Influence of Pre-Existing Nuclei on the Crystallization Kinetics of Primitive Alkaline Magmas: Insights on the Deep Feeding System of the Campi Flegrei Volcanic District
Abstract
:1. Introduction
2. Materials and Methods
2.1. Starting Material
2.2. Experimental Procedure
2.3. Analytical Techniques
2.4. Growth and Nucleation Rate Calculation
3. Results
3.1. Textural Features of the Experimental Runs
3.1.1. Natural Starting Material Series
3.1.2. Glassy Starting Material Series
3.2. Phases Composition
3.2.1. Natural Starting Material Series
3.2.2. Glassy Starting Material Series
3.3. Textural and Chemical Evidences of the Occurrence of Pre-Existing Nuclei
3.4. Clinopyroxene Growth and Nucleation Rates
4. Discussion
4.1. Influence of Pre-Existing Crystals on Nucleation and Growth Rate
4.2. Influence of Time on Nucleation and Growth Rates
4.3. Influence of Undercooling on Nucleation and Growth Rates
4.4. Application
5. Conclusions
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Tiller, W.A. On the cross-pollenation of crystallization ideas between metallurgy and geology. Phys. Chem. Miner. 1977, 2, 125–151. [Google Scholar] [CrossRef]
- Davis, M.J.; Ihinger, P.D. Effects of thermal history on crystal nucleation in silicate melt: Numerical simulations. J. Geophys. Res. Solid Earth 2002, 107, ECV-8. [Google Scholar] [CrossRef]
- Fenn, P.M. The nucleation and growth of alkali feldspars from hydrous melts. Can. Mineral. 1977, 15, 135–161. [Google Scholar]
- Swanson, S.E. Relation of nucleation and crystal-growth rate to the development of granitic textures. Am. Mineral. 1977, 62, 966–978. [Google Scholar]
- Davis, M.J.; Ihinger, P.D.; Lasaga, A.C. Influence of water on nucleation kinetics in silicate melt. J. Non. Cryst. Solids 1997, 219, 62–69. [Google Scholar] [CrossRef]
- Muncill, G.E.; Lasaga, A.C. Crystal-growth kinetics of plagioclase in igneous systems: Isothermal H2O-saturated experiments and extension of a growth model to complex silicate melts. Am. Mineral. 1988, 73, 982–992. [Google Scholar]
- Cashman, C.V.; Marsh, B.D. Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallisation. Contrib. Mineral. Petrol. 1988, 99, 292–305. [Google Scholar] [CrossRef]
- Lofgren, G.E. Effect of heterogeneous nucleation on basaltic textures: A dynamic crystallization study. J. Petrol. 1983, 24, 229–255. [Google Scholar] [CrossRef]
- Kirkpatrick, R.J. Nucleation and growth of plagioclase, Makaopuhi and Alae lava lakes, Kilauea Volcano, Hawaii. Geol. Soc. Am. Bull. 1977, 88, 78–84. [Google Scholar] [CrossRef]
- Mishima, N.; Ota, R.; Wakasugi, T.; Fukunaga, J. Analysis of crystallization behavior in Li2O·2SiO2 glass by DTA method based on a liquid model. J. Non. Cryst. Solids 1996, 197, 19–24. [Google Scholar] [CrossRef]
- Uda, S. Influence of unit cluster size on nucleation rate of Li2B4O7 melt. J. Cryst. Growth 1994, 140, 128–138. [Google Scholar] [CrossRef]
- Berkebile, C.A.; Dowty, E. Nucleation in laboratory charges of basaltic composition. Am. Mineral. 1982, 67, 886–899. [Google Scholar]
- Philpotts, A.; Ague, J. Principles of Igneous and Metamorphic Petrology; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Hammer, J.E.; Sharp, T.G.; Wessel, P. Heterogeneous nucleation and epitaxial crystal growth of magmatic minerals. Geology 2010, 38, 367–370. [Google Scholar] [CrossRef]
