Tracking Cobalt, REE and Gold from a Porphyry-Type Deposit by LA-ICP-MS: A Geological Approach towards Metal-Selective Mining in Tailings
Abstract
:1. Introduction
2. The Los Sulfatos Deposit (Anglo American—Chile)
3. Analytical Techniques
4. High-Resolution Characterization of Mineralized Zones
4.1. Metal-Bearing Pyrite: Types and Generations
4.2. Invisible Cobalt, Gold, Silver, and Arsenic in Pyrite by LA-ICP-MS
- (1)
- PY1 crystals (Figure 6a), which are found intergrown with chalcopyrite in all Min-Zones, are the richest in Co with concentration ranging up to 24,000 ppm, and the poorest in As with concentrations below 20 ppm; Au and Ag were systematically below the LA-ICP-MS detection limits (<LoD, Table 2). In this pyrite type, Co either occurred within the lattice or formed invisible nano-particles of Co-S sulfosalt [28], corresponding to a (Co, Ni)-rich pyrite.
- (2)
- PY2 crystals (Figure 6b), which are found as veinlet filling, are relatively depleted in Co (<38 ppm) as well as As (<28 ppm) (Table 2). In this pyrite type, the spectra for Au, Ag, and Te mimic each other and their signals show a spike well above the background (Figure 6b), indicating that these elements are probably concentrated in pyrite as invisible nano-particles of Au-Ag-Te [22,24,26] instead of being within its structure. These nano-particles are recognized in the LA-ICP-MS spectra, however they are not considered in the raw data processing to obtain the element concentrations. This finding is consistent with the presence of micro-inclusions ((Au,Ag)Te) recognized with the SEM during ore mineral characterization (Figure 4e).
- (3)
- PY3 crystals (Figure 6c), occurring as filling in late-stage veinlets, are the richest in As (up to 10,000 ppm) and Au (up to 4.3 ppm), and have relatively high cobalt contents (up to 750 ppm, Table 2). In this pyrite, the LA-ICP-MS signals for Co and As are parallel (Figure 6c). Similar to PY2, this suggests that these elements are not in the mineral’s structure but probably occur in the same sulfosalt of nanometric size (invisible even under SEM observation) [30], such as cobaltite (CoAsS). PY3 can be classified as “arsenian”-type in terms of its arsenic concentration (up to wt% levels) [20,24,25].
4.3. Minerals Hosting Rare Earth Elements
5. Discussion: Is Metal-Selective Mining the Key for Critical-Metal Supply?
5.1. Cobalt Host-Minerals and Final Metal Destination
5.2. Lanthanum Host-Minerals and Final Metal Destination
5.3. Gold (+Ag and Te) Host-Minerals and Final Metal Destination
5.4. Arsenian Pyrite as a Proxy for Gold Exploration in Porphyry Copper Deposits
5.5. High-Resolution Mineral Characterization as a Tool for Metal-Zones Definition
5.6. Implication for Metallurgical Processing of Critical Metals
6. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Grandell, L.; Lehtilä, A.; Kivinen, M.; Koljonen, T.; Kihlman, S.; Lauri, L.S. Role of critical metals in the future markets of clean energy technologies. Renew. Energy 2016, 95, 53–62. [Google Scholar] [CrossRef]
