A Plethora of Epigenetic Minerals Reveals a Multistage Metasomatic Overprint of a Mantle Orthopyroxenite from the Udachnaya Kimberlite
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Sample Petrography
3.2. Occurrences and Compositions of Minerals
3.2.1. Silicates
3.2.2. Oxides
- Chromium spinels with increased TiO2 levels (1.11–7.19 wt%; Spl1) are presented in association with titanate minerals either as mono- or polymineralic inclusions in enstatite (Figure 2d–f) or as oxide intergrowths in the intergranular space (Figure 5a). The A-site occupancy varies from being either Mg-dominant (magnesio-chromite) in enstatite or Fe-dominant (chromite) in the intergranular space.
- Individual magnesio-chromite crystals up to 100 μm in size are also recognized as distinct grains in the CMI (Spl2; Figure 3g,k).
- Titaniferous (1.76–7.61 wt% TiO2) aluminous chromite commonly forming individual crystals with an octahedral habit or grains closely associated with amphibole and phlogopite in kelyphite-like assemblages is observed in the intergranular space (Spl3; Figure 5b,c,f);
- Magnetite-ulvöspinel-chromite solid solution (Spl4) relatively poor in Mg (< 10 wt% MgO) and Al (<5 wt% Al2O3, but commonly less than 1 wt%) is recognized as minor individual grains in the CMI and as intergrowths with other oxide minerals in the intergranular space (Figure 6d). This variety shows a range of compositions with varying proportions of Fe, Ti, and Cr-specific end-members. In some cases relatively high Mn amounts (up to 2.78 wt% MnO) are observed in Spl4, reflecting the addition of jacobsite and manganochromite end-members;
3.2.3. Carbonates
3.2.4. Sulfides
3.2.5. Sulfate
3.2.6. Phosphates
3.2.7. Oxyhydroxides and Hydroxyhalides
4. Discussion
4.1. The Genesis of Minerals: Evidence for the Superimposed Nature
4.2. Stage 1: Deep-Seated Mantle Metasomatism
4.3. Stage 2: Infiltration and Evolution of A Kimberlite-Related Melt
4.3.1. Occurrences of Kimberlite-Related Minerals in Global Mantle Xenoliths
4.3.2. Pressure–Temperature and Time Constraints on the Crystallization of Stage 2-Related Minerals
4.3.3. Compositional Evolution of Stage 2-Related Minerals
4.3.4. Orthopyroxene Dissolution and Implications for Melt Composition
spinel-group minerals + rutile + perovskite + calcite + sulfides + apatite ± barite
4.4. Stage 3: Late Hydrothermal Alterations
4.5. Some Insights into the Origin of Redledgeite, Priderite and Ba-Na-Mg Phosphate
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jones, A.P. Upper-mantle enrichment by kimberlitic or carbonatitic magmatism. In Carbonatites; Bell, K., Ed.; Unwin Hyman: New South Wales, Australia, 1989; pp. 448–463. [Google Scholar]
- Schmidberger, S.S.; Francis, D. Constraints on the trace element composition of the Archean mantle root beneath Somerset Island, Arctic Canada. J. Petrol. 2001, 42, 1095–1117. [Google Scholar] [CrossRef] [Green Version]
- Kalfoun, F.; Ionov, D.; Merlet, C. HFSE residence and Nb/Ta ratios in metasomatised, rutile-bearing mantle peridotites. Earth Planet. Sci. Lett. 2002, 199, 49–65. [Google Scholar] [CrossRef]
