Biocompatible Hydrotalcite Nanohybrids for Medical Functions
Abstract
:1. Introduction
2. Cytotoxicity of Nanoscale Hydrotalcite
3. Hydrotalcite Nanohybrids for Biomedical Functions
3.1. Bio-Hydrotalcite Nanohybrids for Therapeutic Functions
3.2. Bio-Hydrotalcite Nanohybrids for Diagnostic Functions
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Evans, D.G.; Slade, R.C.T. Structural Aspects of Layered Double Hydroxides. Struct. Bond. 2006, 119, 1–87. [Google Scholar]
- Simoneau, G. Absence of rebound effect with calcium carbonate. Eur. J. Drug Metab. Pharmacokinet. 1996, 21, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Hydrotalcite-Talcid®. Available online: https://www.talcid.de/talcid-produkte/hydrotalcit/ (accessed on 1 November 2018).
- Park, D.H.; Hwang, S.J.; Oh, J.M.; Yang, J.H.; Choy, J.H. Polymer–inorganic supramolecular nanohybrids for red, white, green, and blue applications. Prog. Polym. Sci. 2013, 38, 1442–1486. [Google Scholar] [CrossRef]
- Oh, J.M.; Park, D.H.; Choi, S.J.; Choy, J.H. LDH nanocontainers as bio-reservoirs and drug delivery carriers. Recent Pat. Nanotech. 2012, 6, 200–217. [Google Scholar] [CrossRef] [PubMed]
- Mishra, G.; Dash, B.; Pandey, S. Layered double hydroxides: A brief review from fundamentals to application as evolving biomaterials. Appl. Clay Sci. 2018, 153, 172–186. [Google Scholar] [CrossRef]
- Oh, J.M.; Park, D.H.; Choy, J.H. Integrated bio-inorganic hybrid systems for nano-forensics. Chem. Soc. Rev. 2011, 40, 583–595. [Google Scholar] [CrossRef]
- Park, D.H.; Cho, J.; Kwon, O.J.; Yun, C.O.; Choy, J.H. Biodegradable Inorganic Nanovector: Passive versus Active Tumor Targeting in siRNA Transportation. Angew. Chem. Int. Ed. 2016, 55, 4582–4586. [Google Scholar] [CrossRef]
- Park, D.H.; Kim, J.E.; Oh, J.M.; Shul, Y.G.; Choy, J.H. DNA Core@Inorganic Shell. J. Am. Chem. Soc. 2010, 132, 16735–16736. [Google Scholar] [CrossRef]
- Ward, M.D. Plastic sandwiches à la carte. Nature 2000, 405, 293–294. [Google Scholar] [CrossRef]
- Choy, J.H.; Kwak, S.Y.; Park, J.S.; Jeong, Y.J.; Portier, J. Intercalative nanohybrids of nucleoside monophosphates and DNA in layered metal hydroxide. J. Am. Chem. Soc. 1999, 121, 1399–1400. [Google Scholar] [CrossRef]
- Choy, J.H.; Kwak, S.Y.; Jeong, Y.J.; Park, J.S. Inorganic Layered Double Hydroxides as Nonviral Vectors. Angew. Chem. 2000, 39, 4041–4045. [Google Scholar] [CrossRef]
- Oh, J.M.; Choi, S.J.; Kim, S.T.; Choy, J.H. Cellular Uptake Mechanism of an Inorganic Nanovehicle and Its Drug Conjugates: Enhanced Efficacy Due To Clathrin-Mediated Endocytosis. Bioconjugate Chem. 2006, 17, 1411–1417. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xing, H.; Zhang, S.; Ren, Q.; Pan, L.; Zhang, K.; Bu, W.; Zheng, X.; Zhou, L.; Peng, W.; et al. A Gd-doped Mg-Al-LDH/Au nanocomposite for CT/MR bimodal imagings and simultaneous drug delivery. Biomaterials 2013, 34, 3390–3401. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.M.; Choi, S.J.; Lee, G.E.; Kim, J.E.; Choy, J.H. Inorganic Metal Hydroxide Nanoparticles for Targeted Cellular Uptake Through Clathrin-Mediated Endocytosis. Chem. Asian J. 2009, 4, 67–73. [Google Scholar] [CrossRef]
- Huang, G.; Zhang, K.L.; Chen, S.; Li, S.H.; Wang, L.L.; Wang, L.P.; Liu, R.; Gao, J.; Yang, H.H. Manganese-iron layered double hydroxide: A theranostic nanoplatform with pH-responsive MRI contrast enhancement and drug release. J. Mater. Chem. B 2017, 5, 3629–3633. [Google Scholar] [CrossRef]
- SEDDS for Oral Peptide Delivery: Gattefossé Insight. Available online: https://www.in-pharmatechnologist.com/ (accessed on 22 November 2017).
