Geochronology of Uraninite Revisited
Abstract
:1. Introduction
2. Samples and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IAEA. Geological Classification of Uranium Deposits and Description of Selected Examples; IAEA-TECDOC: Vienna, Austria, 2018; pp. 1–430. [Google Scholar]
- Cuney, M. Evolution of uranium fractionation processes through time: Driving the secular variation of uranium deposit types. Econ. Geol. 2010, 105, 553–569. [Google Scholar] [CrossRef]
- Spano, T.; Simonetti, A.; Wheeler, T.; Carpenter, G.; Freet, D.; Balboni, E.; Dorais, C.; Burns, P.C. A novel nuclear forensic tool involving deposit type normalized rare earth element signatures. Terra Nov. 2017, 29, 294–305. [Google Scholar] [CrossRef]
- Alexandre, P.; Kyser, T.K. Effects of cationic substitutions and alteration in uraninite, and implications for the dating of uranium deposits. Can. Mineral. 2005, 43, 1005–1017. [Google Scholar] [CrossRef]
- Cross, A.; Jaireth, S.; Rapp, R.; Armstrong, R. Reconnaissance-style EPMA chemical U–Th–Pb dating of uraninite. Aust. J. Earth Sci. 2011, 58, 675–683. [Google Scholar] [CrossRef]
- Finch, R.; Murakami, T. Systematics and paragenesis of uranium minerals. Uranium Mineral. Geochem. Environ. 1999, 38, 91–179. [Google Scholar]
- Alexandre, P.; Kyser, K.; Layton-Matthews, D.; Joy, B.; Uvarova, Y. Chemical compositions of natural uraninite. Can. Mineral. 2015, 53, 595–622. [Google Scholar] [CrossRef]
- Janeczek, J.; Ewing, R.C. Structural formula of uraninite. J. Nucl. Mater. 1992, 190, 128–132. [Google Scholar] [CrossRef]
- Plášil, J. Oxidation-hydration weathering of uraninite: The current state-of-knowledge. J. Geosci. 2014, 59, 99–114. [Google Scholar] [CrossRef] [Green Version]
- Frimmel, H.E.; Schedel, S.; Brätz, H. Uraninite chemistry as forensic tool for provenance analysis. Appl. Geochem. 2014, 48, 104–121. [Google Scholar] [CrossRef]
- Mercadier, J.; Cuney, M.; Lach, P.; Boiron, M.C.; Bonhoure, J.; Richard, A.; Leisen, M.; Kister, P. Origin of uranium deposits revealed by their rare earth element signature. Terra Nov. 2011, 23, 264–269. [Google Scholar] [CrossRef]
- Corcoran, L.; Simonetti, A.; Spano, T.L.; Lewis, S.R.; Dorais, C.; Simonetti, S.; Burns, P.C. Multivariate analysis based on geochemical, isotopic, and mineralogical composition of uranium-rich samples. Minerals 2019, 9, 537. [Google Scholar] [CrossRef] [Green Version]
- Dahlkamp, F.J. The time related occurrence of uranium deposits. Miner. Depos. 1980, 15, 69–79. [Google Scholar] [CrossRef]
- Balboni, E.; Jones, N.; Spano, T.; Simonetti, A.; Burns, P.C. Chemical and Sr isotopic characterization of North America uranium ores: Nuclear forensic applications. Appl. Geochem. 2016, 74, 24–32. [Google Scholar] [CrossRef] [Green Version]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. Acta Cryst. 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Eglinger, A.; André-Mayer, A.S.; Vanderhaeghe, O.; Mercadier, J.; Cuney, M.; Decrée, S.; Feybesse, J.L.; Milesi, J.P. Geochemical signatures of uranium oxides in the Lufilian belt: From unconformity-related to syn-metamorphic uranium deposits during the Pan-African orogenic cycle. Ore Geol. Rev. 2013, 54, 197–213. [Google Scholar] [CrossRef]
- Balboni, E.; Simonetti, A.; Spano, T.; Cook, N.D.; Burns, P.C. Rare-earth element fractionation in uranium ore and its U(VI) alteration minerals. Appl. Geochem. 2017, 87, 84–92. [Google Scholar] [CrossRef]