- Grégoire, M.; Bell, D.R.; Le Roex, A.P. Garnet lherzolites from the Kaapvaal craton (South Africa): Trace element evidence for a metasomatic history. J. Petrol. 2003, 44, 629–657. [Google Scholar] [CrossRef] [Green Version]
- Sharygin, I.S.; Golovin, A.V. Interstitial mineral assemblages in sheared garnet peridotites from Udachnaya-East kimberlite pipe, Siberian craton. In Proceedings of the International Kimberlite Conference, Gaborone, Botswana, 18–22 September 2017. [Google Scholar]
- Marshintsev, V.K.; Migalkin, K.N.; Nikolaev, N.C.; Barashkov, Y.P. Unaltered kimberlite of the Udachnaya East pipe. Dokl. Acad. Nauk. SSSR 1976, 231, 961–964. (In Russian) [Google Scholar]
- Zinchuk, N.N.; Spetsius, Z.V.; Zuenko, V.V.; Zuev, V.M. Udachnaya Kimberlite Pipe; Novosibirsk University: Novosibirsk, Russia, 1993; p. 147. (In Russian) [Google Scholar]
- Kharkiv, A.D.; Zinchuk, N.N.; Kryuchkov, A.I. Primary Diamond Deposits of the World; Nedra: Moscow, Russia, 1998; p. 555. (In Russian) [Google Scholar]
- Maas, R.; Kamenetsky, M.B.; Sobolev, A.V.; Kamenetsky, V.S.; Sobolev, N.V. Sr, Nd, and Pb isotope evidence for a mantle origin of alkali chlorides and carbonates in the Udachnaya kimberlite, Siberia. Geology 2005, 33, 549–552. [Google Scholar] [CrossRef] [Green Version]
- Kamenetsky, V.S.; Kamenetsky, M.B.; Golovin, A.V.; Sharygin, V.V.; Maas, R. Ultrafresh salty kimberlite of the Udachnaya-East pipe (Yakutia, Russia): A petrological oddity or fortuitous discovery? Lithos 2012, 152, 173–186. [Google Scholar] [CrossRef]
- Kamenetsky, V.S.; Golovin, A.V.; Maas, R.; Giuliani, A.; Kamenetsky, M.B.; Weiss, Y. Towards a new model for kimberlite petrogenesis: Evidence from unaltered kimberlites and mantle minerals. Earth-Sci. Rev. 2014, 139, 145–167. [Google Scholar] [CrossRef] [Green Version]
- Kitayama, Y.; Thomassot, E.; Galy, A.; Golovin, A.; Korsakov, A.; d’Eyrames, E.; Assayag, N.; Bouden, N.; Ionov, D. Co-magmatic sulfides and sulfates in the Udachnaya-East pipe (Siberia): A record of the redox state and isotopic composition of sulfur in kimberlites and their mantle sources. Chem. Geol. 2017, 455, 315–330. [Google Scholar] [CrossRef]
- Abersteiner, A.; Kamenetsky, V.S.; Golovin, A.V.; Kamenetsky, M.; Goemann, K. Was crustal contamination involved in the formation of the serpentine-free Udachnaya-East kimberlite? New insights into parental melts, liquidus assemblage and effects of alteration. J. Petrol. 2018, 59, 1467–1492. [Google Scholar] [CrossRef]
- Erlank, A.J.; Waters, F.G.; Hawkesworth, C.J.; Haggerty, S.E.; Allsopp, H.L.; Rickard, R.S.; Menzies, M.A. Evidence for mantle metasomatism in peridotite nodules from the Kimberley pipes, South Africa. In Mantle Metasomatism; Menzies, M.A., Hawkesworth, C.J., Eds.; Academic Press: London, UK, 1987; pp. 221–311. [Google Scholar]
- Misra, K.C.; Anand, M.; Taylor, L.A.; Sobolev, N.V. Multi-stage metasomatism of diamondiferous eclogite xenoliths from the Udachnaya kimberlite pipe, Yakutia, Siberia. Contrib. Mineral. Petrol. 2004, 146, 696–714. [Google Scholar] [CrossRef]