- Zuo, H.; Chen, W.; Li, B.; Xu, K.; Cooper, H.; Gu, Z.; Xu, Z.P. MnAl Layered Double Hydroxide Nanoparticles as a Dual-Functional Platform for Magnetic Resonance Imaging and siRNA Delivery. Chem. Eur. J. 2017, 23, 14299–14306. [Google Scholar] [CrossRef]
- Gao, R.; Mei, X.; Yan, D.; Liang, R.; Wei, M. Nano-photosensitizer based on layered double hydroxide and isophthalic acid for singlet oxygenation and photodynamic therapy. Nat. Commun. 2018, 9, 2798. [Google Scholar] [CrossRef] [Green Version]
- Ladewig, K.; Xu, Z.P.; Lu, G.Q. Layered double hydroxide nanoparticles in gene and drug delivery. Expert Opin. Drug Deliv. 2009, 6, 907–922. [Google Scholar] [CrossRef]
- Liang, R.; Wei, M.; Evans, D.G.; Duan, X. Inorganic nanomaterials for bioimaging, targeted drug delivery and therapeutics. Chem. Commun. 2014, 50, 14071–14081. [Google Scholar] [CrossRef]
- Hermansson, L. A Review of Nanostructured Ca-aluminate Based Biomaterials within Odontology and Orthopedics. J. Korean Ceram. Soc. 2018, 55, 95–107. [Google Scholar] [CrossRef] [Green Version]
- Weissleder, R. Molecular Imaging in Cancer. Science 2006, 312, 1168–1171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eslami, H.; Tahriri, M.; Moztarzadeh, F.; Bader, R.; Tayebi, L. Nanostructured Hydroxyapatite for Biomedical Applications: From Powder to Bioceramic. J. Korean Ceram. Soc. 2018, 55, 597–607. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.J.; Choy, J.H. Effect of physico-chemical parameters on the toxicity of inorganic nanoparticles. J. Mater. Chem. 2011, 21, 5547–5554. [Google Scholar] [CrossRef]
- Choi, S.J.; Choy, J.H. Layered double hydroxide nanoparticles as target-specific delivery carriers: Uptake mechanism and toxicity. Nanomedicine 2011, 6, 803–814. [Google Scholar] [CrossRef] [PubMed]
- Rives, V.; Arco, M.; Martín, C. Intercalation of drugs in layered double hydroxides and their controlled release: A review. Appl. Clay Sci. 2014, 88, 239–269. [Google Scholar] [CrossRef]
- Park, D.H.; Choi, G.; Choy, J.H. Bio-Layered Double Hydroxides Nanohybrids for Theranostics Applications. In Photofunctional Layered Materials; Structure and Bonding; Springer: Cham, Switzerland, 2015; Volume 166, pp. 137–175. [Google Scholar]
- Xie, W.S.; Guo, Z.H.; Cao, Z.B.; Gao, Q.; Wang, D.; Boyer, C.; Kallavaris, M.; Sun, X.D.; Wang, X.M.; Zhao, L.Y.; et al. Manganese-based magnetic layered double hydroxide nanoparticle: A pH-sensitive and concurrently enhanced T1/T2-weighted dual-mode magnetic resonance imaging contrast agent for accurate cancer diagnosis. ACS Biomater. Sci. Eng. 2019, 5, 2555–2562. [Google Scholar] [CrossRef]
- Jung, Y.; Ji, E.; Capasso, A.; Lee, G.H. Recent Progresses in the Growth of Two-dimensional Transition Metal Dichalcogenides. J. Korean Ceram. Soc. 2019, 56, 24–36. [Google Scholar] [CrossRef] [Green Version]
- Hakeem, A.; Zhan, G.T.; Xu, Q.B.; Yong, T.Y.; Gan, L.; Yang, X.L. Facile synthesis of pH-responsive doxorubicin-loaded layered double hydroxide for efficient cancer therapy. J. Mater. Chem. B 2018, 6, 5768–5774. [Google Scholar] [CrossRef]
