Clay Minerals in European Painting of the Mediaeval and Baroque Periods
Abstract
:1. Earths and Ochres—A Brief Overview
2. Methodology of Clay Pigments’ Microanalysis
3. The Story of Armenian Bole
4. Bohemian Green Earth
5. Provenance of White and Red Earths
6. From Pottery to Painting
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Clay Minerals—Fine-Grained Phyllosilicates | |
---|---|
celadonite | K(Mg,Fe2+)Fe3+(Si4O10)(OH)2 |
dickite (polytype of kaolinite) | Al2Si2O5(OH)8 |
glauconite | (K,Na)(Fe3+,Al,Mg)2(Si,Al)4O10(OH)2 |
chlorite | group of clay minerals, e.g., clinochlore Mg5Al(AlSi3O10)(OH)8 |
illite | K0.65Al2.0[Al0.65Si3.35O10](OH)2 |
kaolinite | Al2Si2O5(OH)8 |
montmorillonite | (Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2·nH2O |
saponite | Ca0.25(Mg,Fe)3((Si,Al)4O10)(OH)2·nH2O |
smectite | group of expandable clay minerals, e.g., montmorillonite or saponite |
palygorskite | (Mg,Al)5(Si,Al)8O20(OH)2·8H2O |
Other Minerals | |
aerinite | (Ca,Na)6Fe3+Al(Fe2+,Mg)2(Al,Mg)6[Si12O36(OH)12H][(H2O)12(CO3)] |
anatase | TiO2 |
biotite | K(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2 |
boehmite | γ-AlO(OH) |
calcite | CaCO3 |
cinnabar | HgS |
cristoballite (constituent of opal) | SiO2 |
dolomite | CaMg(CO3)2 |
feldspar | group of tectosilicate minerals, e.g., orthoclase K(AlSi3O8) |
gibbsite | γ-Al(OH)3 |
goethite | α-FeOOH |
gypsum | CaSO4∙2H2O |
hematite | Fe2O3 |
jarosite | KFe3+3(SO4)2(OH)6 |
mica | group of phyllosilicate minerals, e,g, muscovite or illite (clay-sized) |
pyrite | FeS2 |
quartz | SiO2 |
titanomagnetite | Fe2+(Fe3+,Ti)2O4 |
tridymite (constituent of opal) | SiO2 |
Appendix B
Name | Formula and Explanation |
---|---|
lead-tin yellow | Pb2SnO4 (type I), Pb(Sn,Si)O3 (type II) |
lead white | 2PbCO3·Pb(OH)2 (equivalent of mineral hydrocerussite) |
massicot | PbO (equivalent of natural massicot) |
Naples yellow | Pb2Sb2O7 (equivalent of mineral bindheimite) |
Prussian blue | Fe3+4[Fe2+(CN)6]3 |
Maya blue | Complex of plant dye indigo and palygorskite-(Mg,Al)5(Si,Al)8O20(OH)2∙8H2O |
References
- Hradil, D.; Grygar, T.M.; Hradilová, J.; Bezdicka, P. Clay and iron oxide pigments in the history of painting. Appl. Clay Sci. 2003, 22, 223–236. [Google Scholar] [CrossRef]
- Chalmin, E.; Huntley, J. Rock Art Pigment Characterisation, invited book chapter. In Oxford Handbook of the Archaeology and Anthropology of Rock Art; David, B., McNiven, I., Eds.; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Guineau, B.; Lorblanchet, M.; Gratuze, B.; Dulin, L.; Roger, P.; Akrich, R.; Müller, F. Manganese Black Pigments in Prehistoric Paintings: The Case of the Black Frieze of Pech Merle (France). Archeometry 2001, 43, 211–225. [Google Scholar] [CrossRef]
- Newman, B.; Loendorf, L. Portable X-Ray Fluorescence Analysis of Rock Art Pigments. Plains Anthr. 2005, 50, 277–283. [Google Scholar] [CrossRef]
- Clark, R.J.H.; Hark, R.R.; Salvadó, N.; Butí, S.; Pradell, T. Spectroscopy study of mural paintings from the Pyrenean Church of Saint Eulàlia of Unha. J. Raman Spectrosc. 2010, 41, 1418–1424. [Google Scholar] [CrossRef]
- Aceto, M.; Calà, E.; Cantamessa, S.; Agostino, A.; Fenoglio, G.; Capra, V.; Brun, G. From the Pyrenees to the Alps: Evidence of the use of aerinite on XII century fresco paintings at Novalesa abbey (Piemonte). J. Archaeol. Sci. Rep. 2019, 25, 15–24. [Google Scholar] [CrossRef]