- Špillar, V.; Dolejš, D. Heterogeneous nucleation as the predominant mode of crystallization in natural magmas: Numerical model and implications for crystal–melt interaction. Contrib. Mineral. Petrol. 2015, 169, 1–16. [Google Scholar] [CrossRef]
- Pichavant, M.; Costa, F.; Burgisser, A.; Scaillet, B.; Martel, C.; Poussineau, S. Equilibration scales in silicic to intermediate magmas implications for experimental studies. J. Petrol. 2007, 48, 1955–1972. [Google Scholar] [CrossRef] [Green Version]
- Shea, T.; Hammer, J.E. Kinetics of cooling- and decompression-induced crystallization in hydrous mafic-intermediate magmas. J. Volcanol. Geotherm. Res. 2013, 260, 127–145. [Google Scholar] [CrossRef]
- Walker, D.; Powell, M.A.; Lofgren, G.E.; Hays, J.F. Dynamic crystallization of a eucrite basalt. In Proceedings of the Lunar and Planetary Science Conference Proceedings, Houston, TX, USA, 13–17 March 1978; Volume 1, pp. 1369–1391. [Google Scholar]
- Pupier, E.; Duchene, S.; Toplis, M.J. Experimental quantification of plagioclase crystal size distribution during cooling of a basaltic liquid. Contrib. Mineral. Petrol. 2008, 155, 555–570. [Google Scholar] [CrossRef]
- Masotta, M.; Pontesilli, A.; Mollo, S.; Armienti, P.; Ubide, T.; Nazzari, M.; Scarlato, P. The role of undercooling during clinopyroxene growth in trachybasaltic magmas: Insights on magma decompression and cooling at Mt. Etna volcano. Geochim. Cosmochim. Acta 2020, 268, 258–276. [Google Scholar] [CrossRef]
- Hammer, J.E. Experimental Studies of the Kinetics and Energetics of Magma Crystallization. Rev. Mineral. Geochem. 2008, 69, 9–59. [Google Scholar] [CrossRef]
- Lesher, C.E.; Cashman, K.V.; Mayfield, J.D. Kinetic controls on crystallization of Tertiary North Atlantic basalt and implications for the emplacement and cooling history of lava at site 989, Southeast Greenland Rifted Margin. Larsen, H.C., Duncan, R.A., Eds.; Ocean Drilling Program: College Station, TX, USA, 1999; pp. 135–148. [Google Scholar]
- Hammer, J.E.; Rutherford, M.J. An experimental study of the kinetics of decompression-induced crystallization in silicic melt. J. Geophys. Res. 2002, 107, 2021. [Google Scholar] [CrossRef]
- Shea, T.; Larsen, J.F.; Gurioli, L.; Hammer, J.E.; Houghton, B.F.; Cioni, R. Leucite crystals: Surviving witnesses of magmatic processes preceding the 79AD eruption at Vesuvius, Italy. Earth Planet. Sci. Lett. 2009, 281, 88–98. [Google Scholar] [CrossRef]
- Vetere, F.; Iezzi, G.; Behrens, H.; Cavallo, A.; Misiti, V.; Dietrich, M.; Knipping, J.; Ventura, G.; Mollo, S. Intrinsic solidification behaviour of basaltic to rhyolitic melts: A cooling rate experimental study. Chem. Geol. 2013, 354, 233–242. [Google Scholar] [CrossRef] [Green Version]
- Vetere, F.; Iezzi, G.; Behrens, H.; Holtz, F.; Ventura, G.; Misiti, V.; Cavallo, A.; Mollo, S.; Dietrich, M. Glass forming ability and crystallisation behaviour of sub-alkaline silicate melts. Earth Sci. Rev. 2015, 150, 25–44. [Google Scholar] [CrossRef]
- Mollo, S.; Iezzi, G.; Ventura, G.; Cavallo, A.; Scarlato, P. Heterogeneous nucleation mechanisms and formation of metastable phase assemblages induced by different crystalline seeds in a rapidly cooled andesitic melt. J. Non. Cryst. Solids 2012, 358, 1624–1628. [Google Scholar] [CrossRef]