- Janeczek, J.; Ewing, R.C. Mechanisms of lead release from uraninite in the natural fission reactors in Gabon. Geochim. Cosmochim. Acta 1995, 59, 1917–1931. [Google Scholar] [CrossRef]
- Kyser, K.; Hiatt, E.; Renac, C.; Durocher, K.; Holk, G.; Deckart, K. Diagenetic fluids in paleo-and meso-Proterozoic sedimentary basins and their implications for long protracted fluid histories. Miner. Assoc. Canada Short Course 2000, 28, 225–262. [Google Scholar]
- Hazen, R.M.; Ewing, R.C.; Sverjensky, D.A. Evolution of uranium and thorium minerals. Am. Mineral. 2009, 94, 1293–1311. [Google Scholar] [CrossRef]
- Richard, A.; Pettke, T.; Cathelineau, M.; Boiron, M.C.; Mercadier, J.; Cuney, M.; Derome, D. Brine-rock interaction in the athabasca basement (mcarthur river U deposit, Canada): Consequences for fluid chemistry and uranium uptake. Terra Nov. 2010, 22, 303–308. [Google Scholar] [CrossRef]
- Cui, T.; Yang, J.; Samson, I.M. Tectonic deformation and fluid flow: Implications for the formation of unconformity-related uranium deposits. Econ. Geol. 2012, 107, 147–163. [Google Scholar] [CrossRef]
- Bowles, J.F.W. Age dating of individual grains of uraninite in rocks from electron microprobe analyses. Chem. Geol. 1990, 83, 47–53. [Google Scholar] [CrossRef]
- Chipley, D.; Polito, P.A.; Kurtis Kyser, T. Measurement of U–Pb ages of uraninite and davidite by laser ablation-HR-ICP-MS. Am. Miner. 2007, 92, 1925–1935. [Google Scholar] [CrossRef]
- Decrée, S.; Deloule, É.; De Putter, T.; Dewaele, S.; Mees, F.; Yans, J.; Marignac, C. SIMS U–Pb dating of uranium mineralization in the katanga copperbelt: Constraints for the geodynamic context. Ore Geol. Rev. 2011, 40, 81–89. [Google Scholar] [CrossRef]
- Sharpe, R.; Fayek, M. Mass bias corrections for U–Pb isotopic analysis by secondary ion mass spectrometry: Implications for U–Pb dating of uraninite. Rapid Commun. Mass Spectrom. 2016, 30, 1601–1611. [Google Scholar] [CrossRef] [PubMed]
- Lewis, S.R.; Simonetti, A.; Corcoran, L.; Spano, T.L.; Chung, B.W.; Teslich, N.E.; Burns, P.C. Characterization of uraninite using a FIB–SEM approach and its implications for LA–ICP–MS analyses. J. Radioanal. Nucl. Chem. 2018, 318, 1389–1400. [Google Scholar] [CrossRef]
- Martz, P.; Mercadier, J.; Perret, J.; Villeneuve, J.; Deloule, E.; Cathelineau, M.; Quirt, D.; Doney, A.; Ledru, P. Post-crystallization alteration of natural uraninites: Implications for dating, tracing, and nuclear forensics. Geochim. Cosmochim. Acta 2019, 249, 138–159. [Google Scholar] [CrossRef]
- Frondel, C. Systematic Mineralogy of Uranium and Thorium; US Government Printing Office: Washington, WA, USA, 1958; pp. 1–400.
- Kotzer, T.G.; Kyser, T.K. O, U, and Pb isotopic and chemical variations in uraninite: Implications for determining the temporal and fluid history of ancient terrains. Am. Mineral. 1993, 78, 1262–1274. [Google Scholar]
- Cloutier, J.; Kyser, K.; Olivo, G.R.; Alexandre, P.; Halaburda, J. The Millennium uranium deposit, Athabasca Basin, Saskatchewan, Canada: An atypical basement-hosted unconformity-related uranium deposit. Econ. Geol. 2009, 104, 815–840. [Google Scholar] [CrossRef]
- Andersen, T.; Grorud, H.F. Age and lead isotope systematics of uranium-enriched cobalt mineralization in the modum complex, south norway implications for precambrian crustal evolution in the SW part of the baltic shield. Precambrian Res. 1998, 91, 419–432. [Google Scholar] [CrossRef]
- Brobst, D.A. Geology of the Spruce Pine District Avery, Mitchell, and Yancey Counties North Carolina; US Government Printing Office: Washington, WA, USA, 1962.