- Bensalah, N.; Dawood, H. Review on Synthesis, Characterizations, and Electrochemical Properties of Cathode Materials for Lithium Ion Batteries. J. Mater. Sci. Eng. 2016, 5. [Google Scholar] [CrossRef] [Green Version]
- Ghatak, K.; Basu, S.; Das, T.; Sharma, V.; Kumar, H.; Datta, D. Effect of cobalt content on the electrochemical properties and structural stability of NCA type cathode materials. Phys. Chem. Chem. Phys. 2018, 20, 22805–22817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Y.; Kim, J.; Guillaume, B. Review of critical material studies. Resour. Conserv. Recycl. 2016, 113, 77–87. [Google Scholar] [CrossRef]
- Leader, A.; Gaustad, G.; Babbitt, C. The effect of critical material prices on the competitiveness of clean energy technologies. Mater. Renew. Sustain. Energy 2019, 8, 8. [Google Scholar] [CrossRef] [Green Version]
- Pašava, J.; Vymazalová, A.; Košler, J.; Koneev, R.I.; Jukov, A.V.; Khalmatov, R.A. Platinum-group elements in ores from the Kalmakyr porphyry Cu–Au–Mo deposit, Uzbekistan: Bulk geochemical and laser ablation ICP-MS data. Miner. Depos. 2010, 45, 411–418. [Google Scholar] [CrossRef]
- Zarasvandi, A.; Rezaei, M.; Raith, J.G.; Pourkaseb, H.; Asadi, S.; Saed, M.; Lentz, D.R. Metal endowment reflected in chemical composition of silicates and sulfides of mineralized porphyry copper systems, Urumieh-Dokhtar magmatic arc, Iran. Geochim. Cosmochim. Acta 2018, 223, 36–59. [Google Scholar] [CrossRef]
- Crespo, J.; Reich, M.; Barra, F.; Verdugo, J.J.; Martínez, C. Critical Metal Particles in Copper Sulfides from the Supergiant Río Blanco Porphyry Cu–Mo Deposit, Chile. Minerals 2018, 8, 519. [Google Scholar] [CrossRef] [Green Version]
- Irarrazaval, V.; Sillitoe, R.H.; Wilson, A.J.; Toro, J.C.; Robles, W.; Lyall, G.D. Discovery History of a Giant, High-Grade, Hypogene Porphyry Copper-Molybdenum Deposit at Los Sulfatos, Los Bronces-Río Blanco District, Central Chile. In The Challenge of Finding New Mineral ResourcesGlobal Metallogeny, Innovative Exploration, and New Discoveries; Society of Economic Geologists: Littleton, CO, USA, 2010; pp. 253–269. [Google Scholar]
- Toro, J.C.; Ortúzar, J.; Zamorano, J.; Cuadra, P.; Hermosilla, J.; Spröhnle, C. Protracted magmatic-hydrothermal history of the Río Blanco-Los Bronces district, Central Chile: Development of world’s greatest known concentration of copper. In Geology and Genesis of Major Copper Deposits and Districts of the World: A Tribute to Richard H. Sillitoe; Hedenquist, J.W., Harris, M., Camus, F., Eds.; Society of Economic Geologists: Littleton, CO, USA, 2012; pp. 105–126. [Google Scholar]
- Deckart, K.; Silva, W.; Spröhnle, C.; Vela, I. Timing and duration of hydrothermal activity at the Los Bronces porphyry cluster: An update. Miner. Depos. 2014, 49, 535–546. [Google Scholar] [CrossRef]