- Arzilli, F.; Agostini, C.; Landi, P.; Fortunati, A.; Mancini, L.; Carroll, M.R. Plagioclase nucleation and growth kinetics in a hydrous basaltic melt by decompression experiments. Contrib. Mineral. Petrol. 2015, 170, 55. [Google Scholar] [CrossRef]
- Bonechi, B.; Perinelli, C.; Gaeta, M.; Tecchiato, V.; Granati, S.F. Experimental constraints on amphibole stability in primitive alkaline and calc-alkaline magmas. Period. Mineral. 2017, 86, 231–245. [Google Scholar]
- Bonechi, B.; Perinelli, C.; Gaeta, M.; Tecchiato, V.; Fabbrizio, A. Amphibole growth from a primitive alkaline basalt at 0.8 GPa: Time-dependent compositional evolution, growth rate and competition with clinopyroxene. Lithos 2020, 354, 105272. [Google Scholar] [CrossRef]
- Bonechi, B.; Perinelli, C.; Gaeta, M. Clinopyroxene growth rates at high-pressure: Constraints on magma recharge of the deep reservoir of the Campi Flegrei Volcanic District (south Italy). Bull. Volcanol. 2020, 82, 5. [Google Scholar] [CrossRef]
- Perinelli, C.; Gaeta, M.; Bonechi, B.; Granati, S.F.; Freda, C.; D’Antonio, M.; Stagno, V.; Sicola, S.; Romano, C. Effect of water on the phase relations of primitive K-basalts: Implications for high-pressure differentiation in the Phlegraean Volcanic District magmatic system. Lithos 2019, 342, 530–541. [Google Scholar]
- Morabito, S.; Petrosino, P.; Milia, A.; Sprovieri, M.; Tamburrino, S. A multidisciplinary approach for reconstructing the stratigraphic framework of the last 40 ka in a bathyal area of the eastern Tyrrhenian Sea. Glob. Planet. Chang. 2014, 123, 121–138. [Google Scholar] [CrossRef]
- D’Antonio, M.; Civetta, L.; Di Girolamo, P. Mantle source heterogeneity in the Campanian Region (South Italy) as inferred from geochemical and isotopic features of mafic volcanic rocks with shoshonitic affinity. Mineral. Petrol. 1999, 67, 163–192. [Google Scholar] [CrossRef]
- De Astis, G.; Pappalardo, L.; Piochi, M. Procida volcanic history: New insights into the evolution of the Phlegraean Volcanic District (Campania region, Italy). Bull. Volcanol. 2004, 66, 622–641. [Google Scholar] [CrossRef]
- Johannes, W.; Bell, P.M.; Mao, H.K.; Boettcher, A.L.; Chipman, D.W.; Hays, J.F.; Newton, R.C.; Seifert, F. An interlaboratory comparison of piston-cylinder pressure calibration using the albite-breakdown reaction. Contrib. Mineral. Petrol. 1971, 32, 24–38. [Google Scholar] [CrossRef]
- Presnall, D.C.; Dixon, S.A.; Dixon, J.R.; O’Donnell, T.H.; Brenner, N.L.; Schrock, R.L.; Dycus, D.W. Liquidus phase relations on the join diopside-forsterite-anorthite from 1 atm to 20 kbar: Their bearing on the generation and crystallization of basaltic magma. Contrib. Mineral. Petrol. 1978, 66, 203–220. [Google Scholar] [CrossRef]
- Kress, V.C.; Carmichael, I.S.E. The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib. Mineral. Petrol. 1991, 108, 82–92. [Google Scholar] [CrossRef]
- Toplis, M.J. The thermodynamics of iron and magnesium partitioning between olivine and liquid: Criteria for assessing and predicting equilibrium in natural and experimental systems. Contrib. Mineral. Petrol. 2005, 149, 22–39. [Google Scholar] [CrossRef]