- Swanson, S.E.; Veal, W.B. Mineralogy and petrogenesis of pegmatites in the spruce pine district, north carolina, USA. J. Geosci. 2010, 55, 27–42. [Google Scholar] [CrossRef] [Green Version]
- Desbarats, A.J.; Percival, J.B.; Venance, K.E. Trace element mobility in mine waters from granitic pegmatite U-Th-REE deposits, bancroft area, ontario. Appl. Geochem. 2016, 67, 153–167. [Google Scholar] [CrossRef]
- Hogarth, D.D.; Breemen, O. Van geology and age of the lac a la perdrix fenite, southern gatineau district, Quebec. Radiogenic Age Isot. Stud. 1996, 9, 33–41. [Google Scholar]
- Robinson, S.C. Economic uranium deposits in granitic dykes bancroft district, ontario. Geol. Surv. Can. Ottawa 1960, 6, 513–521. [Google Scholar]
- Mawdsley, J. Uraninite-bearing deposits, charlebois lake area, northeastern Saskatchewan. Can. Inst. Min. Metall. Pet. Bull. 1952, 482, 366–375. [Google Scholar]
- Mckeough, M.A.; Lentz, D.R.; Brown, J.A. Geology and associated pegmatite-and vein-hosted uranium mineralization of the kulyk, eagle, and karin lakes regions, wollaston domain, northern saskatchewan. Sask. Geol. Surv. 2010, 2, 1–23. [Google Scholar]
- McKeough, M.A.; Lentz, D.R.; Mcfarlane, C.R.M.; Brown, J. Geology and evolution of pegmatite-hosted U-Th ± REE-Y-Nb mineralization, Kulyk, Eagle, and Karin Lakes region, Wollaston Domain, northern Saskatchewan, Canada: Examples of the dual role of extreme fractionation and hybridization processes. J. Geosci. 2013, 58, 321–346. [Google Scholar] [CrossRef] [Green Version]
- Annesley, I.R.; Madore, C.; Bonli, T. Uraninite-bearing granitic pegmatite, moore lakes, saskatchewan: Petrology and U-Th-Pb chemical ages. Sask. Geol. Surv. 2000, 2, 201–211. [Google Scholar]
- Kríbek, B.; Žák, K.; Dobeá, P.; Leichmann, J.; Pudilová, M.; René, M.; Scharm, B.; Scharmová, M.; Hájek, A.; Holeczy, D.; et al. The Rožná uranium deposit (Bohemian Massif, Czech Republic): Shear zone-hosted, late Variscan and post-Variscan hydrothermal mineralization. Miner. Depos. 2009, 44, 99–128. [Google Scholar] [CrossRef]
- Ondruš, P.; Veselovský, F.; Gabašová, A.; Vavřín, I.; Skála, R.; Draábek, M.; Hloušek, J.; Šrein, V.; Sejkora, J. Primary minerals of the Jáchymov ore district. J. Czech Geol. Soc. 2003, 48, 19–147. [Google Scholar]
- Ondrus, P.; Veselovský, F.; Gabašová, A.; Hloušek, J.; Srein, V. Geology and hydrothermal vein system of the Jachymov (Joachimsthal) ore district. J. Geosci. 2003, 48, 3–18. [Google Scholar]
- Miller, R.G. The geochronology of uranium deposits in the great bear batholith, northwest territories. Can. J. Earth Sci. 1982, 19, 1428–1448. [Google Scholar] [CrossRef]
- Deditius, A.P.; Utsunomiya, S.; Ewing, R.C. Fate of trace elements during alteration of uraninite in a hydrothermal vein-type U-deposit from Marshall Pass, Colorado, USA. Geochim. Cosmochim. Acta 2007, 71, 4954–4973. [Google Scholar] [CrossRef]
- Hoeve, J.; Sibbald, T.I.I. On the genesis of rabbit lake and other unconformity-type uranium deposits in northern saskatchewan, Canada. Econ. Geol. 1978, 73, 1450–1473. [Google Scholar] [CrossRef]