- Riesner, M.; Simoes, M.; Carrizo, D.; Lacassin, R. Early exhumation of the Frontal Cordillera (Southern Central Andes) and implications for Andean mountain-building at ~33.5° S. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Carrizo, D.; Barros, C.; Velasquez, G. The Arsenic Fault-Pathfinder: A Complementary Tool to Improve Structural Models in Mining. Minerals 2018, 8, 364. [Google Scholar] [CrossRef] [Green Version]
- Van Achterbergh, E.; Ryan, C.G.; Griffin, W.L. Data Reduction Software for LA-ICP-MS; Mineralogical Association of Canada Short Course Notes: Calgary, AB, Canada, 2001; Volume 29, pp. 239–243. [Google Scholar]
- Sylvester, P.J.; Cabri, L.J.; Tubrett, M.N.; McMahon, G.; Laflamme, J.H.G.; Peregoedova, A. Synthesis and evaluation of a fused pyrrhotite standard reference material for platinum group element and gold analysis by laser ablation-ICP-MS. In Proceedings of the 10th International Platinum Symposium, Oulu, Finland, 8–11 August 2005; pp. 16–20. [Google Scholar]
- Velásquez, G.; Salvi, S.; Béziat, D.; Borisova, A.Y. In Situ Determination of Au and Cu in Natural Pyrite by Near? Infrared Femtosecond Laser Ablation? Inductively Coupled Plasma? Quadrupole Mass Spectrometry: No Evidence for Matrix Effects. Geostand. Geoanal. Res. 2012, 36, 315–324. [Google Scholar] [CrossRef]
- Pearce, N.J.; Perkins, W.T.; Westgate, J.A.; Gorton, M.P.; Jackson, S.E.; Neal, C.R.; Chenery, S.P. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand. Geoanal. Res. 1997, 21, 115–144. [Google Scholar] [CrossRef]
- Borisova, A.; Thomas, R.; Salvi, S.; Candaudap, F.; Lanzanova, A.; Chmeleff, J. Tin and associated metal and metalloid geochemistry by femtosecond LA-ICP-QMS microanalysis of pegmatite-leucogranite melt and fluid inclusions: New evidence for melt-melt-fluid immiscibility. Mineral. Mag. 2012, 76, 91–113. [Google Scholar] [CrossRef]
- Sillitoe, R.H. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region. Aust. J. Earth Sci. 1997, 44, 373–388. [Google Scholar] [CrossRef]
- Reich, M.; Deditius, A.; Chryssoulis, S.; Li, J.-W.; Ma, C.-Q.; Parada, M.Á.; Barra, F.; Mittermayr, F. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EMPA trace element study. Geochim. Cosmochim. Acta 2013, 104, 42–62. [Google Scholar] [CrossRef]
- Franchini, M.; McFarlane, C.; Maydagan, L.; Reich, M.; Lentz, D.R.; Meinert, L.; Bouhier, V. Trace metals in pyrite and marcasite from the Agua Rica porphyry-high sulfidation epithermal deposit, Catamarca, Argentina: Textural features and metal zoning at the porphyry to epithermal transition. Ore Geol. Rev. 2015, 66, 366–387. [Google Scholar] [CrossRef]
- Sykora, S.; Cooke, D.R.; Meffre, S.; Stephanov, A.S.; Gardner, K.; Scott, R.; Selley, D.; Harris, A.C. Evolution of pyrite trace element compositions from porphyry-style and epithermal conditions at the Lihir gold deposit: Implications for ore genesis and mineral processing. Econ. Geol. 2018, 113, 193–208. [Google Scholar] [CrossRef]