- Conte, A.M.; Dolfi, D.; Gaeta, M.; Misiti, V.; Mollo, S.; Perinelli, C. Experimental constraints on evolution of leucite-basanite magma at 1 and 10-4 GPa: Implications for parental compositions of Roman high-potassium magmas. Eur. J. Mineral. 2009, 21, 763–782. [Google Scholar] [CrossRef]
- Weaver, S.L.; Wallace, P.J.; Johnston, A.D. Experimental constraints on the origins of primitive potassic lavas from the Trans-Mexican Volcanic Belt. Contrib. Mineral. Petrol. 2013, 166, 825–843. [Google Scholar] [CrossRef]
- Clarke, A.B.; Stephens, S.; Teasdale, R.; Sparks, R.S.J.; Diller, K. Petrologic constraints on the decompression history of magma prior to Vulcanian explosions at the Soufrière Hills volcano, Montserrat. J. Volcanol. Geotherm. Res. 2007, 161, 261–274. [Google Scholar] [CrossRef]
- Couch, S. Experimental investigation of crystallization kinetics in a haplogranite system. Am. Mineral. 2003, 88, 1471–1485. [Google Scholar] [CrossRef]
- Hammer, J.E.; Cashman, K.V.; Voight, B. Magmatic processes revealed by textural and compositional trends in Merapi dome lavas. J. Volcanol. Geotherm. Res. 2000, 100, 165–192. [Google Scholar] [CrossRef] [Green Version]
- Devine, J.D.; Gardner, J.E.; Brack, H.P.; Layne, G.D.; Rutherford, M.J. Comparison of microanalytical methods for estimating H2O contents of silicic volcanic glasses. Am. Mineral. 1995, 80, 319–328. [Google Scholar] [CrossRef] [Green Version]
- Couch, S.; Sparks, R.S.J.; Carroll, M.R. The kinetics of degassing-induced crystallization at Soufriere Hills Volcano, Montserrat. J. Petrol. 2003, 44, 1477–1502. [Google Scholar] [CrossRef] [Green Version]
- Iezzi, G.; Mollo, S.; Torresi, G.; Ventura, G.; Cavallo, A.; Scarlato, P. Experimental solidification of an andesitic melt by cooling. Chem. Geol. 2011, 283, 261–273. [Google Scholar] [CrossRef]
- Orlando, A.; D’Orazio, M.; Armienti, P.; Borrini, D. Experimental determination of plagioclase and clinopyroxene crystal growth rates in an anhydrous trachybasalt from Mt Etna (Italy). Eur. J. Mineral. 2008, 20, 653–664. [Google Scholar] [CrossRef]
- Pontesilli, A.; Masotta, M.; Nazzari, M.; Mollo, S.; Armienti, P.; Scarlato, P.; Brenna, M. Crystallization kinetics of clinopyroxene and titanomagnetite growing from a trachybasaltic melt: New insights from isothermal time-series experiments. Chem. Geol. 2019, 510, 113–129. [Google Scholar] [CrossRef]
- Abramoff, M.D.; Magalhães, P.J.; Ram, S.J. Image Processing with ImageJ. Biophotonics Intern. 2004, 11, 36–42. [Google Scholar]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Higgins, D.M. Measurement of crystal size distributions. Am. Mineral. 2000, 85, 1105–1116. [Google Scholar] [CrossRef]
- Higgins, M.D. Closure in crystal size distributions (CSD), verification of CSD calculations, and the significance of CSD fans. Am. Mineral. 2002, 87, 1242–1243. [Google Scholar] [CrossRef]
- Ghiorso, M.S.; Sack, R.O. Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib. Mineral. Petrol. 1995, 119, 197–212. [Google Scholar] [CrossRef]
- Asimow, P.; Ghiorso, M.S. Algorithmic modifications extending MELTS to calculate subsolidus phase relations. Am. Mineral. 1998, 83, 1127–1132. [Google Scholar] [CrossRef]
- Morimoto, N.; Fabries, J.; Ferguson, A.K.; Ginzburg, I.V.; Ross, M.; Seifert, F.A.; Zussman, J.; Aoki, K.; Gottardi, G. Nomenclature of pyroxenes Subcommittee. Am. Mineral. 1998, 73, 1123–1133. [Google Scholar]