- Sharygin, I.S.; Golovin, A.V.; Pokhilenko, N.P. Djerfisherite in xenoliths of sheared peridotite in the Udachnaya-East pipe (Yakutia): Origin and relationship with kimberlitic magmatism. Russ. Geol. Geophys. 2012, 53, 247–261. [Google Scholar] [CrossRef]
- Konzett, J.; Wirth, R.; Hauzenberger, C.; Whitehouse, M. Two episodes of fluid migration in the Kaapvaal Craton lithospheric mantle associated with Cretaceous kimberlite activity: Evidence from a harzburgite containing a unique assemblage of metasomatic zirconium-phases. Lithos 2013, 182, 165–184. [Google Scholar] [CrossRef]
- Soltys, A.; Giuliani, A.; Phillips, D.; Kamenetsky, V.S.; Maas, R.; Woodhead, J.; Rodemann, T. In-situ assimilation of mantle minerals by kimberlitic magmas—Direct evidence from a garnet wehrlite xenolith entrained in the Bultfontein kimberlite (Kimberley, South Africa). Lithos 2016, 256, 182–196. [Google Scholar] [CrossRef]
- Golovin, A.V.; Sharygin, I.S.; Korsakov, A.V. Origin of alkaline carbonates in kimberlites of the Siberian craton: Evidence from melt inclusions in mantle olivine of the Udachnaya-East pipe. Chem. Geol. 2017, 455, 357–375. [Google Scholar] [CrossRef]
- Golovin, A.V.; Sharygin, I.S.; Kamenetsky, V.S.; Korsakov, A.V.; Yaxley, G.M. Alkali-carbonate melts from the base of cratonic lithospheric mantle: Links to kimberlites. Chem. Geol. 2018, 483, 261–274. [Google Scholar] [CrossRef] [Green Version]
- Zedgenizov, D.A.; Ragozin, A.L.; Shatsky, V.S.; Griffin, W.L. Diamond formation during metasomatism of mantle eclogite by chloride-carbonate melt. Contrib. Mineral. Petrol. 2018, 173, 84–99. [Google Scholar] [CrossRef]
- Golovin, A.V.; Sharygin, I.S.; Korsakov, A.V.; Kamenetsky, V.S.; Abersteiner, A. Can primitive kimberlite melts be alkali-carbonate liquids: Composition of the melt snapshots preserved in deepest mantle xenoliths. J. Raman Spectrosc. 2019, 1–19. [Google Scholar] [CrossRef]
- Abersteiner, A.; Kamenetsky, V.S.; Goemann, K.; Golovin, A.V.; Sharygin, I.S.; Pearson, D.G.; Kamenetsky, M.; Gornova, M.A. Polymineralic inclusions in kimberlite-hosted megacrysts: Implications for kimberlite melt evolution. Lithos 2019, 336, 310–325. [Google Scholar] [CrossRef]
- Bussweiler, Y. Polymineralic Inclusions in Megacrysts as Proxies for Kimberlite Melt Evolution—A Review. Minerals 2019, 9, 530–549. [Google Scholar] [CrossRef] [Green Version]
- Lavrent’ev, Y.G.; Korolyuk, V.N.; Usova, L.V.; Nigmatulina, E.N. Electron probe microanalysis of rock-forming minerals with a JXA-8100 electron probe microanalyzer. Russ. Geol. Geophys. 2015, 56, 1428–1436. [Google Scholar] [CrossRef]
- Lafuente, B.; Downs, R.; Yang, H.; Stone, N. The power of databases: The RRUFF project. In Highlights in Mineralogical Crystallography; Armbruster, T., Danisi, R.M., Eds.; De Gruyter: Berlin, Germany, 2015; pp. 1–30. [Google Scholar]
- Rezvukhin, D.I.; Alifirova, T.A.; Korsakov, A.V.; Golovin, A.V. A new occurrence of yimengite-hawthorneite and crichtonite-group minerals in an orthopyroxenite from kimberlite: Implications for mantle metasomatism. Am. Mineral. J. Earth Planet. Mater. 2019, 104, 761–774. [Google Scholar] [CrossRef]
