Study on the High-Pressure Behavior of Goethite up to 32 GPa Using X-Ray Diffraction, Raman, and Electrical Impedance Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
= (E0/I0(ω)) exp(−jϕ(ω)) = Z0(ω) [cos (ϕ(ω)) − (j)sinϕ(ω)]
= ZR(ω) − ZI(ω) j
3. Results
3.1. Raman Spectroscopy
3.2. Electrical Impedance Spectroscopy
3.3. In Situ X-Ray Diffraction
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gleason, A.E.; Jeanloz, R.; Kunz, M. Pressure-Temperature Stability Studies of Feooh Using X-Ray Diffraction. Am. Mineral. 2008, 93, 1882–1885. [Google Scholar] [CrossRef] [Green Version]
- Voigt, R.; Will, G. The System Fe2o3-H2o under High Pressures. Neues Jahrb. Fur Mineral. 1981, 2, 89–96. [Google Scholar]
- Hu, Q.; Kim, D.Y.; Yang, W.; Yang, L.; Meng, Y.; Zhang, L.; Mao, H.K. Feo2 and Feooh under Deep Lower-Mantle Conditions and Earth’s Oxygen-Hydrogen Cycles. Nature 2016, 534, 241–244. [Google Scholar] [CrossRef]
- Hu, Q.; Kim, D.Y.; Liu, J.; Meng, Y.; Yang, L.; Zhang, D.; Mao, W.L.; Mao, H.K. Dehydrogenation of Goethite in Earth’s Deep Lower Mantle. Proc. Natl. Acad. Sci. USA 2017, 114, 1498–1501. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Hu, Q.; Kim, D.Y.; Wu, Z.; Wang, W.; Xiao, Y.; Chow, P.; Meng, Y.; Prakapenka, V.B.; Mao, H.-K.; et al. Hydrogen-Bearing Iron Peroxide and the Origin of Ultralow-Velocity Zones. Nature 2017, 551, 494–497. [Google Scholar] [CrossRef]
- Nishi, M.; Kuwayama, Y.; Tsuchiya, J.; Tsuchiya, T. The Pyrite-Type High-Pressure Form of Feooh. Nature 2017, 547, 205–208. [Google Scholar] [CrossRef]
- Suzuki, A. High-Pressure X-Ray Diffraction Study of E-Feooh. Phys. Chem. Miner. 2010, 37, 153–157. [Google Scholar] [CrossRef]
- Mao, H.-K.; Hu, Q.; Yang, L.; Liu, J.; Kim, D.Y.; Meng, Y.; Zhang, L.; Prakapenka, V.B.; Yang, W.; Mao, W.L. When Water Meets Iron at Earth’s Core–Mantle Boundary. Natl. Sci. Rev. 2017, 4, 870–878. [Google Scholar] [CrossRef]
- Gleason, A.E.; Quiroga, C.E.; Suzuki, A.; Pentcheva, R.; Mao, W.L. Symmetrization Driven Spin Transition in E-Feooh at High Pressure. Earth Planet. Sci. Lett. 2013, 379, 49–55. [Google Scholar] [CrossRef]
- Xu, W.; Greenberg, E.; Rozenberg, G.K.; Pasternak, M.P.; Bykova, E.; Boffa-Ballaran, T.; Dubrovinsky, L.; Prakapenka, V.; Hanfland, M.; Vekilova, O.Y.; et al. Pressure-Induced Hydrogen Bond Symmetrization in Iron Oxyhydroxide (Supplementary Materials). Phys. Rev. Lett. 2013, 111, 175501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reagan, M.M.; Gleason, A.E.; Daemen, L.; Xiao, Y.; Mao, W.L. High-Pressure Behavior of the Polymorphs of Feooh. Am. Mineral. 2016, 101, 1483–1488. [Google Scholar] [CrossRef]
- Liu, K.; Dai, L.; Li, H.; Hu, H.; Zhuang, Y.; Yang, L.; Pu, C.; Hong, M. Pressure-Induced Phase Transitions for Goethite Investigated by Raman Spectroscopy and Electrical Conductivity. High Press. Res. 2019, 39, 106–116. [Google Scholar] [CrossRef]
- Williams, Q.; Guenther, L. Pressure-Induced Changes in the Bonding and Orientation of Hydrogen in Feooh-Goethite. Solid State Commun. 1996, 100, 105–109. [Google Scholar] [CrossRef]
- Kim, Y.; Hwang, G.; Do, J. Compression Study of Goethite at Room Temperature. J. Mineral. Soc. Korea 2007, 20, 261–266. [Google Scholar]
- Nagai, T.; Kagi, H.; Yamanaka, T. Variation of Hydrogen Bonded O… O Distances in Goethite at High Pressure. Am. Mineral. 2003, 88, 1423–1427. [Google Scholar] [CrossRef]
- Suzuki, A. Thermal Equation of State of Goethite (A-Feooh). High Press. Res. 2017, 37, 193–199. [Google Scholar] [CrossRef]