- Putirka, K.D. Thermometers and barometers for volcanic systems. In Minerals, Inclusions and Volcanic Processes; Putirka, K.D., Tepley, F.J., III, Eds.; Mineralogical Society of America: Chantilly, VA, USA, 2008; Volume 69, pp. 61–120. ISBN 1529-6466. [Google Scholar]
- D’Antonio, M.; Di Girolamo, P. Petrological and geochemical study of mafic shoshonitic volcanics from Procida-Vivara and Ventotene Islands (Campanian Region, South Italy). Acta Vulcanol. 1994, 5, 69–80. [Google Scholar]
- Herzberg, C.T. Pyroxene geothermometry and geobarometry: Experimental and thermodynamic evaluation of some subsolidus phase relations involving pyroxenes in the system CaO-MgO-Al2O3-SiO2. Geochim. Cosmochim. Acta 1978, 42, 945–957. [Google Scholar] [CrossRef]
- Thompson, R.N. Some High-Pressure Pyroxenes. Mineral. Mag. 1974, 39, 768–787. [Google Scholar] [CrossRef] [Green Version]
- Burkhard, D.J. Kinetics of crystallization: Example of micro-crystallization in basalt lava. Contrib. Mineral. Petrol. 2002, 142, 724–737. [Google Scholar] [CrossRef]
- Burkhard, D.J.M. Nucleation and growth rates of pyroxene, plagioclase, and Fe-Ti oxides in basalt under atmospheric conditions. Eur. J. Mineral. 2005, 17, 675–686. [Google Scholar] [CrossRef]
- Oze, C.; Winter, J.D. The occurrence, vesiculation, and solidification of dense blue glassy pahoehoe. J. Volcanol. Geotherm. Res. 2005, 142, 285–301. [Google Scholar] [CrossRef]
- Baker, D.R. The fidelity of melt inclusions as records of melt composition. Contrib. Mineral. Petrol. 2008, 156, 377–395. [Google Scholar] [CrossRef]
- Dowty, E. Crystal growth and nucleation theory and the numerical simulation of igneous crystallization. In The Physics of Magmatic Processes; Hargraves, R.B., Ed.; Princeton University Press: Princeton, NJ, USA, 1980; pp. 419–485. [Google Scholar]
- Lofgren, G.E. Experimental studies on the dynamic crystallization of silicate melts. Phys. Magmat. Process. 1980, 487, 551. [Google Scholar]
- Kirkpatrick, R.J. Kinetics of crystallization of igneous rocks. Rev. Mineral. 1981, 8, 321–395. [Google Scholar]
- Mollo, S.; Misiti, V.; Scarlato, P.; Soligo, M. The role of cooling rate in the origin of high temperature phases at the chilled margin of magmatic intrusions. Chem. Geol. 2012, 322, 28–46. [Google Scholar] [CrossRef]
- Zhang, Y. Geochemical Kinetics; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Cashman, K.V. Textural constraints on the kinetics of crystallization of igneous rocks. Rev. Mineral. Geochem. 1991, 24, 314. [Google Scholar]
- Mollard, E.; Martel, C.; Bourdier, J.L. Decompression-induced crystallization in hydrated silica-rich melts: Empirical models of experimental plagioclase nucleation and growth kinetics. J. Petrol. 2012, 53, 1743–1766. [Google Scholar] [CrossRef] [Green Version]
- Arzilli, F.; Carroll, M.R. Crystallization kinetics of alkali feldspars in cooling and decompression-induced crystallization experiments in trachytic melt. Contrib. Mineral. Petrol. 2013, 166, 1011–1027. [Google Scholar] [CrossRef]
- Ni, H.; Keppler, H.; Walte, N.; Schiavi, F.; Chen, Y.; Masotta, M.; Li, Z. In situ observation of crystal growth in a basalt melt and the development of crystal size distribution in igneous rocks. Contrib. Mineral. Petrol. 2014, 167, 1–13. [Google Scholar] [CrossRef]