- Hawthorne, F.C.; Oberti, R.; Harlow, G.E.; Maresch, W.V.; Martin, R.F.; Schumacher, J.C.; Welch, M.D. Nomenclature of the amphibole supergroup. Am. Mineral. 2012, 97, 2031–2048. [Google Scholar] [CrossRef]
- Locock, A.J. An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations. Comput. Geosci. 2014, 62, 1–11. [Google Scholar] [CrossRef]
- Haggerty, S.E. Oxide mineralogy of the upper mantle. In Oxide Minerals: Petrologic and Magnetic Significance; Lindsley, D.H., Ed.; Mineralogical Society of America: Washington, DC, USA, 1991; Volume 25, pp. 355–416. [Google Scholar]
- Bosi, F.; Biagioni, C.; Pasero, M. Nomenclature and classification of the spinel supergroup. Eur. J. Mineral. 2018, 31, 183–192. [Google Scholar] [CrossRef] [Green Version]
- Roeder, P.L.; Schulze, D.J. Crystallization of groundmass spinel in kimberlite. J. Petrol. 2008, 49, 1473–1495. [Google Scholar] [CrossRef]
- Mitchell, R.H. Kimberlites: Mineralogy, Geochemistry and Petrology; Plenum Press: New York, NY, USA, 1986; p. 442. [Google Scholar]
- Grey, I.E.; Lloyd, D.J.; White, J.S. The structure of crichtonite and its relationship to senaite. Am. Mineral. 1976, 61, 1203–1212. [Google Scholar]
- Haggerty, S.E.; Smyth, J.R.; Erlank, A.J.; Rickard, R.S.; Danchin, R.V. Lindsleyite (Ba) and mathiasite (K): Two new chromium-titanates in the crichtonite series from the upper mantle. Am. Mineral. 1983, 68, 494–505. [Google Scholar]
- Dong, Z.; Zhou, J.; Lu, Q.; Peng, Z.; Yimengite, K. K(Cr,Ti, Fe,Mg)12O19 —A new mineral. Kexue Tongbao 1984, 29, 920–923. [Google Scholar]
- Haggerty, S.E.; Grey, I.E.; Madsen, I.C.; Criddle, A.J.; Stanley, C.J.; Erlank, A.J. Hawthorneite, Ba [Ti3Cr4Fe4Mg]O19: A new metasomatic magnetoplumbite-type mineral from the upper mantle. Am. Mineral. 1989, 74, 668–675. [Google Scholar]
- Nixon, P.H.; Condliffe, E. Yimengite of K-Ti metasomatic origin in kimberlitic rocks from Venezuela. Mineral. Mag. 1989, 53, 305–309. [Google Scholar] [CrossRef]
- Norrish, K. Priderite, a new mineral from the leucite-lamproites of the west Kimberley area, Western Australia. Mineral. Mag. 1951, 29, 496–501. [Google Scholar] [CrossRef]
- Mitchell, R.H.; Bergman, S.C. Petrology of Lamproites; Springer Science & Business Media: Berlin, Germany, 1991; p. 447. [Google Scholar]
- Jaques, A.L. Major and trace element variations in oxide and titanate minerals in the West Kimberley lamproites, Western Australia. Mineral. Petrol. 2016, 110, 159–197. [Google Scholar] [CrossRef]
- Biagioni, C.; Capalbo, C.; Pasero, M. Nomenclature tunings in the hollandite supergroup. Eur. J. Mineral. 2013, 25, 85–90. [Google Scholar] [CrossRef]
- Gordon, S.G.; Shannon, E.V. Chromrutile, a new mineral from California. Am. Mineral. 1928, 13, 69. [Google Scholar]
- Strunz, H. Chromrutil von der Red Ledge mine ist kein Rutil. Redledgeite. Neues Jahrb. Für Mineral. Mon. 1961, 1961, 107–111. [Google Scholar]