- Arnold, D.E.; Branden, J.R.; Williams, P.R.; Feinman, G.M.; Brown, J.P. The first direct evidence for the production of Maya Blue: Rediscovery of a technology. Antiquity 2008, 82, 151–164. [Google Scholar] [CrossRef] [Green Version]
- Van Olphen, H. Maya Blue: A Clay-Organic Pigment? Science 1966, 154, 645–646. [Google Scholar] [CrossRef]
- Chiari, G.; Giustetto, R.; Ricchiardi, G. Crystal structure refinements of palygorskite and Maya Blue from molecular modelling and powder synchrotron diffraction. Eur. J. Miner. 2003, 15, 21–33. [Google Scholar] [CrossRef]
- Giustetto, R.; Xamena, F.X.L.; Ricchiardi, G.; Bordiga, S.; Damin, A.; Gobetto, R.; Chierotti, M.R. Maya Blue: A Computational and Spectroscopic Study. J. Phys. Chem. B 2005, 109, 19360–19368. [Google Scholar] [CrossRef]
- Doménech-Carbó, A.; Holmwood, S.; Di Turo, F.; Montoya, N.; Valle-Algarra, F.M.; Edwards, H.G.; Doménech-Carbó, M.T. Composition and Color of Maya Blue: Reexamination of Literature Data Based On the Dehydroindigo Model. J. Phys. Chem. C 2018, 123, 770–782. [Google Scholar] [CrossRef]
- Tilocca, A.; Fois, E. The Color and Stability of Maya Blue: TDDFT Calculations. J. Phys. Chem. C 2009, 113, 8683–8687. [Google Scholar] [CrossRef] [Green Version]
- Faustini, M.; Nicole, L.; Ruiz-Hitzky, E.; Sanchez, C. History of Organic-Inorganic Hybrid Materials: Prehistory, Art, Science, and Advanced Applications. Adv. Funct. Mater. 2018, 28, 1704158. [Google Scholar] [CrossRef]
- Daniels, V.; Devièse, T.; Hacke, M.; Higgitt, C. Technological insights into madder pigment production in antiquity. Br. Mus. Tech. Res. Bull. 2014, 8, 13–28. [Google Scholar]
- Román, R.S.; Bañón, C.B.; Ruiz, M.D.L. Analysis of the red ochre of the El Mirón burial (Ramales de la Victoria, Cantabria, Spain). J. Archaeol. Sci. 2015, 60, 84–98. [Google Scholar] [CrossRef] [Green Version]
- Marcaida, I.; Maguregui, M.; De Vallejuelo, S.F.-O.; Morillas, H.; Prieto-Taboada, N.; Veneranda, M.; Castro, K.; Madariaga, J.M. In situ X-ray fluorescence-based method to differentiate among red ochre pigments and yellow ochre pigments thermally transformed to red pigments of wall paintings from Pompeii. Anal. Bioanal. Chem. 2017, 409, 3853–3860. [Google Scholar] [CrossRef]
- Nel, P.; Lynch, P.; Laird, J.; Casey, H.; Goodall, L.; Ryan, C.; Sloggett, R. Elemental and mineralogical study of earth-based pigments using particle induced X-ray emission and X-ray diffraction. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2010, 619, 306–310. [Google Scholar] [CrossRef]
- Ospitali, F.; Smith, D.C.; Lorblanchet, M. Preliminary investigations by Raman microscopy of prehistoric pigments in the wall-painted cave at Roucadour, Quercy, France. J. Raman Spectrosc. 2006, 37, 1063–1071. [Google Scholar] [CrossRef]
- Košařová, V.; Hradil, D.; Němec, I.; Bezdicka, P.; Kanický, V. Microanalysis of clay-based pigments in painted artworks by the means of Raman spectroscopy. J. Raman Spectrosc. 2013, 44, 1570–1577. [Google Scholar] [CrossRef]
- Froment, F.; Tournié, A.; Colomban, P. Raman identification of natural red to yellow pigments: Ochre and iron-containing ores. J. Raman Spectrosc. 2008, 39, 560–568. [Google Scholar] [CrossRef]
- Guerra, I.; Cardell, C. Optimizing use of the structural chemical analyser (variable pressure FESEM-EDX raman spectroscopy) on micro-size complex historical paintings characterization. J. Microsc. 2015, 260, 47–61. [Google Scholar] [CrossRef]