- Mu, Y.; Peng, Y.; Lauten, R.A. The depression of pyrite in selective flotation by different reagent systems—A Literature review. Miner. Eng. 2016, 96, 143–156. [Google Scholar] [CrossRef]
- Velásquez, G.; Béziat, D.; Salvi, S.; Siebenaller, L.; Borisova, A.Y.; Pokrovski, G.S.; De Parseval, P. Formation and deformation of pyrite and implications for gold mineralization in the El Callao District, Venezuela. Econ. Geol. 2014, 109, 457–486. [Google Scholar] [CrossRef]
- Deditius, A.P.; Reich, M.; Kesler, S.E.; Utsunomiya, S.; Chryssoulis, S.L.; Walshe, J.; Ewing, R.C. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits. Geochim. Cosmochim. Acta 2014, 140, 644–670. [Google Scholar] [CrossRef] [Green Version]
- Le Mignot, E.; Siebenaller, L.; Béziat, D.; André-Mayer, A.-S.; Reisberg, L.; Salvi, S.; Velasquez, G.; Zimmermann, C.; Naré, A.; Franceschi, G. The paleoproterozoic copper-gold deposits of the Gaoua district, Burkina Faso: Superposition of orogenic gold on a porphyry copper occurrence? Econ. Geol. 2017, 112, 99–122. [Google Scholar] [CrossRef]
- Fleet, M.E.; Mumin, A.H. Gold-bearing arsenian pyrite and marcasite from Carlin Trend deposits and laboratory synthesis. Am. Mineral. 1997, 82, 182–193. [Google Scholar] [CrossRef]
- Deditius, A.P.; Utsunomiya, S.; Reich, M.; Kesler, S.E.; Ewing, R.C.; Hough, R.; Walshe, J. Trace metal nanoparticles in pyrite. Ore Geol. Rev. 2011, 42, 32–46. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L.; Danyushevsky, L.V.; Gilbert, S. Minor and trace elements in bornite and associated Cu–(Fe)-sulfides: A LA-ICP-MS studyBornite mineral chemistry. Geochim. Cosmochim. Acta 2011, 75, 6473–6496. [Google Scholar] [CrossRef]
- Schmandt, D.S.; Cook, N.J.; Ehrig, K.; Gilbert, S.; Wade, B.P.; Rollog, M.; Ciobanu, C.L.; Kamenetsky, V.S. Uptake of trace elements by baryte during copper ore processing: A case study from Olympic Dam, South Australia. Miner. Eng. 2019, 135, 83–94. [Google Scholar] [CrossRef]
- Reich, M.; Kesler, S.E.; Utsunomiya, S.; Palenik, C.S.; Chryssoulis, S.L.; Ewing, R.C. Solubility of gold in arsenian pyrite. Geochim. Cosmochim. Acta 2005, 69, 2781–2796. [Google Scholar] [CrossRef]
- Okgör, O.; Topkaya, Y. Extraction of cobalt and copper from Küre pyrite concentrate. Miner. Eng. 1988, 1, 213–223. [Google Scholar] [CrossRef]
- Hakobyan, K.; Melkomyan, A.; Karamyan, G. New Technology of Processing Pyrite Concentrate. IFAC Proc. Vol. 2013, 46, 321–324. [Google Scholar] [CrossRef]
- Sole, K.C.; Parker, J.; Cole, P.M.; Mooiman, M.B. Flowsheet options for cobalt recovery in African copper-cobalt hydrometallurgy circuits. Miner. Proc. Extr. Metall. Rev. 2019, 40, 194–206. [Google Scholar] [CrossRef]
n | Pyrite Zone | S_wt% | Fe_wt% | As_wt% | Total | |
---|---|---|---|---|---|---|
18 | As-rich band | Range | 51.4–53.4 | 45.8–46.5 | 0.1–2.6 | 99.5–100.1 |
Average | 52.5 | 46.2 | 1.1 | 99.8 | ||
SD | 0.7 | 0.2 | 0.9 | 0.1 | ||
5 | As-poor zones | Range | 53.1–53.4 | 46.4–46.6 | <LoD | 99.6–99.9 |
