Adsorption of Salmonella in Clay Minerals and Clay-Based Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clay Minerals
2.2. Characterization of the Adsorbents
2.3. Bacterial Strain and Inoculum Preparation
2.4. Preparation of Treatment Solutions and Sorption Experiments
3. Results and Discussion
3.1. Characterization of the Starting Clay Minerals and the Clay-Based Materials
3.2. Adsorption of Salmonella Tests
3.2.1. Adsorption of Salmonella on Montmorillonite and Mont-PCH
3.2.2. Adsorption of Salmonella on Saponite and Sap-PCH
3.2.3. Adsorption of Salmonella on Sepiolite and Sep-PCH
3.2.4. Adsorption Kinetics of Salmonella on Palygorskite and Pal-PCH
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pichel, N.; Vivar, M.; Fuentes, M. The problem of drinking water access: A review of disinfection technologies with an emphasis on solar treatment methods. Chemosphere 2019, 218, 1014–1030. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Zhou, W.; Fu, Z.; Cheng, Y.; Min, M.; Liu, Y.; Zhang, Y.; Chen, P.; Ruan, R. Effect of wastewater-borne bacteria on algal growth and nutrients removal in wastewater-based algae cultivation system. Bioresour. Technol. 2014, 167, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.T.; Alazba, A.A.; Manzoor, U. A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv. Mat. Sci. Eng. 2014. [Google Scholar] [CrossRef] [Green Version]
- Nieuwenhuijsen, M.J.; Grellier, J.; Smith, R.; Iszatt, N.; Bennett, J.; Best, N.; Toledano, M. The epidemiology and possible mechanisms of disinfection by-products in drinking water. Phil. Trans. R. Soc. 2009, 367, 4043–4067. [Google Scholar] [CrossRef]
- Villanueva, C.M.; Cantor, K.P.; Grimalt, J.O.; Malats, N.; Silverman, D.; Tardon, A.; Garcia-Closas, R.; Serra, C.; Carrato, A.; Castaño-Vinyals, G.; et al. Bladder cancer and exposure to water disinfection by-products through ingestion, bathing, showering, and swimming in pools. Am. J. Epidemiol. 2007, 165, 148–156. [Google Scholar] [CrossRef]
- Yuan, Q.B.; Guo, M.T.; Yang, J. Fate of antibiotic resistant bacteria and genes during wastewater chlorination: Implication for antibiotic resistance control. PLoS ONE 2015, 10, e0119403. [Google Scholar] [CrossRef]
- Wang, W.; Huang, G.; Jimmy, C.Y.; Wong, P.K. Advances in photocatalytic disinfection of bacteria: Development of photocatalysts and mechanisms. J. Environ. Sci. 2015, 34, 232–247. [Google Scholar] [CrossRef]
- Nassar, R.A.; Browne, E.P.; Chen, J.; Klibanov, A.M. Removing human immunodeficiency virus (HIV) from human blood using immobilized heparin. Biotechnol. Lett. 2012, 34, 853–856. [Google Scholar] [CrossRef] [Green Version]
- Jin, S.; Fallgren, P.H.; Morris, J.M.; Chen, Q. Removal of bacteria and viruses from waters using layered double hydroxide nanocomposites. Sci. Technol. Adv. Mater. 2007, 8, 67–70. [Google Scholar] [CrossRef] [Green Version]
- Deng, C.H.; Gong, J.L.; Zeng, G.M.; Niu, C.G.; Niu, Q.Y.; Zhang, W.; Liu, H.Y. Inactivation performance and mechanism of Escherichia coli in aqueous system exposed to iron oxide loaded grahene nanocomposites. J. Hazard. Mater. 2014, 276, 66–76. [Google Scholar] [CrossRef]