- Baadsgaard, H.; Cummino, G.L.; Worden, J.M. U–Pb geochronology of minerals from the midwest uranium deposit, northern saskatchewan. Can. J. Earth Sci. 1984, 21, 642–648. [Google Scholar] [CrossRef]
- Corey, A.S. Mineralogy and Petrology of the Uranium Deposits of Cane Springs Canyon, San Juan and Grand Counties, Utah; USAEC Grand Junction Operations Office: Grand Junction, CO, USA, 1959. [Google Scholar]
- Chenoweth, W.L. Uranium deposits of the canyonlands area. USA Energy Res. Dev. Adm. 1975, 134, 635–646. [Google Scholar]
- Trites, A.F.; Chew, R., III. Geology of the happy jack mine white canyon area san juan county, Utah. Geol. Surv. Bull. Contrib. Geol. Uranium 1955, 1009-H. [Google Scholar] [CrossRef]
- Reynolds, R.L.; Hudson, M.R.; Fishman, N.S.; Campbell, J.A. Paleomagnetic and petrologic evidence bearing on the age and origin of uranium deposits in the permian cutler formation, lisbon valley, Utah. Geol. Soc. Am. Bull. 1985, 96, 719–730. [Google Scholar] [CrossRef]
- Ludwig, K.R.; Simmons, K.R.; Webster, J.D. U–Pb isotope systematics and apparent ages of uranium ores, ambrosia lake and smith lake districts, grants mineral belt, New Mexico. Econ. Geol. 1984, 79, 322–337. [Google Scholar] [CrossRef]
- Sanford, R.F. Preliminary model of regional Mesozoic groundwater flow and uranium deposition in the colorado plateau. Geology 1982, 10, 348–352. [Google Scholar] [CrossRef]
- Manhes, G.; Minster, J.F.; Allègre, C.J. Comparative uranium-thorium-lead and rubidium-strontium study of the Saint Sèverin amphoterite: Consequences for early solar system chronology. Earth Planet. Sci. Lett. 1978, 39, 14–24. [Google Scholar] [CrossRef]
- Simonetti, A.; Gariépy, C.; Banic, C.M.; Tanabe, R.; Wong, H.K. Pb isotopic investigation of aircraft-sampled emissions from the Horne smelter (Rouyn, Québec): Implications for atmospheric pollution in northeastern North America. Geochim. Cosmochim. Acta 2004, 68, 3285–3294. [Google Scholar] [CrossRef]
- Simonetti, A.; Gariépy, C.; Carignan, J. Pb and Sr isotopic compositions of snowpack from Quebec, Canada: Inferences on the sources and deposition budgets of atmospheric heavy metals. Geochim. Cosmochim. Acta 2000, 64, 5–20. [Google Scholar] [CrossRef]
- Baker, J.; Peate, D.; Waight, T.; Meyzen, C. Pb isotopic analysis of standards and samples using a 207Pb–204Pb double spike and thallium to correct for mass bias with a double-focusing MC-ICP-MS. Chem. Geol. 2004, 211, 275–303. [Google Scholar] [CrossRef]
- Ludwig, K.R. User’s manual for Isoplot version 3.75–4.15: A geochronological toolkit for Microsoft Excel. Berkeley Geochronol. Cent. Spec. Publ. 2012, 5, 1–75. [Google Scholar]
- Van Achterberg, E.; Ryan, C.; Jackson, S.; Griffin, W. Data reduction software for LA-ICP-MS. Laser Ablation ICP MS Earth Sci. 2001, 29, 239–243. [Google Scholar]