Average | 53.3 | 46.5 | <LoD | 99.7 | ||
SD | 0.1 | 0.1 | 0.1 |
Pyrite Type | Co (ppm) | Ni (ppm) | As (ppm) | Ag (ppm) | Au (ppm) |
---|---|---|---|---|---|
LoD | 0.2 | 0.6 | 0.8 | 0.05 | 0.02 |
PY1 | 24,051 ± 3400 | 580 ± 47 | 15 ± 2 | <LoD | <LoD |
PY1 | 173 ± 22 | 420 ± 43 | 2 ± 0.8 | <LoD | <LoD |
PY1 | 320 ± 41 | 315 ± 31 | 14 ± 2 | <LoD | <LoD |
PY1 | 4380 ± 584 | 280 ± 29 | 5 ± 0.8 | <LoD | <LoD |
PY1 | 8560 ± 950 | 120 ± 21 | 12 ± 2 | <LoD | <LoD |
PY1 | 12,180 ± 980 | 778 ± 65 | 20 ± 2 | <LoD | <LoD |
PY2 | 38 ± 5 | 1 ± 0.2 | 9 ± 0.8 | 0.1 ± 0.05 | <LoD |
PY2 | 8 ± 1 | 2 ± 0.3 | 28 ± 3 | 0.9 ± 0.05 | <LoD |
PY2 | 1 ± 0.3 | 3 ± 0.3 | 2 ± 0.8 | 1.8 ± 0.08 | 0.05 ± 0.02 |
PY2 | 2 ± 0.7 | 3 ± 0.3 | 3 ± 0.9 | 1.9 ± 0.08 | 0.05 ± 0.02 |
PY2 | 4 ± 0.5 | 11 ± 2 | 4 ± 0.9 | 2.1 ± 0.09 | 0.08 ± 0.02 |
PY2 | 1 ± 0.3 | 10 ± 1 | 6 ± 1 | 0.4 ± 0.05 | <LoD |
As-poor -PY3 | 496 ± 33 | 63 ± 7 | 1 ± 0.8 | <LoD | <LdD |
As-rich-PY3 | 444 ± 38 | 69 ± 5 | 1181 ± 137 | 2.2 ± 0.08 | 0.3 ± 0.05 |
As-rich-PY3 | 151 ± 23 | 40 ± 4 | 2288 ± 298 | 2.1 ± 0.08 | 0.4 ± 0.05 |
As-rich-PY3 | 27 ± 3 | <LdD | 2526 ± 331 | 1.0 ± 0.08 | 0.3 ± 0.05 |
As-rich-PY3 | 463 ± 39 | 72 ± 6 | 2645 ± 351 | 2.1 ± 0.09 | 0.4 ± 0.04 |
As-rich-PY3 | 355 ± 31 | 31 ± 3 | 2766 ± 388 | 0.8 ± 0.05 | 0.5 ± 0.04 |
As-rich-PY3 | 679 ± 58 | 50 ± 5 | 4585 ± 533 | 2.3 ± 0.09 | 0.9 ± 0.06 |
As-rich-PY3 | 512 ± 51 | 68 ± 5 | 4156 ± 520 | 4.0 ± 0.1 | 0.8 ± 0.06 |
As-rich-PY3 | 219 ± 33 | 137 ± 24 | 3290 ± 412 | 3.9 ± 0.1 | 0.6 ± 0.05 |
As-rich-PY3 | 142 ± 15 | 19 ± 2 | 4004 ± 513 | 0.2 ± 0.05 | 0.7 ± 0.12 |
As-rich-PY3 | 10 ± 1 | 8 ± 1 | 10,891 ± 998 | 3.1 ± 0.08 | 4.3 ± 0.65 |
As-rich-PY3 | 747 ± 61 | 46 ± 5 | 6090 ± 699 | 2.9 ± 0.08 | 2.1 ± 0.35 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velásquez, G.; Carrizo, D.; Salvi, S.; Vela, I.; Pablo, M.; Pérez, A. Tracking Cobalt, REE and Gold from a Porphyry-Type Deposit by LA-ICP-MS: A Geological Approach towards Metal-Selective Mining in Tailings. Minerals 2020, 10, 109. https://doi.org/10.3390/min10020109
Velásquez G, Carrizo D, Salvi S, Vela I, Pablo M, Pérez A. Tracking Cobalt, REE and Gold from a Porphyry-Type Deposit by LA-ICP-MS: A Geological Approach towards Metal-Selective Mining in Tailings. Minerals. 2020; 10(2):109. https://doi.org/10.3390/min10020109
Chicago/Turabian StyleVelásquez, Germán, Daniel Carrizo, Stefano Salvi, Iván Vela, Marcial Pablo, and Agustín Pérez. 2020. "Tracking Cobalt, REE and Gold from a Porphyry-Type Deposit by LA-ICP-MS: A Geological Approach towards Metal-Selective Mining in Tailings" Minerals 10, no. 2: 109. https://doi.org/10.3390/min10020109
APA StyleVelásquez, G., Carrizo, D., Salvi, S., Vela, I., Pablo, M., & Pérez, A. (2020). Tracking Cobalt, REE and Gold from a Porphyry-Type Deposit by LA-ICP-MS: A Geological Approach towards Metal-Selective Mining in Tailings. Minerals, 10(2), 109. https://doi.org/10.3390/min10020109