Valorization of Rare Earth Elements from a Steenstrupine Concentrate Via a Combined Hydrometallurgical and Pyrometallurgical Method
Abstract
:1. Introduction
2. Material and Methods
2.1. Material
2.2. Methods
2.2.1. Thermal Conditioning
2.2.2. Leaching with Hydrochloric Acid and Filtration
3. Results and Discussion
3.1. The Influence of Temperature on a Leaching Efficiency
3.2. The Influence of Liquid/Solid Ratio at a Leaching Efficiency
3.3. The Influence of Leaching Time on a Leaching Efficiency
3.4. Solid/Liquid Separation
3.5. Precipitation with Oxalic Acid
3.6. Thermal Decomposition of Rare Earth Oxalate
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Zhang, G.; Huang, W. Bastnaesite smelting process review. Rare Met. 1997, 21, 193–199. [Google Scholar]
- Guocai, Z.; Jun, T. Rare earth extraction from bastnaesite with green chemistry method. Chemistry 2000, 12, 6–11. [Google Scholar]
- Spear, S.F.; Pyle, M.J. Apatite, monazite, and xenotime in metamorphic rocks. Rev. Mineral. Geochem. 2002, 48, 293–335. [Google Scholar] [CrossRef]
- Huang, X.; Li, H.; Wang, C.; Wang, G.; Xue, X.; Zhang, G. Development Status and Research Progress in Rare Earth Industry in China. Chin. J. Rare Met. 2007, 31, 279–288. [Google Scholar]
- Zhengfu, S. Study on the utilization of monazite resource. World Nonferrous Met. 2014, 31–33. [Google Scholar]
- Stopić, S.; Friedrich, B. Leaching of rare earth elements with sulfuric acid from bastnasite ores. Mil. Tech. Cour. 2018, 66, 757–770. [Google Scholar] [CrossRef] [Green Version]
- Furfaro, D.; Krebs, J. Removal of Uranium and Thorium from Kvanefjeld, Rare Earth İntermediate Product; Greenland Minerals and Energy Limited: Perth, Australia, 2013. [Google Scholar]
- Van Wyngaardt, M. GMEL looking to simplify refining at Kvanefjeld rare earths project. In Creamer Medias Mining Weekly; Creamer Media: Johannesburg, South Africa, 2018. [Google Scholar]
- Lebedev, V.N. Sulfuric Acid Technology for Processing of Eudialyte Concentrate. Russ. J. Appl. Chem. 2003, 76, 1559–1563. [Google Scholar] [CrossRef]
- Lebedev, V.N.; Shchur, T.E.; Maiorov, D.V.; Popova, L.A.; Serkova, R.P. Specific Features of Acid Decomposition of Eudialyte and Certain Rare-Metal Concentrates from Kola Peninsula. Russ. J. Appl. Chem. 2003, 76, 1191–1196. [Google Scholar] [CrossRef]
- Davris, P.; Stopic, S.; Balomenos, E.; Panias, D.; Paspaliaris, I.; Friedrich, B. Leaching of rare earth elements from Eudialyte concentrate by supressing silicon dissolution. Miner. Eng. 2017, 108, 115–122. [Google Scholar] [CrossRef]
- Voßenkaul, D.; Birich, A.; Müller, N.; Stoltz, N.; Friedrich, B. Hydrometallurgical processing of eudialyte bearing concentrates to recover rare earth elements via low-temperature dry digestion to prevent the silica gel formation. J. Sustain. Metall. 2017, 3, 79. [Google Scholar] [CrossRef]
- Stopic, S.; Ma, Y.; Friedrich, B. Leaching of Eudialyte concentrate and REE-Precipitation. In Proceedings of the 9th European Metallurgical Conference EMC 2017, Leipzig, Germany, 25–28 June 2017; Volume 2, pp. 595–602. [Google Scholar]
- Ma, Y.; Stopic, S.; Gronen, L.; Obradovic, S.; Milivojevic, M.; Friedrich, B. Neural Network Modeling for the Extraction of Rare Earth Elements from Eudialyte Concentrate by Dry Digestion and Leaching. Metals 2018, 8, 267. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Stopic, S.; Friedrich, B. Hydrometallurgical Treatment of a Eudialyte Concentrate for Preparation of Rare Earth Carbonate. Johns. Matthey Technol. Rev. 2019, 63, 2–13. [Google Scholar] [CrossRef]
- Ma, Y.; Stopic, S.; Friedrich, B. Selective Recovery and separation of Zr and Hf from sulfuric acid leach solution using anionic exchange resin. Hydrometallurgy 2019, 189, 105–143. [Google Scholar] [CrossRef]
- Balomenos, E.; Davris, P.; Deady, E.; Yang, J.; Panias, D.; Friedrich, B.; Binnemans, K.; Seisenbaeva, G.; Dittrich, C.; Kalvig, P.; et al. The EURARE Project: Development of a Sustainable Exploitation Scheme for Europe’s Rare Earth Ore Deposits. Johns. Matthey Technol. Rev. 2017, 61, 142–153. [Google Scholar] [CrossRef] [Green Version]