- Cardell, C.; Guerra, I. An overview of emerging hyphenated SEM-EDX and Raman spectroscopy systems: Applications in life, environmental and materials sciences. TrAC Trends Anal. Chem. 2016, 77, 156–166. [Google Scholar] [CrossRef]
- Svarcová, S.; Kocí, E.; Bezdicka, P.; Hradil, D.; Hradilová, J. Evaluation of laboratory powder X-ray micro-diffraction for applications in the fields of cultural heritage and forensic science. Anal. Bioanal. Chem. 2010, 398, 1061–1076. [Google Scholar] [CrossRef]
- Moore, D.M.; Reynolds, R.C. X-ray Diffraction and the Identification and Analysis of Clay Minerals; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Hradil, D.; Bezdicka, P.; Hradilová, J.; Vašutová, V. Microanalysis of clay-based pigments in paintings by XRD techniques. Microchem. J. 2016, 125, 10–20. [Google Scholar] [CrossRef]
- Švarcová, S.; Bezdička, P.; Hradil, D.; Hradilová, J.; Žižak, I. Clay pigment structure characterization as a guide for provenance determination—A comparison between laboratory powder micro-XRD and synchrotron radiation XRD. Anal. Bioanal. Chem. 2011, 399, 331–336. [Google Scholar] [CrossRef]
- Grygar, T.M.; Hradilová, J.; Hradil, D.; Bezdička, P.; Bakardjieva, S. Analysis of earthy pigments in grounds of Baroque paintings. Anal. Bioanal. Chem. 2003, 375, 1154–1160. [Google Scholar] [CrossRef]
- Hradil, D.; Hradilová, J.; Bezdicka, P.; Svarcová, S. Differentiation between anonymous paintings of the 17th and the early 18th century by composition of clay-based grounds. Appl. Clay Sci. 2015, 118, 8–20. [Google Scholar] [CrossRef]
- Pospíšilová, E.; Hradil, D.; Holá, M.; Hradilová, J.; Novotný, K.; Kanický, V. Differentiation of clay-based pigments in paintings by means of laser ablation-inductively coupled plasma-mass spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2019, 158, 105639. [Google Scholar] [CrossRef]
- Hradil, D.; Hradilová, J.; Holcová, K.; Bezdička, P. The use of pottery clay for canvas priming in Italian Baroque – An example of technology transfer. Appl. Clay Sci. 2018, 165, 135–147. [Google Scholar] [CrossRef]
- Chipera, S.J. Baseline Studies of the Clay Minerals Society Source Clays: Powder X-ray Diffraction Analyses. Clays Clay Miner. 2001, 49, 398–409. [Google Scholar] [CrossRef]
- Cennini, C. The Craftsman’s Handbook—The Italian ‘Il Libra dell’Arte’; Dover Publications, Inc.: Mineola, NY, USA, 1960. [Google Scholar]
- Merrifield, M.P. Medieval and Renaissance Treatises on the Arts of Painting: Original Texts and English Translations; Dover Publications Inc.: Mineola, NY, USA, 1999. [Google Scholar]
- Kužvart, M. Ložiska Nerudních Surovin (Non-metalic Mineral Deposits); Academia: Prague, Czechoslovakia, 1984. [Google Scholar]
- Dehn, E. Über Armenischen Bolus. Master’s Thesis, Technical University Munich, Munich, Germany, 2005. [Google Scholar]
- Hradil, D.; Hradilová, J.; Bezdička, P.; Serendan, C. Late Gothic/Early Renaissance gilding technology and the traditional poliment material “Armenian bole”: Truly red clay, or rather bauxite? Appl. Clay Sci. 2017, 135, 271–281. [Google Scholar] [CrossRef]
- Serendan, C.; Hradil, D.; Hradilová, J.; Cannataci, J. Early Renaissance altarpieces in Transylvania: Materials and technological characteristics. In The Renaissance Workshop; Saunders, D., Spring, M., Meek, A., Eds.; Archetype Publications Ltd.: London, UK, 2013; p. 199. [Google Scholar]
- Hradilová, J.; Hradil, D. Technologická specifika Mistra Pavla a jeho dílny (Technological Specifics of Master Paul and his Workshop). In Majster Pavol z Levoče a Jeho Doba; Novotná, M., Ed.; Slovak National Museum—Spiš Museum Levoča: Levoča, Slovakia, 2018; pp. 113–121. [Google Scholar]