- Sharma, V.K.; McDonald, T.J.; Kim, H.; Grag, V.K. Magnetic graphene-carbon nanotube iron nanocomposite as adsorbents and antibacterial agents for water purification. Adv. Colloid Interf. Sci. 2015, 225, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Otto, C.; Haydel, S. Microbicidal clays: Composition, activity, mechanism of action, and therapeutic applications. In Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education; Méndez-Vilas, A., Ed.; Formatex Research Center: Badajoz, Spain, 2013; Volume 2, pp. 1169–1180. [Google Scholar]
- Muter, O.; Potapova, K.; Nikolajeva, V.; Petrina, Z.; Griba, T.; Patmalnieks, A.; Svinka, R.; Svinka, V. Comparative study on bacteria colonization onto ceramic beads originated from two Devonian clay deposits in Latvia. Mater. Sci. Appl. Chem. 2012, 26, 134–139. [Google Scholar]
- Hrenovic, J.; Ivankovic, T.; Tibljas, D. The effect of mineral carrier composition on phosphate-accumulating bacteria immobilization. J. Hazard. Mater. 2009, 166, 1377–1382. [Google Scholar] [CrossRef] [PubMed]
- Yuan, G.D.; Theng, B.K.G.; Churchman, G.J.; Gates, W.P. Clays and clay minerals for pollution control in handbook of clay science. In Handbook of Clay Science, 1st ed.; Bergaya, F., Theng, B.K.G., Lagaly, G., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2006; Volume 1, pp. 625–675. [Google Scholar]
- Nieuwenhuijsen, M.J.; Toledano, M.B.; Eaton, N.; Fawell, J.; Elliott, P. Chlorination disinfection byproducts in water and their association with adverse reproductive outcomes: A review. Occup. Environ. Med. 2000, 57, 73–85. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Zheng, Q. Structure stability of organic montmorillonite used for preparing polyethylene/montmorillonite nanocomposite. J. Mat. Sci. Lett. 2013, 22, 1431–1433. [Google Scholar] [CrossRef]
- Brigatti, M.F.; Galan, E.; Theng, B.K.G. Structures and Mineralogy of Clay Minerals. In Handbook of Clay Science, 1st ed.; Bergaya, F., Theng, B.K.G., Lagaly, G., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2006; Volume 1, pp. 19–86. [Google Scholar]
- Su, C.; Li, W.; Chen, M.; Huang, Z.; Wu, L. Effect of iron-manganese-sepiolite as heterogeneous Fenton-like catalyst on the performance and microbial community of anaerobic granular sludge treatment system. Bioresour. Technol. 2016, 200, 1065–1072. [Google Scholar] [CrossRef] [PubMed]
- Cecilia, J.A.; García-Sancho, C.; Vilarrasa-García, E.; Jiménez-Jiménez, J.; Rodriguez-Castellón, E. Synthesis, characterization, uses and applications of porous clays heterostructures: A review. Chem. Rec. 2018, 18, 1–21. [Google Scholar] [CrossRef]
- Pires, J.; Bestilleiro, M.; Pinto, M.L.; Gil, A. Selective adsorption of carbon dioxide, methane and ethane by porous clays heterostructures. Sep. Purif. Technol. 2008, 61, 161–167. [Google Scholar] [CrossRef]
- Pinto, M.L.; Magra, L.; Guil, J.M.; Pires, J.; Rocha, J. Adsorption and activation of CO2 by amine-modified nanoporous materials studied by solid-state NMR and 13CO2 adsorption. Chem. Mater. 2011, 23, 1387–1395. [Google Scholar] [CrossRef]
- Pinto, M.L.; Pires, J. Porous and hybrid clay based materials for separation of hydrocarbons. Micropor. Mesopor. Mater. 2012, 151, 403–410. [Google Scholar] [CrossRef]
- Garea, S.A.; Mihai, A.I.; Ghebaur, A.; Nistor, C.; Sarbu, A. Porous clay heterostructures: A new inorganic host for 5-fluorouracil encapsulation. Int. J. Pharm. 2015, 491, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Vilarrasa-García, E.; Cecilia, J.A.; Azevedo, D.C.S.; Cavalcante, C.L., Jr.; Rodríguez-Castellón, E. Evaluation of porous clay heterostructures modified with amine species as adsorbent for the CO2 capture. Micropor. Mesopor. Mater. 2017, 249, 25–33. [Google Scholar] [CrossRef]