- Allwardt, J.R.; Stebbins, J.F.; Schmidt, B.C.; Frost, D.J. The effect of composition, compression, and decompression on the structure of high-pressure aluminosilicate glasses. An investigation utilizing 17O and 27Al NMR. In Advances in High-Pressure Techniques for Geophysical Applications; Elsevier: Amsterdam, The Netherlands, 2005; ISBN 9780444519795. [Google Scholar]
- Gibb, F.G.F. Supercooling and the crystallization of plagioclase from a basaltic magma. Mineral. Mag. 1974, 39, 641–653. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Kashima, K.; Sunagawa, I. Measurements of nucleation rates and real growth rates of plagioclase in a solution of basaltic composition. J. Japan. Assoc. Min. Petr. Econ. Geol. 1981, 76, 294–307. [Google Scholar] [CrossRef]
- Fokin, V.M.; Zanotto, E.D.; Yuritsyn, N.S.; Schmelzer, J.W.P. Homogeneous crystal nucleation in silicate glasses: A 40 years perspective. J. Non. Cryst. Solids 2006, 352, 2681–2714. [Google Scholar] [CrossRef]
- Armienti, P.; Perinelli, C.; Putirka, K.D. A new model to estimate deep-level magma ascent rates, with applications to Mt. Etna (Sicily, Italy). J. Petrol. 2013, 54, 795–813. [Google Scholar] [CrossRef] [Green Version]
- Granati, S.F. The Architecture of the Magmatic Feeding System of the Campi Flegrei Volcanic District: Constraints from Experimental Petrology; Sapienza University of Rome: Rome, Italy, 2016. [Google Scholar]
- Mastrolorenzo, G.; Palladino, D.M.; Pappalardo, L.; Rossano, S. Probabilistic-numerical assessment of pyroclastic current hazard at Campi Flegrei and Naples city: Multi-VEI scenarios as a tool for “full-scale” risk management. PLoS ONE 2017, 12, 1–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cecchetti, A.; Marianelli, P.; Sbrana, A. Prime evidenze della esistenza di un sistema di cristallizzazione profondo ai Campi Flegrei. Atti Soc. tosc. Sci. nat. Mem. Sci. nat., Mem. 2001, 2001, 1–7. [Google Scholar]
- Fanara, S.; Botcharnikov, R.E.; Palladino, D.M.; Adams, F.; Buddensieck, J.; Mulch, A.; Behrens, H. Volatiles in magmas related to the Campanian Ignimbrite eruption: Experiments vs. natural findings. Am. Mineral. 2015, 100, 2284–2297. [Google Scholar] [CrossRef]
- Zollo, A.; Maercklin, N.; Vassallo, M.; Dello Iacono, D.; Virieux, J.; Gasparini, P. Seismic reflections reveal a massive melt layer feeding Campi Flegrei caldera. Geophys. Res. Lett. 2008, 35, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Fedi, M.; Cella, F.; D’Antonio, M.; Florio, G.; Paoletti, V.; Morra, V. Gravity modeling finds a large magma body in the deep crust below the Gulf of Naples, Italy. Sci. Rep. 2018, 8, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Pappalardo, L.; Mastrolorenzo, G. Rapid differentiation in a sill-like magma reservoir: A case study from the campi flegrei caldera. Sci. Rep. 2012, 2, 712. [Google Scholar] [CrossRef] [Green Version]
- Auger, E.; Gasparini, P.; Virieux, J.; Zollo, A. Seismic evidence of an extended magmatic sill under Mt. Vesuvius. Science 2001, 294, 1510–1512. [Google Scholar] [CrossRef]
- Rapolla, A.; Fedi, M.; Fiume, M.G. Crustal Structure of the Ischia-Phlegrean Geothermal Fields, Near Naples, Italy, From Gravity and Aeromagnetic Datat. Geophys. J. Int. 1989, 97, 409–419. [Google Scholar] [CrossRef] [Green Version]