- Rives, V.; Arco, M.; Martín, C. Layered double hydroxides as drug carriers and for controlled release of non-steroidal antiinflammatory drugs (NSAIDs): A review. J. Control. Release 2013, 169, 28–39. [Google Scholar] [CrossRef]
- Ribeiro, L.N.M.; Alcantara, A.C.S.; Darder, M.; Aranda, P.; Araújo-Moreira, F.M.; Ruiz-Hitzky, E. Pectin-coated chitosan–LDH bionanocomposite beads as potential systems for colon-targeted drug delivery. Int. J. Pharm. 2014, 463, 1–9. [Google Scholar] [CrossRef]
- Ryu, S.J.; Jung, H.; Oh, J.M.; Lee, J.K.; Choy, J.H. Layered double hydroxide as novel antibacterial drug delivery system. J. Phys. Chem. Solids 2010, 71, 685–688. [Google Scholar] [CrossRef]
- Yang, J.H.; Lee, S.Y.; Yang, S.; Park, K.C.; Choy, J.H. Efficient Transdermal Penetration and Improved Stability of L-Ascorbic Acid Encapsulated in an Inorganic Nanocapsule. Bull. Korean Chem. Soc. 2003, 24, 499–503. [Google Scholar]
- Son, Y.J.; Lee, I.C.; Jo, H.H.; Chung, T.J.; Oh, K.S. Setting Behavior and Drug Release from Brushite Bone Cement prepared with Granulated Hydroxyapatite and β-Tricalcium Phosphate. J. Korean Ceram. Soc. 2019, 56, 56–64. [Google Scholar] [CrossRef] [Green Version]
- Jin, W.J.; Park, D.H. Info-Convergence Ceramic Nanosystems. J. Korean Ceram. Soc. 2019, 56, 421–434. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Yang, C.X.; Chen, L.G.; Yan, X.P. Dual-stimuli responsive and reversibly activatable theranostic nanoprobe for precision tumor-targeting and fluorescence-guided photothermal therapy. Nat. Commun. 2017, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Choi, G.; Jeon, I.R.; Piao, H.; Choy, J.H. Highly Condensed Boron Cage Cluster Anions in 2D Carrier and Its Enhanced Antitumor Efficiency for Boron Neutron Capture Therapy. Adv. Funct. Mater. 2017, 28, 1704470. [Google Scholar] [CrossRef]
- Wang, D.; Ge, N.; Yang, T.; Peng, F.; Qiao, Y.; Li, Q.; Liu, X. NIR-Triggered Crystal Phase Transformation of NiTi-Layered Double Hydroxides Films for Localized Chemothermal Tumor Therapy. Adv. Sci. 2018, 5, 1700782. [Google Scholar] [CrossRef]
- Mei, X.; Liang, R.; Peng, L.; Hu, T.; Wei, M. Layered double hydroxide bio-composites toward excellent systematic anticancer therapy. J. Mater. Chem. B. 2017, 5, 3212–3216. [Google Scholar] [CrossRef]
- Wang, N.; Wang, Z.; Xu, Z.; Chen, X.; Zhu, G. A Cisplatin-Loaded Immunochemotherapeutic Nanohybrid Bearing Immune Checkpoint Inhibitors for Enhanced Cervical Cancer Therapy. Angew. Chem. 2018, 130, 3484–3488. [Google Scholar] [CrossRef] [Green Version]
- Taviot-Guého, C.; Prévot, V.; Forano, C.; Renaudin, G.; Mousty, C.; Leroux, F. Tailoring Hybrid Layered Double Hydroxides for the Development of Innovative Applications. Adv. Funct. Mater. 2017, 28, 1703868. [Google Scholar] [CrossRef]
- Choi, G.; Eom, S.; Vinu, A.; Choy, J.H. 2D Nanostructured Metal Hydroxides with Gene Delivery and Theranostic Functions; A Comprehensive Review. Chem. Rec. 2018, 18, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Misra, A.; Jain, S.; Kishore, D.; Dave, V.; Reddy, K.R.; Sadhu, V.; Dwivedi, J.; Sharma, S. A facile one pot synthesis of novel pyrimidine derivatives of 1, 5-benzodiazepines via domino reaction and their antibacterial evaluation. J. Microbiol. Methods 2019, 163, 105648. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Deohra, A.; Reddy, K.R.; Sadhu, V. Biocompatible in-situ gelling polymer hydrogels for treating ocular infection. In Methods in Microbiology; Nanotechnology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 46, pp. 93–114. [Google Scholar]