- Aguiar, J.E.; Cecilia, J.A.; Tavares, P.A.S.; Azevedo, D.C.S.; Rodríguez Castellón, E.; Lucena, S.M.P.; Silva, I.J., Jr. Adsorption study of reactive dyes onto porous clay heterostructures. Appl. Clay Sci. 2017, 135, 35–44. [Google Scholar] [CrossRef]
- Chmielarz, L.; Piwowarska, Z.; Kustrowski, P.; Wegrzyn, A.; Gil, B.; Kowalczyk, A.; Dudek, B.; Dziembaj, R.; Michalik, M. Comparison study of titania pillared interlayered clays and porous clay heterostructures modified with copper and iron as catalysts of the DeNOx process. Appl. Clay Sci. 2011, 53, 164–173. [Google Scholar] [CrossRef]
- Soriano, M.D.; Cecilia, J.A.; Natoli, A.; Jiménez-Jiménez, J.; López-Nieto, J.M.; Rodríguez-Castellón, E. Vanadium oxide supported on porous clay heterostructure for the partial oxidation of hydrogen sulphide to sulfur. Catal. Today 2015, 254, 36–42. [Google Scholar] [CrossRef]
- Cecilia, J.A.; Arango-Díaz, A.; Franco, F.; Jiménez-Jiménez, J.; Storaro, L.; Moretti, E.; Rodríguez-Castellón, E. CuO-CeO2 supported on montmorillonite-derived porous clay heterostructures (PCH) for preferential CO oxidation in H2-rich stream. Catal. Today 2015, 253, 126–136. [Google Scholar] [CrossRef]
- Saboya, R.M.A.; Cecilia, J.A.; García-Sancho, C.; Luna, F.M.T.; Rodríguez-Castellón, E.; Cavalcante, C.L., Jr. WO3-based catalysts supported on porous clay heterostructures (PCH) with Si–Zr pillars for synthetic esters production. Appl. Clay Sci. 2016, 124, 69–78. [Google Scholar] [CrossRef]
- Solsona, B.; Concepción, P.; López Nieto, J.M.; Dejoz, A.; Cecilia, J.A.; Agouram, S.; Soriano, M.D.; Torres, V.; Jiménez-Jiménez, J.; Rodríguez Castellón, E. Nickel oxide supported on porous clay heterostructures as selective catalysts for the oxidative dehydrogenation of ethane. Catal. Sci. Technol. 2016, 6, 3419–3429. [Google Scholar] [CrossRef]
- Sanchís, R.; Cecilia, J.A.; Soriano, M.D.; Vázquez, M.I.; Dejoz, A.; López Nieto, J.M.; Rodríguez Castellón, E.; Solsona, B. Porous clays heterostructures as supports of iron oxide for environmental catalysis. Chem. Eng. J. 2018, 334, 1159–1168. [Google Scholar] [CrossRef]
- Cecilia, J.A.; Soriano, M.D.; Natoli, A.; Rodríguez-Castellón, E.; López Nieto, J.M. Selective oxidation of hydrogen sulfide to sulfur using vanadium oxide supported on porous clay heterostructures (PCHs) formed by pillars silica, silica-zirconia or silica-titania. Materials 2018, 11, 1562. [Google Scholar] [CrossRef] [Green Version]
- Cloos, P.; Bafot, C.; Herbillon, A. Interlayer formation of humin in smectites. Nature 1981, 289, 391–393. [Google Scholar] [CrossRef]
- Unuabonaha, E.I.; Ugwujaa, C.G.; Omorogiea, M.O.; Adewuyia, A.; Oladojab, N.A. Clays for Efficient Disinfection of Bacteria in Water. Appl. Clay Sci. 2018, 151, 211–223. [Google Scholar] [CrossRef]
- Cecilia, J.A.; García-Sancho, C.; Franco, F. Montmorillonite based porous clay heterostructures: Influence of Zr in the structure and acidic properties. Micropor. Mesopor. Mater. 2013, 176, 95–102. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Ceram. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Lippens, B.C.; De Boer, J.H. Studies on pore systems in catalysis: V. The t method. J. Catal. 1965, 4, 319–323. [Google Scholar] [CrossRef]
- Park, S.H.; Sposito, G.; Sutton, R.; Greathouse, J.A. Density Functional Theory (DFT) Calculations on the Structures of 2:1 Clay Minerals; Lawrence Berkeley National Lab (LBNL): Berkeley, CA, USA, 2001. [Google Scholar]