- Esposito, R.; Bodnar, R.J.; Danyushevsky, L.V.; De, B.; Fedele, L.; Hunter, J.; Lima, A.; Shimizu, N. Volatile evolution of magma associated with the solchiaro eruption in the Phlegrean Volcanic District (Italy). J. Petrol. 2011, 52, 2431–2460. [Google Scholar] [CrossRef] [Green Version]
- Piochi, M.; Mastrolorenzo, G.; Pappalardo, L. Magma ascent and eruptive processes from textural and compositional features of Monte Nuovo pyroclastic products, Campi Flegrei, Italy. Bull. Volcanol. 2005, 67, 663–678. [Google Scholar] [CrossRef]
- Calzolaio, M.; Arzilli, F.; Carroll, M.R. Growth rate of alkali feldspars in decompression-induced crystallization experiments in a trachytic melt of the Phlegraean Fields (Napoli, Italy). Eur. J. Mineral. 2010, 22, 485–493. [Google Scholar] [CrossRef]
- Arzilli, F.; Piochi, M.; Mormone, A.; Agostini, C.; Carroll, M.R. Constraining pre-eruptive magma conditions and unrest timescales during the Monte Nuovo eruption (1538 AD.; Campi Flegrei, Southern Italy): Integrating textural and CSD results from experimental and natural trachy-phonolites. Bull. Volcanol. 2016, 78, 72. [Google Scholar] [CrossRef] [Green Version]
- Guidoboni, E.; Ciuccarelli, C. The Campi Flegrei caldera: Historical revision and new data on seismic crises, bradyseisms, the Monte Nuovo eruption and ensuing earthquakes (twelfth century 1582 ad). Bull. Volcanol. 2011, 73, 655–677. [Google Scholar] [CrossRef]
Sample | APR16 | APR16GL |
---|---|---|
SiO2 | 48.89 | 49.30 |
TiO2 | 1.23 | 1.33 |
Al2O3 | 15.65 | 15.31 |
FeOtot | 8.08 | 7.79 |
MnO | 0.14 | 0.14 |
MgO | 8.89 | 9.31 |
CaO | 11.64 | 12.02 |
Na2O | 2.88 | 2.86 |
K2O | 1.52 | 1.60 |
P2O5 | 0.31 | 0.33 |
Sum | 99.99 | 99.23 |
L.O.I. | 0.61 | nd |
Mg# 1 | 0.66 | 0.68 |
Run # | T (°C) | TCpxL (°C) | ΔTeff (°C) | Time (h) | H2Oi (wt%) | Phases | H2Of (wt. %) | Δr2 | % ΣFe § |
---|---|---|---|---|---|---|---|---|---|
Natural starting material | |||||||||
APR16-3B | 1225 | 1280 | 55 | 0.16 | NWA | Gl + Cpx #+ Ol # + Ox # | 1.77 | ||
APR16-1C | 1225 | 1280 | 55 | 3 | NWA | Gl(94) + Cpx(6) + Ol # + Ox # | 0.96 | 0.38 | −5 |
APR16-35 | 1225 | 1280 | 55 | 6 | NWA | Gl(96) + Cpx(4) + Ol # | 1.70 | 0.14 | −22 |
APR16-2B | 1225 | 1280 | 55 | 12 | NWA | Gl(90) + Cpx(10) + Ol # | 2.13 | 0.11 | −35 |
Glassy starting material | |||||||||
APR16-C1Aa | 1250 | 1295 | 45 | 0.25 | NWA | Gl(97) + Cpx(3) | 1.61 | 1.75 | −7 |
APR16-C1Ab | 1250 | 1295 | 45 | 3 | NWA | Gl(75) + Cpx(25) | 0.90 | 0.62 | −12 |
APR16-C1Ac | 1250 | 1295 | 45 | 6 | NWA | Gl(83) + Cpx(15) + Ol(2) | 2.03 | 0.83 | −20 |
APR16-C1Ad | 1250 | 1295 | 45 | 9 | NWA | Gl(90) + Cpx(10) | 1.95 | 0.65 | −19 |
APR16-C2Aa | 1220 | 1270 | 50 | 0.25 | 2 | Gl(91) + Cpx(4) + Ol(1) + Ox(4) | 1.92 | 0.02 | −25 |
APR16-C2Ab | 1220 | 1270 | 50 | 3 | 1.9 | Gl(68) + Cpx(23) + Ol(4) + Plg(1) + Ox * | 1.56 | 0.66 | −17 |
APR16-C2Ac | 1220 | 1270 | 50 | 6 | 2.1 | Gl(65) + Cpx(27) + Ol(5) + Plg(3) | 2.47 | 0.93 | −25 |
APR16-C2Ad | 1220 | 1270 | 50 | 9 | 1.9 | Gl(80) + Cpx(17) + Ol(3) + Ox * | 1.30 | 0.25 | −26 |
Run # | T (°C) | Time (s) | H2Of (wt. %) | L (cm) | St. dev. (cm) | W (cm) | St. dev. (cm) | GL (cm∙s−1) | St. dev. (cm∙s−1) |
---|---|---|---|---|---|---|---|---|---|
Natural starting material | |||||||||