- Gullaa, S.; Lomadab, D.; Srikanthc, V.V.; Shankard, M.V.; Reddye, K.R.; Sonif, S.; Reddya, M.C. Recent Advances in Nanoparticles-Based Strategies for Cancer Therapeutics and Antibacterial Applications. In Methods in Microbiology; Nanotechnology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 46, pp. 255–293. [Google Scholar]
- Paliwal, S.; Tilak, A.; Sharma, J.; Dave, V.; Sharma, S.; Verma, K.; Tak, K.; Reddy, K.R.; Sadhu, V. Flurbiprofen-loaded ethanolic liposome particles for biomedical applications. J. Microbiol. Methods 2019, 161, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Dave, V.; Tak, K.; Sohgaura, A.; Gupta, A.; Sadhu, V.; Reddy, K.R. Lipid-polymer hybrid nanoparticles: Synthesis strategies and biomedical applications. J. Microbiol. Methods 2019, 160, 130–142. [Google Scholar] [CrossRef] [PubMed]
- Xia, N.; Li, N.; Rao, W.; Yu, J.; Wu, Q.; Tan, L.; Li, H.; Gou, L.; Liang, P.; Li, L.; et al. Multifunctional and flexible ZrO2-coated EGaIn nanoparticles for photothermal therapy. Nanoscale 2019, 11, 10183–10189. [Google Scholar] [CrossRef]
- Patil, S.B.; Inamdar, S.Z.; Reddy, K.R.; Raghu, A.V.; Soni, S.K.; Kulkarni, R.V. Novel biocompatible poly (acrylamide)-grafted-dextran hydrogels: Synthesis, characterization and biomedical applications. J. Microbiol. Methods 2019, 159, 200–210. [Google Scholar] [CrossRef]
- Boppana, R.; Raut, S.Y.; Mohan, G.K.; Sa, B.; Mutalik, S.; Reddy, K.R.; Das, K.K.; Biradar, M.S.; Kulkarni, R.V. Novel pH-sensitive interpenetrated network polyspheres of polyacrylamide-g-locust bean gum and sodium alginate for intestinal targeting of ketoprofen: In vitro and in vivo evaluation. Colloids Surf. B Biointerfaces 2019, 180, 362–370. [Google Scholar] [CrossRef]
- Sur, S.; Rathore, A.; Dave, V.; Reddy, K.R.; Chouhan, R.S.; Sadhu, V. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Struct. Nano-Obj. 2019, 20, 100397. [Google Scholar] [CrossRef]
- Dave, V.; Gupta, A.; Singh, P.; Gupta, C.; Sadhu, V.; Reddy, K.R. Synthesis and characterization of celecoxib loaded PEGylated liposome nanoparticles for biomedical applications. Nano-Struct. Nano-Obj. 2019, 18, 100288. [Google Scholar] [CrossRef]
- Peng, L.; Mei, X.; He, J.; Xu, J.; Zhang, W.; Liang, R.; Wei, M.; Evans, D.G.; Duan, X. Monolayer Nanosheets with an Extremely High Drug Loading toward Controlled Delivery and Cancer Theranostics. Adv. Mater. 2018, 30, 1707389. [Google Scholar] [CrossRef]
- Li, B.; Gu, Z.; Kurniawan, N.; Chen, W.; Xu, Z.P. Manganese-Based Layered Double Hydroxide Nanoparticles as a T1-MRI Contrast Agent with Ultrasensitive pH Response and High Relaxivity. Adv. Mater. 2017, 29, 1700373. [Google Scholar] [CrossRef]
- Chung, H.E.; Park, D.H.; Choy, J.H.; Choi, S.J. Intracellular trafficking pathway of layered double hydroxide nanoparticles in human cells: Size-dependent cellular delivery. Appl. Clay Sci. 2012, 65–66, 24–30. [Google Scholar] [CrossRef]
