mud, slurry formation, and might impair gypsum filtration [15]. |
SiO2 | Quartz, Aluminum silicate minerals. | Around 2% [7] | Reactive silica forms with fluoride SiF4 and fluosilicates rather than the harmful H2SiF6 [7,14]. | High SiO2 content causes wear and erosion of equipment and can impair the filtration of gypsum [7,15]. |
Chlorine | Chlorapatite. | Less than 0.03% (stainless steel equipment) | None. | Increases equipment erosion [7]. |
CaO | Calcite, dolomite, ankerite, fluorite, gypsum, crandallite, apatite. | CaO:P2O5 ratio less than 1.6 [7] | Improves the reactivity of the phosphate ore [15]. | Increases the consumption of sulfuric acid and causes foam formation during the acid attack [15]. |
Cadmium | Carbonate apatite (Cd substitutes Ca and/or is trapped in the structure during its formation by the sedimentation of phosphate rock) [16]. | Up to 60 mg/kg P2O5 (European union) [17] | None. | Does not pose notable problems in the production of phosphoric acid [7]. Toxic in specific end products (animal feed and fertilizers) [15]. |
Uranium | Following the sedimentation of the phosphate ore, U might substitute Ca in the apatite crystal and/or is adsorbed into it or forms uranium phosphate minerals such as phosphuranylite [18]. | Typically, 4 Bq U per g P2O5. | Can be recovered as a by-product [14]. | Hazardous to human health [7]. |
Mineral | Source | IEP | Purity | Wt% | Size (µm) | Electrolyte | pH Adjustment | Ref |
---|---|---|---|---|---|---|---|---|
Fluorapatite | Geological museum of Yunnan province, China. | 3 | >99% | 0.1 | <5 | 10−3 M NaCl | N.A. | [23] |
Africa. | 4 | High purity | 0.02 | <5 | 10−2 M KNO3 | HCl and NaOH | [24] | |
Ontario, Canada. | 5.5 | 39.18% P2O5 | 0.01 | <43 | 10−3 M KNO3 | HCl and NaOH | [25] | |
Ward’s Natural Science Establishment, Canada. | 3.9 | 37.8% P2O5 | N.A. | <5 | N.A. | 0.1 M HCl and 0.1 M NaOH | [26] | |
Madagascar in South Africa. | 3.4 | Pure | 0.05 | <38 | N.A. | 10% HCl and 10% NaOH | [27] | |
Ward’s Natural Science Establishment, Canada. | 2.75 | Mainly fluorapatite | 0.01–0.1 | <20 | 10−2 M KCl | HCl and NaOH | [28] | |
Carbonate- fluorapatite (Francolite) | Fort Dauphin, Tuléar province, Madagasca. | 2–3 | N.A. | 0.01 | <5 | 10−3 M KCL | NaOH and HCl | [29] |
Oulad Abdoun, Morocco. | 4.8 ± 0.2 | 31.78% P2O5 prior to sieving | 1 | <50 | 0.5, 0.1, and 0.01 M KNO3 | HNO3 and KOH | [30] | |
Sinai Manganese Company Quseir (Red Sea, Egypt). | 6.8 | >99% | 0.1 | <45 | 10−2 M NaCl | N.A. | [31] | |
Hydroxy- apatite | Ward’s Natural Science Establishment, Canada. | 4 | High purity | 2 | ≤20 | 10−3 M KCL | HCl and NaOH | [32] |
The Lisina deposit, Bosilegrad, Serbia. | <5 | 98.45% | 0.1 | <5 | NaNO3 | HCl and NaOH | [33] | |
Collophane | Dayukou phosphate mine in Hubei Province, China. | 6.5 | 92.05% | 0.01 | <2 | 10−3 M KCl | HCl and NaOH | [34] |
Shanxi Province, China. | 6.4 | High purity | 0.005–0.01 | <20 | 10−3 M KCl | HCl and NaOH | [35] | |
Guizhou province, China. | 2–3 | 94.51% | 0.1 | ≤5 | 10−3 M KNO3 | HCl and NaOH | [36] | |
Apatite | Gregory, Bottley and Lloyd Ltd., United Kingdom. | 3.9 | Pure | 0.05 | ≤5 | 10−2 M NaCl | HCl and NaOH | [37] |
Luiz Menezes Comércio e Exportacao de minerais (Brazil). | 6.5 | 99% | 2 | <38 | 10−3 M KCl | HCl and NaOH | [38] | |
Ward’s Natural Science Establishment, Canada. | 4.2 | 46.06% P2O5 | 0.01–0.1 | <20 | 10−3 M KCl | HCl and NaOH | [39] |
Source | IEP | Purity | Wt (%) | Size (µm) | Electrolyte | pH Adjustment | Ref |
---|---|---|---|---|---|---|---|
Rongan mine in Guangxi province, China. | 9.2 | 99.21% CaO | 0.1 | <5 | 10−3 M KCl | HCl and NaOH | [40] |