- Lach, P.; Mercadier, J.; Dubessy, J.; Boiron, M.C.; Cuney, M. In situ quantitative measurement of rare earth elements in uranium oxides by laser ablation-inductively coupled plasma-mass spectrometry. Geostand. Geoanalytical Res. 2013, 37, 277–296. [Google Scholar] [CrossRef]
- Rice, S.; Kyser, K. Fluid history and uranium mineralization in the hornby bay basin, nunavut, Canada. In Proceedings of the 2010 CSPG/CSEG/CWLS GeoConvention, Working with the Earth, Calgary, AB, Canada, 10–14 May 2010; pp. 1–4. [Google Scholar]
- McKechnie, C.L.; Annesley, I.R.; Ansdell, K.M. Radioactive Abyssal granitic pegmatites and leucogranites in the wollaston domain, northern saskatchewan, Canada: Mineral compositions and conditions of emplacement in the fraser lakes area. Can. Miner. 2012, 50, 1637–1667. [Google Scholar] [CrossRef]
- Fayek, M.; Kyser, T.K. Characterization of multiple fluid-flow events and rare-earth-element mobility associated with formation of unconformity-type uranium deposits in teh athabasca basin, saskatchewan. Can. Miner. 1997, 35, 627–658. [Google Scholar]
- Förster, H.J.; Rhede, D.; Stein, H.J.; Romer, R.L.; Tischendorf, G. Paired uraninite and molybdenite dating of the königshain granite: Implications for the onset of late-variscan magmatism in the lausitz block. Int. J. Earth Sci. 2012, 101, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Irmis, R.B.; Mundil, R.; Martz, J.W.; Parker, W.G. High-resolution U–Pb ages from the upper triassic chinle formation (New Mexico, USA) support a diachronous rise of dinosaurs. Earth Planet. Sci. Lett. 2011, 309, 258–267. [Google Scholar] [CrossRef]
- Lewis, S.R.; Simonetti, A.; Corcoran, L.; Simonetti, S.S.; Dorais, C.; Burns, P.C. The role of continental crust in the formation of uraninite-based ore deposits. Minerals 2020, 10, 136. [Google Scholar] [CrossRef] [Green Version]
- Dieng, S.; Kyser, K.; Godin, L. Genesis of multifarious uranium mineralization in the beaverlodge area, northern saskatchewan, Canada. Econ. Geol. 2015, 110, 209–240. [Google Scholar] [CrossRef]
- Polito, P.A.; Kyser, T.K.; Thomas, D.; Marlatt, J.; Drever, G. Re-evaluation of the petrogenesis of the Proterozoic Jabiluka unconformity-related uranium deposit, northern territory, Australia. Miner. Depos. 2005, 40, 257–288. [Google Scholar] [CrossRef]
- Romer, R.L.; Cuney, M. Phanerozoic uranium mineralization in variscan europe—More than 400 ma of tectonic, supergene, and climate-controlled uranium redistribution. Ore Geol. Rev. 2018, 102, 474–504. [Google Scholar] [CrossRef]
Sample Name | Location | Age Range (Ma) | Type |
---|---|---|---|
Marshall Pass | Marshall Pass, Colorado, USA | 80–143 | Metamorphite |
Adair Mine | Cane Spring Canyon, Utah, USA | 140–227 | Sandstone |
Big Indian Wash | Big Indian Wash, Utah, USA | 140–299 | Sandstone |
Happy Jack | Happy Jack, Utah, USA | 140–299 | Sandstone–tabular |
Jachymov | Jachymov, Czech Republic | 260–285 | Intrusive granite related |
Yancey | Yancey County, North Carolina, USA | 377–404 | Intrusive non-granite related |
Shinkolobwe | Shinkolobwe, DR Congo | 612–655 | Metamorphite |