- Barata, C.; Rocha, F.; Cruz, A.J.; Andrejkovicova, S.; Reguer, S. Synchrotron X-ray diffraction of bole layers from Portuguese gilded baroque retables. Appl. Clay Sci. 2015, 116, 39–45. [Google Scholar] [CrossRef]
- Da Costa, M. Natural History of Fossils; Royal Society of London: London, UK, 1757. [Google Scholar]
- Odin, G.; Desprairies, A.; Fullagar, P.; Bellon, H.; Decarreau, A.; Frohlich, F.; Zelvelder, M. Chapter D Nature and Geological Significance of Celadonite. In Developments in Sedimentology; Elsevier: Amsterdam, The Netherlands, 1988; Volume 45, pp. 337–398. [Google Scholar]
- Becker, H. Das Grüne Farb-Erde-Vorkommen bei Atschau-Gösen im Bezirke Kaaden in Böhmen. Jahrb. Kais. Königliche Geol. Reichsanst. 1891, 41, 171–178. [Google Scholar]
- Hradil, D.; Píšková, A.; Hradilová, J.; Bezdička, P.; Lehrberger, G.; Gerzer, S. Mineralogy of Bohemian green earth and its microanaytical evidence in historical paintings. Archaeometry 2011, 53, 563–586. [Google Scholar] [CrossRef]
- Konta, J. Jílové Minerály Československa. [Clay Minerals of Czechoslovakia.]; Czechoslovak Academy of Sciences: Prague, Czech Republic, 1957. [Google Scholar]
- Cechl, J.; Hejtmánek, J. Bohemian Green Earth. In Technologia Artis 3—The Yearbook of the Archives of Historical Art Technology Prague; Obelisk Publishers: Prague, Czech Republic, 1993; pp. 158–161. [Google Scholar]
- Albrecht, E.; Ehmig, G.; Barisany, J. Das Kaadner Grün; BuchdruckereiWenzel Hönl: Kaaden, Germany, 1903. [Google Scholar]
- Hradil, D.; Grygar, T.M.; Hruskova, M.; Bezdicka, P.; Lang, K.; Schneeweiss, O. Chvátal Green Earth Pigment from the Kadañ Region, Czech Republic: Use of Rare Fe-rich Smectite. Clays Clay Miner. 2004, 52, 767–778. [Google Scholar] [CrossRef]
- Fanost, A.; Gimat, A.; De Viguerie, L.; Martinetto, P.; Giot, A.-C.; Clémancey, M.; Blondin, G.; Gaslain, F.; Glanville, H.; Walter, P.; et al. Revisiting the identification of commercial and historical green earth pigments. Colloids Surfaces A Physicochem. Eng. Asp. 2020, 584, 124035. [Google Scholar] [CrossRef]
- Starý, J.; Pticen, F.; Jirásek, J.; Sivek, M. Development of kaolin production, reserves and processing in the Czech Republic in 1999–2015. Gospod. Surowcami Miner. Miner. Resour. Manag. 2017, 33, 121–142. [Google Scholar] [CrossRef] [Green Version]
- Plançon, A.; Giese, R.F.; Snyder, R. The Hinckley index for kaolinites. Clay Miner. 1988, 23, 249–260. [Google Scholar] [CrossRef]
- Aparicio, P.; Galán, E.; Ferrell, R.E.; Fernández, P.A. A new kaolinite order index based on XRD profile fitting. Clay Miner. 2006, 41, 811–817. [Google Scholar] [CrossRef]
- Hradil, D.; Hradilová, J.; Bezdicka, P.; Matulková, I. Kaolinite-alunite association in late Gothic white grounds from Slovakia: A local peculiarity in painting technology. Appl. Clay Sci. 2017, 144, 79–87. [Google Scholar] [CrossRef]
- Novotná, M. Majster Pavol z Levoče (Master Paul from Levoča). In Majster Pavol z Levoče: Ruky a Zlato V Službe Ducha; Novotná, M., Piatrová, A., Eds.; SNM—Historické Muzeum Bratislava: Bratislava, Slovakia, 2017; pp. 41–51. [Google Scholar]
- Hradil, D.; Hradilová, J.; Trmalová, O.; Čermáková, Z.; Ourodová, L. Materials and technological characteristics of paintings by Johann Georg de Hamilton (1672-1737)—A famous portraitist of horses. In History, Materials and Studio Practice, Proceedings of the 5th International Symposium Painting Techniques, Amsterdam, The Netherlands, 18–20 September 2013; Wallert, A., Ed.; Rijksmuseum: Amsterdam, The Netherlands, 2016; pp. 154–162. [Google Scholar]