- Zviagina, B.B.; McCarty, D.K.; Srodon, J.; Drits, V.A. Interpretation of infrared spectra of dioctahedral smectites in the region of OH-stretching vibrations. Clays Clay Miner. 2004, 52, 399–410. [Google Scholar] [CrossRef]
- Madejova, J. FTIR techniques in clay mineral studies. Vib. Spectrosc. 2003, 31, 1–10. [Google Scholar] [CrossRef]
- Farmer, V.C. The Infrared Spectra of Minerals; Mineralogal Society: London, UK, 1974; Volume 4, p. 539. [Google Scholar]
- Kloprogge, J.T.; Frost, R.L. Study of the thermal behavior of rectorite by in-situ infrared emission spectroscopy. Neues Jahrb. Mineral. Mon. 2000, 4, 145–157. [Google Scholar]
- van der Marel, H.W.; Beutelspacher, H. Atlas of Infrared Spectroscopy of Clay Minerals and their Admixtures; Elsevier Science: Amsterdam, The Netherlands, 1976; 396p. [Google Scholar]
- Bisio, C.; Gatti, G.; Boccaleri, E.; Marchese, L.; Superti, G.B.; Pastore, H.O.; Thommes, M. Understanding physico–chemical properties of saponite synthetic clays. Micropor. Mesopor. Mater. 2008, 107, 90–101. [Google Scholar] [CrossRef]
- Janin, A.; Maache, M.; Lavalley, J.C.; Joly, J.F.; Raatz, F.; Szydlowski, N. FT i.r. study of the silanol groups in dealuminated HY zeolites: Nature of the extraframework debris. Zeolites 1991, 11, 391–396. [Google Scholar] [CrossRef]
- Weitkamp, J. Zeolites and catalysis. Solid State Ion. 2000, 131, 175–188. [Google Scholar] [CrossRef]
- Franco, F.; Pozo, M.; Cecilia, J.A.; Benítez-Guerrero, M.; Lorente, M. Effectiveness of microwave assisted acid treatment on dioctahedral and trioctahedral smectites. The influence of octahedral composition. Appl. Clay Sci. 2016, 120, 70–80. [Google Scholar] [CrossRef]
- Frost, R.L.; Locos, O.B.; Ruan, H.; Kloprogge, J.T. Near-infrared and mid-infrared spectroscopic study of sepiolites and palygorskites. Vib. Spectrosc. 2001, 27, 1–13. [Google Scholar] [CrossRef]
- Frost, R.L.; Cash, G.A.; Kloprogge, J.T. “Rocky Mountain leather”, sepiolite and attapulgite-an infrared emission spectroscopic study. Vib. Spectrosc. 1998, 16, 173–184. [Google Scholar] [CrossRef]
- Suárez, M.; García-Romero, E. FTIR spectroscopic study of palygorskite: Influence of the composition of the octahedral sheet. Appl. Clay Sci. 2006, 31, 154–163. [Google Scholar] [CrossRef] [Green Version]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report. Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Landers, J.; Gor, G.; Neimark, A. Density functional theory methods for characterization of porous materials. Colloids Surf. A Physicochem. Eng. Asp. 2013, 437, 3–32. [Google Scholar] [CrossRef]
- Purdy, M.A.; Tenovuo, J.; Pruitt, K.M.; White, W.E., Jr. Effect of growth phase and cell envelope structure on susceptibility of Salmonella typhimurium to the lactoperoxidase-thiocyanate-hydrogen peroxide system. Infect. Inmun. 1983, 39, 1187–1195. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Hitzky, E.; Aranda, P.; Álvarez, A.; Santarén, J.; Esteban-Cubillo, A. Advanced materials and new applications of sepiolite and palygorskite. Develop. Clay Sci. 2011, 3, 393–452. [Google Scholar]
- Qin, X.; Huang, Q.; Liu, Y.; Zhao, L.; Xu, Y.; Liu, Y. Effects of sepiolite and biochar on microbial diversity in acid red soil from southern China. Chem. Ecol. 2019, 35, 846–860. [Google Scholar] [CrossRef]