Bancroft | Bancroft, Ontario, Canada | 1030–1070 | Intrusive non-granite related |
Cardiff | Cardiff Township, Ontario, Canada | 1030–1070 | Intrusive non-granite related |
Australia | Northern Territory, Australia | 802–1680 | Metamorphite |
Rabbit Lake | Rabbit Lake, Saskatchewan, Canada | 1000–1350 | Proterozoic unconformity |
Foster Lake | Saskatchewan, Canada | 1169–1860 | Intrusive non-granite related |
Great Bear | Northwest Territories, Canada | 440–2058 | Metamorphite |
Sample | 206Pb/204Pb ± 2σ | 207Pb/204Pb ± 2σ | 208Pb/204Pb ± 2σ | 207Pb/206Pb ± 2σ | 208Pb/206Pb ± 2σ | |
---|---|---|---|---|---|---|
Marshall Pass (M) | A | 73.400 ± 4 | 18.631 ± 1 | 39.743 ± 2 | 0.2538380 ± 62 | 0.5414685 ± 179 |
P | 67.53 ± 1 | 18.352 ± 1 | 39.762 ± 2 | 0.2717401 ± 268 | 0.5888985 ± 765 | |
Big Indian Wash (SS) | A | 6439 ± 14 | 340.9 ± 8 | 38.873 ± 90 | 0.0529373 ± 22 | 0.0060277 ± 43 |
P | 5666 ± 3 | 299.8 ± 1 | 38.523 ± 19 | 0.0529179 ± 7 | 0.0067985 ± 8 | |
B | 3191 ± 2 | 172.40 ± 1 | 38.259 ± 22 | 0.0540202 ± 9 | 0.0119880 ± 12 | |
Adair Mine (SS) | A | 1828 ± 1 | 108.2 ± 1 | 38.217 ± 26 | 0.0592047 ± 17 | 0.0209006 ± 29 |
P | 2044 ± 1 | 118.9 ± 1 | 38.013 ± 16 | 0.0581586 ± 14 | 0.0185928 ± 11 | |
B | 1919 ± 1 | 113.3 ± 1 | 38.042 ± 18 | 0.0590439 ± 11 | 0.0198196 ± 22 | |
Happy Jack (SS) | A | 310.72 ± 1 | 31.082 ± 1 | 38.548 ± 2 | 0.1000328 ± 9 | 0.1240603 ± 15 |
P | 592.51 ± 2 | 45.363 ± 2 | 39.149 ± 2 | 0.0765611 ± 6 | 0.0660723 ± 7 | |
B | 623.8 ± 2 | 46.826 ± 2 | 38.621 ± 1 | 0.0750658 ± 6 | 0.0619123 ± 8 | |
Jachymov | A | 175.20 ± 2 | 23.512 ± 2 | 38.437 ± 3 | 0.1342244 ± 55 | 0.2194110 ± 194 |
(I-G) | P | 171.10 ± 3 | 23.285 ± 3 | 38.405 ± 5 | 0.136112 ± 39 | 0.2245024 ± 131 |
Yancey (I) | A | 2229.5 ± 2 | 135.16 ± 1 | 64.879 ± 5 | 0.0606215 ± 3 | 0.0290996 ± 11 |
P | 61570 ± 339 | 3351 ± 18 | 809.54 ± 441 | 0.0544176 ± 7 | 0.0131469 ± 14 | |
Shinkolobwe (M) | A | 109489 ± 2230 | 6652 ± 136 | 41.067 ± 841 | 0.0607383 ± 90 | 0.0003715 ± 32 |
P | 242126 ± 6380 | 14640 ± 386 | 45.270 ± 1220 | 0.0604644 ± 6 | 0.0001845 ± 11 | |
Bancroft (I) | A | 191537 ± 4030 | 14220 ± 299 | 16637 ± 350 | 0.0742485 ± 26 | 0.0870533 ± 32 |
P | 364451 ± 7630 | 27065 ± 566 | 27072 ± 566 | 0.0742627 ± 7 | 0.0742820 ± 10 | |
B | 64360 ± 1820 | 4783 ± 135 | 5263 ± 149 | 0.0743094 ± 26 | 0.0817761 ± 59 | |
Cardiff (I) | A | 21700 ± 68 | 1610 ± 5 | 1445 ± 5 | 0.0742099 ± 14 | 0.0666116 ± 29 |
P | 320237 ± 16000 | 23623 ± 1180 | 20109 ± 1000 | 0.0737725 ± 16 | 0.0627921 ± 11 | |
Australia (M) | A | 137948 ± 796 | 8637 ± 50 | 45.663 ± 263 | 0.0626104 ± 14 | 0.0003293 ± 5 |
P | 112292 ± 4380 | 6913 ± 269 | 30.821 ± 1160 | 0.0615632 ± 13 | 0.0002720 ± 14 | |
Rabbit Lake (U) | A | 3535.2 ± 6 | 278.68 ± 5 | 53.734 ± 9 | 0.0788313 ± 6 | 0.0151997 ± 4 |
P | 2513.1 ± 7 | 196.99 ± 6 | 53.690 ± 15 | 0.0783857 ± 7 | 0.0213645 ± 6 | |
Foster Lake (I) | A | 37590 ± 151 | 2127 ± 9 | 415.4 ± 17 | 0.0565942 ± 8 | 0.0110505 ± 13 |