- Hradil, D.; Hradilová, J.; Bezdička, P. New criteria for classification of and differentiation between clay and iron oxide pigments of various origins. In Acta Artis Academica 2010, Proceedings of the 3rd Interdisciplinary ALMA Conference, Prague, Czech Republic, 24–26 November 2010; Hradil, D., Hradilová, J., Eds.; Academy of Fine Arts in Prague: Prague, Czech Republic, 2010; pp. 107–136. [Google Scholar]
- Keith, L. Three paintings by Caravaggio. Nat. Gallery Tech. Bull. 1998, 19, 37–51. [Google Scholar]
- Falcucci, C. Practices and processes, from the Odescalchi Conversion of Saint Paul to the Adoration of the Shepherds. In Caravaggio’s Painting Technique—Proceedings of the CHARISMA Workshop; Ciatti, M., Brunetti, B.G., Eds.; Nardini Editore: Florence, Italy, 2013; pp. 31–40. [Google Scholar]
- Weil, P.D. Technical art history and archaeometry II, An exploration of Caravaggio’s painting techniques. Rev. Bras. Arqueometria Restauração Conserv. 2007, 1, 106–110. [Google Scholar]
- Hradilová, J.; Kližanová, H.; Bezák, M.; Holcová, K.; Bezdička, P. Rebecca and Eliezer at the well—A mysterious oil painting from the historical museum of the Slovak National Museum at the Bratislava Castle. In Acta Artis Academica 2017, Proceedings of the 6th Interdisciplinary ALMA Conference, Brno, Czech Republic, 1–3 June 2017; Hradilová, J., Hradil, D., Eds.; Academy of Fine Arts in Prague: Brno, Czech Republic, 2017; pp. 103–111. [Google Scholar]
- Cavallo, G.; Riccardi, M.P.; Zorzin, R. Natural yellow and red Fe-based geomaterials from the Lessini mountains in Veneto, Italy: A review. Color Res. Appl. 2016, 41, 221–225. [Google Scholar] [CrossRef]
- Manasse, A.; Mellini, M. Iron (hydr)oxide nanocrystals in raw and burnt sienna pigments. Eur. J. Miner. 2006, 18, 845–853. [Google Scholar] [CrossRef]
- Dondi, M. Clay materials for ceramic tiles from the Sassuolo District (Northern Apennines, Italy). Geology, composition and technological properties. Appl. Clay Sci. 1999, 15, 337–366. [Google Scholar] [CrossRef] [Green Version]
- Spreafico, S.; Guaraldi, E. L’uomo Delle Ceramiche: Industrializzazione, Società, Costumi Religiosi nel Distretto Reggiano-Modenese; Franco Angeli: Milano, Italy, 2006. [Google Scholar]
- Hradil, D.; Hradilová, J.; Lanterna, G.; Galeotti, M.; Holcová, K.; Jaques, V.; Bezdička, P. Clay and alunite-rich materials in painting grounds of prominent Italian masters—Caravaggio and Mattia Preti. Appl. Clay Sci. 2020, 185, 105412. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hradil, D.; Hradilová, J.; Bezdička, P. Clay Minerals in European Painting of the Mediaeval and Baroque Periods. Minerals 2020, 10, 255. https://doi.org/10.3390/min10030255
Hradil D, Hradilová J, Bezdička P. Clay Minerals in European Painting of the Mediaeval and Baroque Periods. Minerals. 2020; 10(3):255. https://doi.org/10.3390/min10030255
Chicago/Turabian StyleHradil, David, Janka Hradilová, and Petr Bezdička. 2020. "Clay Minerals in European Painting of the Mediaeval and Baroque Periods" Minerals 10, no. 3: 255. https://doi.org/10.3390/min10030255
APA StyleHradil, D., Hradilová, J., & Bezdička, P. (2020). Clay Minerals in European Painting of the Mediaeval and Baroque Periods. Minerals, 10(3), 255. https://doi.org/10.3390/min10030255