Guangxi province and Hunan province, China. | 9.5 | 98.91% | 0.1 | <2 | 10−2 M KNO3 | HCl and NaOH | [41] |
Yunna province of China. | 9.5 | 98% | 0.01 | <5 | 10−3 M KCl | HCl and NaOH | [42] |
Shizhuyuan mine, Chenzhou, China. | 10.3 | >98% | 0.05 | <2 | 10−2 M KCl | HCl and NaOH | [43] |
Source | IEP | Purity | Wt (%) | Size (µm) | Electrolyte | pH Adjustment | Ref |
---|---|---|---|---|---|---|---|
Wulongquan Mine in Hubei Province, China. | 4.4 | 90.62% | 0.01 | <2 | 10−3 M KCl | HCl and NaOH | [34] |
Sterling Hill Mine, New Jersey, USA. | 4.8 | relatively pure | 0.01 | D50 < 2.3 | 10–3 M NaCl | HCl and KOH | [45] |
Ward’s Natural Science Establishment, Canada. | 3.37 | mainly dolomite | 0.01–0.1 | <20 | 10−2 M KCl | HCl and KOH | [28] |
Ward’s Natural Science Establishment, Canada. | 6.2 | 36.06% MgO, 60.27% CaO | 0.01–0.1 | <20 | 10−3 M KCl | HCl and NaOH | [39] |
Selasvann, Norway. | 7 | 20.62% MgO, 31.36% CaO | 0.01 | <43 | 10−3 M KNO3 | HCl and NaOH | [25] |
Sinai Manganese Company Quseir, Red Sea, Egypt. | 8.5 | >99% | 0.1 | <45 | 10−2 M NaCl | N.A. | [31] |
Source | IEP | Purity | Wt (%) | Size (µm) | Electrolyte | pH Adjustment | Ref |
---|---|---|---|---|---|---|---|
Ward’s Natural Science Establishment, Canada. | Negative | 96.02% | 0.01–0.1 | <20 | 10−3 M KCl | HCl and NaOH | [39] |
SAC Co., South Korea. | 2.1 | 99.2% SiO2 | N.A. | <5 | N.A. | 0.1M HCl and 0.1M NaOH | [26] |
Hubei province, China. | 2 | Relatively pure | 0.05 | <38 | N.A. | 10% HCl and 10% NaOH | [27] |
Luanping county, Hebei province, China. | 2 | 99% | 0.05 | <5 | N.A. | HCl and NaOH | [47] |
Mineral | Source | The Contact Angle Type | Method | Contact Angle Value In ° | Ref | ||
---|---|---|---|---|---|---|---|
Fluorapatite | Single crystal | Ontario, Canada. | - | The captive bubble | 36 | [49] | |
Anemzy, Imilchil, High Atlas Mts, Morocco. | Static | The sessile drop | (001) | 45.1 | [50] | ||
(100) | 58.9 | ||||||
(101) | 63.6 | ||||||
(111) | 72.8 | ||||||
Yunnan and Hunan Province, China. | Static | The sessile drop | 54.6 | [51] | |||
Mineral powder | Gregory, Bottley and Lloyd, London. | - | Capillary penetration (Washburn method) | −425 + 150 µm | 52.7 | [52] | |
−150 + 38 µm | 8.35 | ||||||
−38 µm | 55.3 | ||||||
Carbonate fluorapatite | White pebbles | Central Florida, USA. | Advancing | The sessile drop | 0 | [53] | |
Tan pebbles | 10 | ||||||
Black pebbles | 10 | ||||||
Collophane | Mineral powder | Phosphate mine in Guizhou province, China. | - | Capillary penetration (Washburn method) | About 20° | [36] | |
Calcite | Calcite crystals (Iceland Spar) | Ward’s Natural Science Establishment, USA. | Advancing | The sessile drop | 21 | [54] | |
Single crystal | Yunnan and Hunan Province, China. | Static | The sessile drop | 45.6 | [51] | ||
Dolomite | Selasvann, Norway. | - | The captive bubble technique | 50.5 | [49] | ||
Haicheng of Liaoning Province, China. | - | - | 11.67 | [55] | |||
Konya-Argit region, in Turkey. | - | The captive bubble technique | Between 5.68 and 7.68 | [56] | |||
Quatrz | Hand-picked | Xinjiang Keketuohai Rare Metal Mine, China. | Advancing | The sessile drop | Between 1.5 and 5 | [57] | |
Anqian iron mine, Liaoning Province, China. | Static | Sessile drop method | Between 22 and 25 | [58] | |||
Mineral powder | Phosphate mine in Guizhou province, China. | - | Capillary penetration (Washburn method) | About 20° | [36] |
Selective Phosphate Flotation | |||||
---|---|---|---|---|---|
Apatite | Calcite and Dolomite | Quartz | |||
Collectors | Depressants | Collectors | Depressants | Collectors | Depressants |