P | 38659 ± 134 | 2215 ± 8 | 400.8 ± 14 | 0.0572888 ± 5 | 0.0103660 ± 8 | |
B | 36181 ± 232 | 2035 ± 13 | 429.0 ± 28 | 0.0562499 ± 5 | 0.0118575 ± 6 | |
Great Bear (M) | A | 252.00 ± 1 | 40.778 ± 1 | 35.629 ± 1 | 0.1618002 ± 15 | 0.1413268 ± 19 |
P | 381.90 ± 6 | 50.936 ± 8 | 35.605 ± 5 | 0.1333921 ± 17 | 0.0932369 ± 16 |
Sample | Aliquot | 204Pb Fraction% | 207Pb*/235U | 206Pb*/238U | 207Pb*/235U Age ± 2σ † | 206Pb*/238U Age ± 2σ † |
---|---|---|---|---|---|---|
Marshall Pass (M) | A | 0.75 | 0.13111 | 0.01733 | 125 ± 3 | 111 ± 3 |
P | 0.79 | 0.09761 | 0.01270 | 95 ± 2 | 81 ± 2 | |
Big Indian Wash (SS) | A | 0.015 | 0.21915 | 0.03105 | 201 ± 5 | 197 ± 5 |
P | 0.017 | 0.14787 | 0.02104 | 140 ± 4 | 134 ± 3 | |
B | 0.029 | 0.21822 | 0.03079 | 200 ± 5 | 195 ± 5 | |
Adair Mine (SS) | A | 0.051 | 0.28805 | 0.04124 | 247 ± 6 | 261 ± 7 |
P | 0.045 | 0.09367 | 0.01350 | 91 ± 2 | 86 ± 2 | |
B | 0.048 | 0.15100 | 0.02216 | 143 ± 4 | 141 ± 4 | |
Happy Jack (SS) | A | 0.26 | 0.03624 | 0.00497 | 36.1 ± 0.9 | 31.9 ± 0.8 |
P | 0.15 | 0.05081 | 0.00711 | 50.3 ± 1.3 | 45.7 ± 1.1 | |
B | 0.14 | 0.11921 | 0.01677 | 114 ± 3 | 107 ± 3 | |
Jachymov (I-G) | A | 0.42 | 0.28125 | 0.04047 | 252 ± 6 | 256 ± 6 |
P | 0.43 | 0.22332 | 0.03223 | 205 ± 5 | 205 ± 5 | |
Yancey (1) | A | 0.041 | 0.71005 | 0.09525 | 545 ± 14 | 586 ± 15 |
P | 0.0015 | 0.44584 | 0.05968 | 374 ± 9 | 374 ± 9 | |
Shinkolobwe (M) | A | 0.0009 | 0.01332 | 0.00159 | 13.4 ± 0.3 | 10.3 ± 0.3 |
P | 0.0004 | 0.82091 | 0.09856 | 609 ± 15 | 606 ± 15 | |
Bancroft (I) | A | 0.0004 | 1.95489 | 0.19116 | 110 ± 28 | 1128 ± 28 |
P | 0.0002 | 1.79587 | 0.17548 | 1044 ± 26 | 1042 ± 26 | |
B | 0.0013 | 1.86875 | 0.18294 | 1070 ± 27 | 1083 ± 27 | |
Cardiff (I) | A | 0.00004 | 1.83023 | 0.18047 | 1056 ± 26 | 1070 ± 27 |
P | 0.0003 | 1.88643 | 0.18557 | 1076 ± 27 | 1097 ± 27 | |
Australia (M) | A | 0.0007 | 1.33789 | 0.15524 | 862 ± 22 | 930 ± 23 |
P | 0.0008 | 0.43880 | 0.05180 | 369 ± 9 | 326 ± 8 | |
Rabbit Lake (U) | A | 0.026 | 3.20778 | 0.31102 | 1459 ± 36 | 1746 ± 44 |
P | 0.036 | 3.31906 | 0.33109 | 1486 ± 37 | 1844 ± 46 | |
Foster Lake (I) | A | 0.0025 | 0.10785 | 0.01392 | 104 ± 3 | 89 ± 2 |
P | 0.0024 | 0.16604 | 0.02116 | 156 ± 4 | 135 ± 3 | |
B | 0.0026 | 0.14180 | 0.01841 | 135 ± 3 | 118 ± 3 | |
Great Bear (M) | A | 0.3 | 2.81885 | 0.18984 | 1361 ± 34 | 1121 ± 28 |
P | 0.21 | 1.41872 | 0.10588 | 897 ± 22 | 649 ± 16 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corcoran, L.; Simonetti, A. Geochronology of Uraninite Revisited. Minerals 2020, 10, 205. https://doi.org/10.3390/min10030205
Corcoran L, Simonetti A. Geochronology of Uraninite Revisited. Minerals. 2020; 10(3):205. https://doi.org/10.3390/min10030205
Chicago/Turabian StyleCorcoran, Loretta, and Antonio Simonetti. 2020. "Geochronology of Uraninite Revisited" Minerals 10, no. 3: 205. https://doi.org/10.3390/min10030205
APA StyleCorcoran, L., & Simonetti, A. (2020). Geochronology of Uraninite Revisited. Minerals, 10(3), 205. https://doi.org/10.3390/min10030205