- Dickson, J.S.; Koohmaraie, M. Cell Surface Charge Characteristics and Their Relationship to Bacterial Attachment to Meat Surfaces. Appl. Enviromental Microbiol. 1989, 832–836. [Google Scholar] [CrossRef] [Green Version]
- Galán, E. Properties and applications of palygorskite-sepiolite clays. Clay Miner. 1996, 31, 443–453. [Google Scholar] [CrossRef]
Sample | SBET (m2 g−1) | t-Plot (m2 g−1) | Sext (m2 g−1) | Vp (cm3 g−1) | Vmicrop. (cm3 g−1) |
---|---|---|---|---|---|
Montmorillonite | 50 | 25 | 25 | 0.0539 | 0.0116 |
Saponite | 124 | 74 | 51 | 0.1151 | 0.0341 |
Sepiolite | 182 | 47 | 135 | 0.3458 | 0.0215 |
Palygorskite | 92 | 14 | 78 | 0.2003 | 0.0060 |
mont-PCH | 683 | 548 | 134 | 0.5754 | 0.2572 |
sap-PCH | 683 | 468 | 216 | 0.5831 | 0.2539 |
sep-PCH | 768 | 533 | 235 | 0.5748 | 0.2837 |
pal-PCH | 612 | 366 | 246 | 0.5501 | 0.1992 |
Time (h) | Absorbance (600 nm) | Log (CFU mL−1) | ||||
Control | Montmorillonite | Mont-PCH | Control | Montmorillonite | Mont-PCH | |
0 | 1.034 | 1.034 | 1.034 | 6.090 | 6.090 | 6.090 |
1 | 1.080 | 0.925 | 0.901 | 6.110 | 6.040 | 6.030 |
2 | 1.047 | 0.812 | 0.912 | 6.100 | 5.990 | 6.040 |
3 | 1.066 | 0.795 | 0.892 | 6.100 | 5.980 | 6.030 |
4 | 1.000 | 0.764 | 0.841 | 6.080 | 5.960 | 6.000 |
Time (h) | Absorbance (600 nm) | Log (CFU mL−1) | ||||
Control | Saponite | Sap-PCH | Control | Saponite | Sap-PCH | |
0 | 1.034 | 1.034 | 1.034 | 6.090 | 6.090 | 6.090 |
1 | 1.080 | 0.120 | 0.131 | 6.109 | 5.155 | 5.193 |
2 | 1.047 | 0.066 | 0.063 | 6.096 | 4.895 | 4.875 |
3 | 1.066 | 0.073 | 0.146 | 6.104 | 4.939 | 5.240 |
4 | 1.000 | 0.144 | 0.128 | 6.076 | 5.234 | 5.183 |
Time (h) | Absorbance (600 nm) | Log (CFU mL−1) | ||||
Control | Sepiolite | Sep-PCH | Control | Sepiolite | Sep-PCH | |
0 | 1.034 | 1.034 | 1.034 | 6.091 | 6.09 | 6.090 |
1 | 1.080 | 0.726 | 0.395 | 6.109 | 5.937 | 5.672 |
2 | 1.047 | 0.793 | 0.451 | 6.096 | 5.975 | 5.730 |
3 | 1.066 | 0.791 | 0.411 | 6.104 | 5.974 | 5.690 |
4 | 1.000 | 0.761 | 0.325 | 6.076 | 5.957 | 5.588 |
Time (h) | Absorbance (600 nm) | Log (CFU mL−1) | ||||
Control | Palygorskite | Pal-PCH | Control | Palygorskite | Pal-PCH | |
0 | 1.034 | 1.034 | 1.034 | 6.091 | 6.091 | 6.091 |
1 | 1.080 | 0.112 | 0.139 | 6.109 | 5.125 | 5.219 |
2 | 1.047 | 0.010 | 0.040 | 6.096 | 4.076 | 4.678 |
3 | 1.066 | 0.096 | 0.191 | 6.104 | 5.058 | 5.357 |
4 | 1.000 | 0.234 | 0.120 | 6.076 | 5.445 | 5.155 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pardo, L.; Domínguez-Maqueda, M.; Cecilia, J.A.; Pozo Rodríguez, M.; Osajima, J.; Moriñigo, M.Á.; Franco, F. Adsorption of Salmonella in Clay Minerals and Clay-Based Materials. Minerals 2020, 10, 130. https://doi.org/10.3390/min10020130
Pardo L, Domínguez-Maqueda M, Cecilia JA, Pozo Rodríguez M, Osajima J, Moriñigo MÁ, Franco F. Adsorption of Salmonella in Clay Minerals and Clay-Based Materials. Minerals. 2020; 10(2):130. https://doi.org/10.3390/min10020130
Chicago/Turabian StylePardo, Laura, Marta Domínguez-Maqueda, Juan Antonio Cecilia, Manuel Pozo Rodríguez, Josy Osajima, Miguel Ángel Moriñigo, and Francisco Franco. 2020. "Adsorption of Salmonella in Clay Minerals and Clay-Based Materials" Minerals 10, no. 2: 130. https://doi.org/10.3390/min10020130
APA StylePardo, L., Domínguez-Maqueda, M., Cecilia, J. A., Pozo Rodríguez, M., Osajima, J., Moriñigo, M. Á., & Franco, F. (2020). Adsorption of Salmonella in Clay Minerals and Clay-Based Materials. Minerals, 10(2), 130. https://doi.org/10.3390/min10020130