- Choi, S.J.; Oh, J.M.; Choy, J.H. Safety Aspect of Inorganic Layered Nanoparticles: Size-Dependency In Vitro and In Vivo. J. Nanosci. Nanotechnol. 2008, 8, 5297–5301. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.Y.; Zuo, H.L.; Zhang, E.Q.; Li, L.; Henrich-Noack, P.; Cooper, H.M.; Qian, Y.J.; Xu, Z.P. Brain targeting delivery facilitated by ligand-functionalized layered double hydroxide nanoparticles. ACS Appl. Mater. Interfaces 2017, 24, 20326–20333. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Na, H.; Choi, S.C.; Kim, H.J. Biocompatibility of 13–93 Bioactive Glass-SiC Fabric Composites. J. Korean Ceram. Soc. 2019, 56, 205–210. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.K.; Lee, J.W. Synthesis of Non-hydrate Iron Oleate for Eco-friendly Production of Monodispersed Iron Oxide Nanoparticles. J. Korean Ceram. Soc. 2018, 55, 625–634. [Google Scholar] [CrossRef] [Green Version]
- Lanone, S.; Rogerieux, F.; Geys, J.; Dupont, A.; Maillot-Marechal, E.; Boczkowski, J.; Lacroix, G.; Hoet, P. Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part. Fibre Toxicol. 2009, 6, 14. [Google Scholar] [CrossRef] [PubMed]
- Baek, M.; Kim, I.S.; Yu, J.; Chung, H.E.; Choy, J.H.; Choi, S.J. Effect of Different Forms of Anionic Nanoclays on Cytotoxicity. J. Nanosci. Nanotechnol. 2011, 11, 1803–1806. [Google Scholar] [CrossRef]
- Choi, S.J.; Oh, J.M.; Choy, J.H. Toxicological effects of inorganic nanoparticles on human lung cancer A549 cells. J. Inorg. Biochem. 2009, 103, 463–471. [Google Scholar] [CrossRef]
- Choy, J.H.; Jung, J.S.; Oh, J.M.; Park, M.; Jeong, J.Y.; Kang, Y.K.; Han, O.J. Layered double hydroxide as an efficient drug reservoir for folate derivatives. Biomaterials 2004, 25, 3059–3064. [Google Scholar] [CrossRef]
- Choi, S.J.; Choi, G.E.; Oh, J.M.; Oh, Y.J.; Park, M.C.; Choy, J.H. Anticancer drug encapsulated in inorganic lattice can overcome drug resistance. J. Mater. Chem. 2010, 20, 9463–9469. [Google Scholar] [CrossRef]
- Liang, R.; Tian, R.; Ma, L.; Zhang, L.; Hu, Y.; Wang, J.; Wei, M.; Yan, D.; Evans, D.G.; Duan, X. A Supermolecular Photosensitizer with Excellent Anticancer Performance in Photodynamic Therapy. Adv. Funct. Mater. 2014, 24, 3144–3151. [Google Scholar] [CrossRef]
- Weng, Y.; Guan, S.; Lu, H.; Meng, X.; Kaassis, A.Y.; Ren, X.; Qu, X.; Sun, C.; Xie, Z.; Zhou, S. Confinement of carbon dots localizing to the ultrathin layered double hydroxides toward simultaneous triple-mode bioimaging and photothermal therapy. Talanta 2018, 184, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, E.; Hong, Y.; Kim, B.; Ku, M.; Heo, D.; Choi, J.; Na, J.; You, J.; Haam, S.; et al. Self-doped conjugated polymeric nanoassembly by simplified process for optical cancer theragnosis. Adv. Funct. Mater. 2015, 25, 2260–2269. [Google Scholar] [CrossRef]
- Kim, S.Y.; Oh, J.M.; Lee, J.S.; Kim, T.J.; Choy, J.H. Gadolinium (III) Diethylenetriamine Pentaacetic Acid/Layered Double Hydroxide Nanohybrid as Novel T1-Magnetic Resonant Nanoparticles. J. Nanosci. Nanotechnol. 2008, 8, 5181–5184. [Google Scholar] [CrossRef]