- Suzuki, A. Pressure–Volume–Temperature Equation of State of E–Feooh to 11 Gpa and 700 K. J. Mineral. Petrol. Sci. 2016, 111, 420–424. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Yi, Z. High Pressure X-Ray Diffraction Study on a Goethite Using Synchrotron Radiation. J. Min. Soc. Korea 1997, 10, 75–81. [Google Scholar]
- Mao, H.K.; Xu, J.; Bell, P.M. Calibration of the Ruby Pressure Gauge to 800 Kbar under Quasi-Hydrostatic Conditions. J. Geophys. Res. 1986, 91, 4673–4676. [Google Scholar] [CrossRef]
- Toby, B.H.; Von Dreele, R.B. Gsas-Ii: The Genesis of a Modern Open-Source All Purpose Crystallography Software Package. J. Appl. Crystallogr. 2013, 46, 544–549. [Google Scholar] [CrossRef]
- Gonzalez-Platas, J.; Alvaro, M.; Nestola, F.; Angel, R. Eosfit7-Gui: A New Graphical User Interface for Equation of State Calculations, Analyses and Teaching. J. Appl. Crystallogr. 2016, 49, 1377–1382. [Google Scholar] [CrossRef]
- Barsoukov, E.; Macdonald, J.R. Impedance Spectroscopy: Theory, Experiment, and Applications, 3rd ed.; John Wiley & Sons, Inc.: New Jersey, NJ, USA, 2018. [Google Scholar]
- Bonanos, N.; Steele, B.C.H.; Butler, E.P. Applications of Impedance Spectroscopy: Characterization of Materials. In Impedance Spectroscopy: Theory, Experiment, and Applications, 3rd ed.; Barsoukov, E., Macdonald, J.R., Eds.; John Wiley & Sons, Inc.: New Jersey, NJ, USA, 2018; pp. 175–224. [Google Scholar]
- Lafuente, B.; Downs, R.T.; Yang, H.; Stone, N. The Rruff Project. Available online: http://rruff.info/goethite/display=default/R120086 (accessed on 30 December 2019).
- Dünnwald, J.; Otto, A. An Investigation of Phase Transitions in Rust Layers Using Raman Spectroscopy. Corros. Sci. 1989, 29, 1167–1176. [Google Scholar] [CrossRef]
- De Faria, D.L.A.; Venâncio Silva, S.; de Oliveira, M.T. Raman Microspectroscopy of Some Iron Oxides and Oxyhydroxides. J. Raman Spectrosc. 1997, 28, 873–878. [Google Scholar] [CrossRef]
- Stokes, H.T.; Hatch, D.M.; Campbell, B.J. Smodes, Isotropy Software Suite. Available online: http://stokes.byu.edu/iso/isotropy.php (accessed on 30 December 2019).
- Delattre, S.; Balan, E.; Lazzeri, M.; Blanchard, M.; Guillaumet, M.; Beyssac, O.; Haussühl, E.; Winkler, B.; Salje, E.K.H.; Calas, G. Experimental and Theoretical Study of the Vibrational Properties of Diaspore (A-Alooh). Phys. Chem. Miner. 2012, 39, 93–102. [Google Scholar] [CrossRef]
- Kubicki, J.D.; Paul, K.W.; Sparks, D.L. Periodic Density Functional Theory Calculations of Bulk and the (010) Surface of Goethite. Geochem. Trans. 2008, 9, 4. [Google Scholar] [CrossRef] [Green Version]
- Legodi, M.A.; de Waal, D. The Preparation of Magnetite, Goethite, Hematite and Maghemite of Pigment Quality from Mill Scale Iron Waste. Dyes Pigments 2007, 74, 161–168. [Google Scholar] [CrossRef]
- Angel, R.J. Equations of State. In High-Temperature and High-Pressure Crystal Chemistry; Hazen, R.M., Downs, R.T., Eds.; Mineralogical Society of America: Chantilly, VA, USA, 2000; Volume 41, pp. 35–60. [Google Scholar]
- Tunega, D. Theoretical Study of Properties of Goethite (A-Feooh) at Ambient and High-Pressure Conditions. J. Phys. Chem. C 2012, 116, 6703–6713. [Google Scholar] [CrossRef]
- Guo, H.; Barnard, A.S. Modeling the Iron Oxides and Oxyhydroxides for the Prediction of Environmentally Sensitive Phase Transformations. Phys. Rev. B 2011, 83, 094112. [Google Scholar] [CrossRef] [Green Version]
- Otte, K.; Pentcheva, R.; Schmahl, W.W.; Rustad, J.R. Pressure-Induced Structural and Electronic Transitions in Feooh from First Principles. Phys. Rev. B 2009, 80, 205116. [Google Scholar] [CrossRef]