Anionic • Fatty acids, • Hydroxamates | • Fluosilicic acid, • Sulfuric acid, • Phosphoric acid and its derivatives, • Natural polysaccharides (Starch), • Synthetic polymers. | Anionic • Fatty acids, • Saponified vegetable oils, • Ester, | • Natural polysaccharides (Starch, quebracho), • Synthetic polymers, • Inorganic soluble salts, • Citric acid, • Hydrofluoric acid. | Cationic • Amine collectors (Primary, Secondary, Tertiary amines), • Amine salts, • Quaternary ammonium salts. | • Cationically modified polysaccharides, • Inorganic soluble salts (Sodium silicate), •Hydrofluoric acid. |
Amphoteric, | Amphoteric, | Amphoteric, | |||
Cationic. | Nonionic. | Nonionic. |
Type | Name | Supplier | Source | pH | Dosage | IRR (%) | P2O5 Increase (%) | Recovery (%) | Ref |
---|---|---|---|---|---|---|---|---|---|
Anionic | V2711 Flotinor | Clariant | Gafsa-Metlaoui Basin; South of Tunisia. | 5 | 0.2 kg/t | 69.61 MgO | 11.6 | 92.4 P2O5 | [68] |
Flotinor 7466 | North Africa phosphate ore. | N.A. | 0.6 kg/t | 91.13 MgO | 7.76 | 75.1 P2O5 | [69] | ||
Sulfoleic acid (SOA) | Zhuzhou Chemical Industry Research Institute | Pure calcite and fluorite minerals obtained from Xinyuan Mine, Chenzhou, Hunan, China. | 9 | 6 mg/L | 80.34 CaO | 7.23 | 85.2 CaO | [70] | |
Sodium dodecyl sulfate (SDS) | N.A. | Yichang, Hubei Province, China. | N.A. | 0.4 kg/t | 60.20 MgO | 6.38 | 71.86 | [71] | |
saponified jojoba oil | Ferquima | The sedimentary phosphate deposit of Itataia, Brazil. | 6.5 | 200 mg/L | N.A. | N.A. | N.A. | [72] | |
Amphoteric Collectors | dodecyl-N-carboxyethyl-N-hydroxyethyl-imidazoline | Lianyungang Chemicals Plant, Jiangsu Province, China. | Subbituminous coal obtained from Peabody Energy in the USA. | N.A. | 0.4 kg/t | 95.10 | 8.10 | 88 | [31] |
Phosphate (francolite) from Quseir (RedSea, Egypt). | N.A. | 0.4 kg/t | 94.24 MgO | 7.70 | 82 P2O5 |
Name | Supplier | Source | pH | Dosage (kg/t) | IRR (%) | P2O5 Increase (%) | Recovery (%) | Ref |
---|---|---|---|---|---|---|---|---|
Alkyl amine salt (DAH) | N.A. | The Abyad area in Jordan. | 5 | 1 | 66.01 | 5.50 | 85 P2O5 | [73] |
Ether-amine salt (GE−619) | 48.31 | 4.75 | 80.11 P2O5 | |||||
Quaternary ammonium salt (CTAB) | 15.54 | 2.67 | 95.45 P2O5 | |||||
Flotigam EDA | Clariant, Switzerland. | Minas Gerais state, Brazil. | 9 | 0.06 | N.A. | N.A. | 100 SiO2 | [74] |
Flotigan 2835–2L | 9 | 0.06 | N.A. | N.A. | 87 SiO2 | |||
Flotigam 7470 | North Africa phosphate ore. | N.A. | 0.42 | 37.14 | 7.76 | 75.1 P2O5 | [69] | |
Lilaflot D817M | AkzoNobel Surface Chemistry, USA. | Peabody Energy in the USA. | Natural | 3 | 71.32 | N.A. | 86.75 combustible | [70] |
Lilaflot 811 | 65.32 | N.A. | 87.26 combustible | |||||
Dodecyl trimethyl ammonium bromide (DTAB) | Sigma-Aldrich, USA. | 49.96 | N.A. | 90 combustible |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Derhy, M.; Taha, Y.; Hakkou, R.; Benzaazoua, M. Review of the Main Factors Affecting the Flotation of Phosphate Ores. Minerals 2020, 10, 1109. https://doi.org/10.3390/min10121109
Derhy M, Taha Y, Hakkou R, Benzaazoua M. Review of the Main Factors Affecting the Flotation of Phosphate Ores. Minerals. 2020; 10(12):1109. https://doi.org/10.3390/min10121109
Chicago/Turabian StyleDerhy, Manar, Yassine Taha, Rachid Hakkou, and Mostafa Benzaazoua. 2020. "Review of the Main Factors Affecting the Flotation of Phosphate Ores" Minerals 10, no. 12: 1109. https://doi.org/10.3390/min10121109
APA StyleDerhy, M., Taha, Y., Hakkou, R., & Benzaazoua, M. (2020). Review of the Main Factors Affecting the Flotation of Phosphate Ores. Minerals, 10(12), 1109. https://doi.org/10.3390/min10121109