- Yan, L.; Gonca, S.; Zhu, G.; Zhang, W.; Chen, X. Layered double hydroxide nanostructures and nanocomposites for biomedical applications. J. Mater. Chem. B. 2019, 7, 5583–5601. [Google Scholar] [CrossRef] [Green Version]
- Costantino, U.; Nocchetti, M.; Tammaro, L.; Vittoria, V. Modified hydrotalcite-like compounds as active fillers of biodegradable polymers for drug release and food packaging applications. Recent Pat. Nanotechnol. 2012, 6, 218–230. [Google Scholar] [CrossRef]
- Toson, V.; Conterosito, E.; Palin, L.; Boccaleri, E.; Milanesio, M.; Gianotti, V. Facile intercalation of organic molecules into hydrotalcites by liquid assisted grinding: Yield optimization by a chemometric approach. Cryst. Growth Des. 2015, 15, 5368–5374. [Google Scholar] [CrossRef]
LDH Host | Synthetic Method | Particle Size [nm] | Bio-Functional Molecules | Cell Line and Animal Model | Application | Refs. |
---|---|---|---|---|---|---|
MgAl | Ion-exchange | - | DNA, adenosine triphosphate, FITC | NIH3T3 cells, HL-60 cells | Gene- therapy, fluorescence imaging | [12] |
MgAl | Ion-exchange | 150 | MTX, FITC | MNNG cells, HOS cells | Chemo-therapy, fluorescence imaging | [13] |
MgAl | Ion-exchange | - | MTX, | Fibroblast, SaOS-2 cells | Chemo-therapy | [65] |
MgAl | Co-precipitation | 100 | MTX | HOS cells, HOS/Mtx cells | Chemo-therapy | [66] |
MgAl | Co-precipitation, silane coupling | 100 | siRNA, FITC | KB cells, A549 cells, xenograft mice model bearing KB tumor | Gene-therapy, fluorescence imaging | [8] |
MnAl | Co-precipitation, self-assembly | 125 | siRNA, Mn2+ | Neuro-2a cells | Gene-therapy, MRI | [18] |
ZnAl | Co-precipitation | 50 | Isophthalic acid (IPA), Cy5.5 | Hela cells, Balb/c nude mice bearing Hela tumor | Singlet oxygenation, PDT, NIR fluorescence imaging | [19] |
MgAl | Co-precipitation | 120 | ZnPc | HepG2 cells, male Balb/c mice bearing HepG2 tumor | Singlet oxygenation, PDT | [67] |
MgAl | self-assembly | 20–50 | CDs, ICG | Hela cells, HepG-2 cells, male Balb/c mice bearing Hela tumor | PTT, fluorescence imaging, photoacoustic imaging, two-photon imaging | [68] |
ZnAl | Co-precipitation | 120 | Gd-DTPA | - | MRI | [70] |
MnMgAl | Co-precipitation, isomorphic substitution | 20–80 | Mn2+ | B16F10 cells (mouse melanoma skin cancer cell line), mouse bearing the melanoma tumor | MRI | [56] |
GdMgAl | Co-precipitation, self-assembly | 138 | DOX, Gd3+, Au NPs | L929 cells, HeLa cells, mice bearing 4T1 murine breast tumor | Chemo-therapy, MRI, CT | [14] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, W.; Lee, D.; Jeon, Y.; Park, D.-H. Biocompatible Hydrotalcite Nanohybrids for Medical Functions. Minerals 2020, 10, 172. https://doi.org/10.3390/min10020172
Jin W, Lee D, Jeon Y, Park D-H. Biocompatible Hydrotalcite Nanohybrids for Medical Functions. Minerals. 2020; 10(2):172. https://doi.org/10.3390/min10020172
Chicago/Turabian StyleJin, Wenji, Dongki Lee, Yukwon Jeon, and Dae-Hwan Park. 2020. "Biocompatible Hydrotalcite Nanohybrids for Medical Functions" Minerals 10, no. 2: 172. https://doi.org/10.3390/min10020172
APA StyleJin, W., Lee, D., Jeon, Y., & Park, D. -H. (2020). Biocompatible Hydrotalcite Nanohybrids for Medical Functions. Minerals, 10(2), 172. https://doi.org/10.3390/min10020172