- Alkan, G.; Diaz, F.; Gronen, L.; Stopic, S.; Friedrich, B. A mineralogical assessment on bauxite residue (red mud) leaching for titanium recovery. Metals 2017, 7, 458. [Google Scholar] [CrossRef] [Green Version]
- Kaya, S.; Peters, E.; Forsberg, K.; Dittrich, C.; Stopic, S.; Friedrich, B. Scandium Recovery from an Ammonium Fluoride Strip Liquor by Anti-Solvent Crystallization. Metals 2018, 8, 767. [Google Scholar] [CrossRef] [Green Version]
- Alkan, G.; Yagmurlu, B.; Friedrich, B.; Ditrich, C.; Gronen, L.; Stopic, S.; Ma, Y. Selective Silica gel Scandium Extraction from, Iron–depleted Red Mud Slags by Dry Digestion. Hydrometallurgy 2019, 185, 266–272. [Google Scholar] [CrossRef]
SiO2 | Al2O3 | Na2O | K2O | Fe2O3 | P2O5 | MnO | CaO | ZrO2 | MgO | TiO2 |
36.4 | 3.35 | 13.2 | 0.94 | 10.2 | 8.49 | 1.73 | 1.87 | 0.30 | 0.07 | 0.15 |
F | La2O3 | CeO2 | Nd2O3 | Y2O3 | Sm2O3 | Gd2O3 | Dy2O3 | ThO2 | Total REO | |
0.54 | 4.06 | 7.76 | 2.78 | 1.99 | 0.40 | 0.45 | 0.23 | 1.48 | 17.66 |
La | Ce | Nd | Y | Pr | Sm | Eu | Gd | Tb | Dy | Er |
---|---|---|---|---|---|---|---|---|---|---|
3.28 | 6.31 | 2.21 | 1.37 | 0.57 | 0.29 | 0.02 | 0.22 | 0.03 | 0.17 | 0.07 |
Experiment | Thermal Conditioning | Solid-Liquid Ratio | Temperature (°C) | Conditions in Reactor | Silica Gel Formation |
---|---|---|---|---|---|
No.1 | No | 0.1 | 30 | open | Yes |
No.2 | Yes | 0.1 | 30 | open | No |
No.3 | No | 0.1 | 70 | open | Yes |
No.4 | No | 0.1 | 70 | closed | No |
No.5 | No | 0.1 | 90 | closed | No |
Experiment | Solid/Liquid Ratio (g/mL) | Silica Gel Formation | Leaching Efficiency of Yttrium (%) |
---|---|---|---|
No.5 | 20/200 (0.73 g HCl/g concentrate) | No, but silica precipitation is observed during staying | 88.0 |
No.6 | 20/250 (0.91 g HCl/g concentrate) | No | 88.3 |
No.7 | 40/200 (0.37 g HCl/g concentrate) | Yes | − |
No.8 | 20/300 (1.10 g HCl/g concentrate) | No | 88.0 |
Element | Filtrate (%) | Wastewater from Filter Cake (%) | Solid Tesidue (%) |
---|---|---|---|
La | 89.50 | 8.10 | 4.03 |
Ce | 90.20 | 7.85 | 4.82 |
Nd | 8820 | 8.00 | 5.08 |
Y | 88.30 | 8.80 | 5.18 |
Element | Filtrate1 (%) | Wastewater 2 (%) | Solid Residue (%) |
---|---|---|---|
La | 95.28 | 2.02 | 2.02 |
Ce | 95.69 | 1.93 | 2.10 |
Nd | 96.36 | 1.90 | 2.53 |
Y | 96.27 | 1.78 | 3.34 |
La | Ce | Nd | Y | Pr | Sm | Gd | Dy | Er | Th | U |
98.98 | 99.57 | 98.19 | 98.53 | 98.30 | 98.60 | 97.83 | 97.99 | 97.86 | 95.59 | 10.24 |
Si | Al | Na | K | Fe | P | Mn | Ca | Mg | ||
0.1 | 29.79 | 1.07 | 16.79 | 41.30 | 0.55 | 10.01 | 40.93 | 0.1 |
La | Ce | Nd | Y | Pr | Sm | Eu | Gd | Dy | Er | Tb |
18.90 | 36.92 | 12.44 | 7.86 | 3.01 | 1.60 | 0.087 | 0.95 | 0.80 | 0.32 | 0.14 |
Al | Fe | Mn | Na | Ca | K | P | Th | U | Total REO | |
1.37 | 0.08 | 0.04 | <0.01 | 0.54 | 0.08 | 0.10 | 1.72 | <0.01 | 99.80 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, Y.; Stopic, S.; Friedrich, B. Valorization of Rare Earth Elements from a Steenstrupine Concentrate Via a Combined Hydrometallurgical and Pyrometallurgical Method. Minerals 2020, 10, 248. https://doi.org/10.3390/min10030248
Yun Y, Stopic S, Friedrich B. Valorization of Rare Earth Elements from a Steenstrupine Concentrate Via a Combined Hydrometallurgical and Pyrometallurgical Method. Minerals. 2020; 10(3):248. https://doi.org/10.3390/min10030248
Chicago/Turabian StyleYun, Yunbo, Srecko Stopic, and Bernd Friedrich. 2020. "Valorization of Rare Earth Elements from a Steenstrupine Concentrate Via a Combined Hydrometallurgical and Pyrometallurgical Method" Minerals 10, no. 3: 248. https://doi.org/10.3390/min10030248
APA StyleYun, Y., Stopic, S., & Friedrich, B. (2020). Valorization of Rare Earth Elements from a Steenstrupine Concentrate Via a Combined Hydrometallurgical and Pyrometallurgical Method. Minerals, 10(3), 248. https://doi.org/10.3390/min10030248