- Wayne, R.C.; Smith, F.A. The Pressure Induced Metamagnetic Transition in Au2mn and the Pressure Depen- Dence of the Ferromagnetic Curie Temperature. J. Phys. Chem. Solids 1969, 30, 183–185. [Google Scholar] [CrossRef]
- Ishizuka, M.; Kai, Y.; Akimoto, R.; Kobayashi, M.; Amaya, K.; Endo, S. Pressure-Induced Ferromagnetism in Eute. J. Magn. Magn. Mater. 1997, 166, 211–215. [Google Scholar] [CrossRef]
- Jeffries, J.R.; Stillwell, R.L.; Weir, S.T.; Vohra, Y.K.; Butch, N.P. Emergent Ferromagnetism and T-Linear Scattering in Usb2 at High Pressure. Phys. Rev. B 2016, 93, 184406. [Google Scholar] [CrossRef] [Green Version]
- Kawakami, T.; Nasu, S. High-Pressure Mössbauer Spectroscopy of Perovskite High Valence Iron Oxides under External Magnetic Field. J. Phys. Condens. Matter 2005, 17, S789–S793. [Google Scholar] [CrossRef]
- Wasilewski, P.J.; Thomas, H.H.; Mayhew, M.A. The Moho as a Magnetic Boundary. Geophys. Res. Lett. 1979, 6, 541–544. [Google Scholar] [CrossRef] [Green Version]
- Kupenko, I.; Aprilis, G.; Vasiukov, D.M.; McCammon, C.; Chariton, S.; Cerantola, V.; Kantor, I.; Chumakov, A.I.; Rffer, R.; Dubrovinsky, L.; et al. Magnetism in Cold Subducting Slabs at Mantle Transition Zone Depths. Nature 2019, 570, 102–106. [Google Scholar] [CrossRef] [PubMed]
Label | ν1 | ν2 | ν3 | ν4 | ν5 | ν6 |
---|---|---|---|---|---|---|
Wavenumber | 250 | 302 | 391 | 486 | 556 | 687 |
Assignment [30] | Fe–O stretching symmetric | Fe–O Hbending symmetric | Fe–O–Fe/–OH stretching symmetric | Fe–OH stretching asymmetric | Fe–OH stretching asymmetric | Fe–O stretching symmetric |
Reference | V0 | K0 | K’* | Method** | Pressure Medium*** | Pressure Calibrant | Pressure Range (GPa) |
---|---|---|---|---|---|---|---|
This study | 138.9(5) | 126(5) | 4 | DAC, AD | Ne | Ruby | 0–32 |
Suzuki [16] | 138.96(7) | 85.9(15) | 12.6(8) | LVP, ED | NaCl | NaCl | 0–7.55 |
Xu et al. [10] | 138.4(3) | 120(3) | 4 | DAC, AD | He, Ne | Au | 0–16 |
Gleason et al. [1] | 138.75(2) | 140.3(37) | 4.6(4) | DAC, AD | ME(4:1) | Au | 0–29.4 |
Kim et al. [14] | 138.8 | 131.1(58) | 4 | LVP, ED | ME(4:1) | NaCl | 0–9.54 |
Nagai et al. [15] | 140.45(1) | 111(2) | 4 | DAC, AD | ME(4:1) | Ruby | 0–24.5 |
Kim et al. [18] | 139.3 | 147.9 | 4 | DAC, ED | MEW(16:3:1) | MgO | 0–27.6 |
Tunega [32] | 138.70 | 93.5 | 4 | spDFT | - | - | - |
140.86 | 118.7 | 4 | spDFT+U | - | - | - | |
Guo et al. [33] | 141.49 | 114.1 | - | PW-GGA+U | - | - | - |
Otte et al. [34] | 144.4 | 108.8 | 5.9 | GGA+U | - | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, R.; Chen, J.; Zeng, Q.; Li, Y.; Liang, X.; Yang, B.; Wang, Y. Study on the High-Pressure Behavior of Goethite up to 32 GPa Using X-Ray Diffraction, Raman, and Electrical Impedance Spectroscopy. Minerals 2020, 10, 99. https://doi.org/10.3390/min10020099
Tang R, Chen J, Zeng Q, Li Y, Liang X, Yang B, Wang Y. Study on the High-Pressure Behavior of Goethite up to 32 GPa Using X-Ray Diffraction, Raman, and Electrical Impedance Spectroscopy. Minerals. 2020; 10(2):99. https://doi.org/10.3390/min10020099
Chicago/Turabian StyleTang, Ruilian, Jiuhua Chen, Qiaoshi Zeng, Yan Li, Xue Liang, Bin Yang, and Yu Wang. 2020. "Study on the High-Pressure Behavior of Goethite up to 32 GPa Using X-Ray Diffraction, Raman, and Electrical Impedance Spectroscopy" Minerals 10, no. 2: 99. https://doi.org/10.3390/min10020099
APA StyleTang, R., Chen, J., Zeng, Q., Li, Y., Liang, X., Yang, B., & Wang, Y. (2020). Study on the High-Pressure Behavior of Goethite up to 32 GPa Using X-Ray Diffraction, Raman, and Electrical Impedance Spectroscopy. Minerals, 10(2), 99. https://doi.org/10.3390/min10020099