APR16-3B | 1225 | 600 | 1.77 | 1.55 × 10−3 | 6.3 × 10−4 | 9.00 × 10−4 | 1.4 × 10−4 | - | - |
APR16-1C | 1225 | 10,800 | 0.96 | 4.37 × 10−3 | 5.9 × 10−4 | 2.70 × 10−3 | 6.5 × 10−4 | 1.59 × 10−7 | 3.0 × 10−8 |
APR16-35 | 1225 | 21,600 | 1.70 | 4.64 × 10−3 | 1.5 × 10−3 | 2.83 × 10−3 | 5.8 × 10−4 | 8.34 × 10−8 | 1.9 × 10−8 |
APR16-2B | 1225 | 43,200 | 2.13 | 6.01 × 10−3 | 2.0 × 10−3 | 4.16 × 10−3 | 8.0 × 10−4 | 5.76 × 10−8 | 1.4 × 10−8 |
Glassy starting material | |||||||||
APR16-C1Aa | 1250 | 900 | 1.61 | 6.48 × 10−4 | 4.4 × 10−5 | 3.13 × 10−4 | 6.8 × 10−5 | 2.50 × 10−7 | 2.9 × 10−8 |
APR16-C1Ab | 1250 | 10,800 | 2.33 | 1.17 × 10−3 | 2.1 × 10−4 | 5.30 × 10−4 | 9.8 × 10−5 | 3.64 × 10−8 | 6.8 × 10−9 |
APR16-C1Ac | 1250 | 21,600 | 2.03 | 1.35 × 10−3 | 1.5 × 10−4 | 5.86 × 10−4 | 1.5 × 10−4 | 2.06 × 10−8 | 2.8 × 10−9 |
APR16-C1Ad | 1250 | 32,400 | 1.95 | 1.43 × 10−3 | 2.1 × 10−4 | 8.78 × 10−4 | 1.2 × 10−4 | 1.73 × 10−8 | 2.0 × 10−9 |
APR16-C2Aa | 1220 | 900 | 1.92 | 8.40 × 10−4 | 1.1 × 10−4 | 4.05 × 10−4 | 9.2 × 10−5 | 3.24 × 10−7 | 5.2 × 10−8 |
APR16-C2Ab | 1220 | 10,800 | 1.56 | 1.07 × 10−3 | 2.3 × 10−4 | 4.04 × 10−4 | 6.5 × 10−5 | 3.04 × 10−8 | 3.9 × 10−9 |
APR16-C2Ac | 1220 | 21,600 | 2.47 | 1.68 × 10−3 | 1.3 × 10−4 | 7.93 × 10−4 | 3.0 × 10−4 | 2.67 × 10−8 | 5.1 × 10−9 |
APR16-C2Ad | 1220 | 32,400 | 1.30 | 1.70 × 10−3 | 1.6 × 10−4 | 9.22 × 10−4 | 2.0 × 10−4 | 1.93 × 10−8 | 2.2 × 10−9 |
Run # | T (°C) | Time (s) | Ln n0 (mm−4) | n0 (mm−4) | J (mm−3∙s−1) |
---|---|---|---|---|---|
Natural starting material | |||||
APR16-1C | 1225 | 10,800 | 19.6 | 3.25 × 108 | 5.17 × 102 |
APR16-35 | 1225 | 21,600 | 17.86 | 5.71 × 107 | 4.76 × 101 |
APR16-2B | 1225 | 43,200 | 18.02 | 6.70 × 107 | 3.86 × 101 |
Glassy starting material | |||||
APR16-C1Aa | 1250 | 900 | 25.78 | 1.57 × 1011 | 3.93 × 105 |
APR16-C1Ab | 1250 | 10,800 | 26.84 | 4.53 × 1011 | 1.65 × 105 |
APR16-C1Ac | 1250 | 21,600 | 24.8 | 5.90 × 1010 | 1.21 × 104 |
APR16-C1Ad | 1250 | 32,400 | 25.05 | 7.57 × 1010 | 1.31 × 104 |
APR16-C2Aa | 1220 | 900 | 22.4 | 5.35 × 109 | 1.85 × 104 |
APR16-C2Ab | 1220 | 10,800 | 24.13 | 3.00 × 1010 | 1.32 × 104 |
APR16-C2Ac | 1220 | 21,600 | 23.09 | 1.06 × 1010 | 2.96 × 103 |
APR16-C2Ad | 1220 | 32,400 | 23.13 | 1.10 × 1010 | 2.13 × 103 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonechi, B. Influence of Pre-Existing Nuclei on the Crystallization Kinetics of Primitive Alkaline Magmas: Insights on the Deep Feeding System of the Campi Flegrei Volcanic District. Minerals 2020, 10, 234. https://doi.org/10.3390/min10030234
Bonechi B. Influence of Pre-Existing Nuclei on the Crystallization Kinetics of Primitive Alkaline Magmas: Insights on the Deep Feeding System of the Campi Flegrei Volcanic District. Minerals. 2020; 10(3):234. https://doi.org/10.3390/min10030234
Chicago/Turabian StyleBonechi, Barbara. 2020. "Influence of Pre-Existing Nuclei on the Crystallization Kinetics of Primitive Alkaline Magmas: Insights on the Deep Feeding System of the Campi Flegrei Volcanic District" Minerals 10, no. 3: 234. https://doi.org/10.3390/min10030234
APA StyleBonechi, B. (2020). Influence of Pre-Existing Nuclei on the Crystallization Kinetics of Primitive Alkaline Magmas: Insights on the Deep Feeding System of the Campi Flegrei Volcanic District. Minerals, 10(3), 234. https://doi.org/10.3390/min10030234