- Strunz, H. Redledgeit, eine TIO2-Einlagerungsstruktur analog Kryptomelan. Neues Jahrb. Für Mineral. Mon. 1963, 1963, 116–119. [Google Scholar]
- Gatehouse, B.M.; Jones, G.C.; Pring, A.; Symes, R.F. The chemistry and structure of redledgeite. Mineral. Mag. 1986, 50, 709–715. [Google Scholar] [CrossRef] [Green Version]
- Scott, J.D.; Peatfield, G.R. Mannardite [Ba H2O] (Ti6V3+2)O16, a new mineral species, and new data on redledgeite. Can. Miner. 1986, 24, 55–66. [Google Scholar]
- Foley, J.A.; Hughes, J.M.; Drexler, J.W. Redledgeite, Bax ([Cr, Fe, V]3+2xTi8-2x)O16, the I4/m structure and elucidation of the sequence of tunnel Ba cations. Can. Mineral. 1997, 35, 1531–1534. [Google Scholar]
- Ivanov, O.K.; Bushmakin, A.F.; Chukanov, N.V. Redledgeite from Saranov Chromite Deposits: The First Find in Russia. Trans. Russ. Acad. Sci. Earth Sci. Sect. 1996, 349, 775–778. [Google Scholar]
- Schulze, D.J.; Helmstaedt, H.H.; Davis, D. Subducted Farallon Plate Carries Water for Hydration Above the Flat Slab and Deep into the Mantle: Evidence from the Navajo Volcanic Field HP and UHP Xenolith Suite. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 15–19 December 2014. [Google Scholar]
- Naemura, K.; Shimizu, I.; Svojtka, M.; Hirajima, T. Accessory priderite and burbankite in multiphase solid inclusions in the orogenic garnet peridotite from the Bohemian Massif, Czech Republic. J. Mineral. Petrol. Sci. 2015, 110, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Tollo, R.P.; Haggerty, S.E. Nb-Cr-rutile in the Orapa kimberlite pipe, Botswana. Can. Mineral. 1987, 25, 251–264. [Google Scholar]
- Meinhold, G. Rutile and its applications in earth sciences. Earth-Sci. Rev. 2010, 102, 1–28. [Google Scholar] [CrossRef]
- Rezvukhin, D.I.; Malkovets, V.G.; Sharygin, I.S.; Kuzmin, D.V.; Litasov, K.D.; Gibsher, A.A.; Pokhilenko, N.P.; Sobolev, N.V. Inclusions of Cr-and Cr–Nb-Rutile in pyropes from the Internatsionalnaya kimberlite pipe, Yakutia. Dokl. Earth Sci. 2016, 466, 173–176. [Google Scholar] [CrossRef]
- Malkovets, V.G.; Rezvukhin, D.I.; Belousova, E.A.; Griffin, W.L.; Sharygin, I.S.; Tretiakova, I.G.; Gibsher, A.A.; O’Reilly, S.Y.; Kuzmin, D.V.; Litasov, K.D.; et al. Cr-rich rutile: A powerful tool for diamond exploration. Lithos 2016, 265, 304–311. [Google Scholar] [CrossRef]
- Post, J.E.; Von Dreele, R.B.; Buseck, P.R. Symmetry and cation displacements in hollandites: Structure refinements of hollandite, cryptomelane and priderite. Acta Crystallogr. Sect. B 1982, 38, 1056–1065. [Google Scholar] [CrossRef]
- Szymanski, J.T. The crystal structure of mannardite, a new hydrated cryptomelane-group (hollandite) mineral with a doubled short axis. Can. Mineral. 1986, 24, 67–78. [Google Scholar]
- Abersteiner, A.; Kamenetsky, V.S.; Goemann, K.; Golovin, A.V.; Sharygin, I.S.; Giuliani, A.; Rodemann, T.; Spetsius, Z.V.; Kamenetsky, M. Djerfisherite in kimberlites and their xenoliths: Implications for kimberlite melt evolution. Contrib. Mineral. Petrol. 2019, 174, 8–29. [Google Scholar] [CrossRef]
- O’Reilly, S.Y.; Griffin, W. Apatite in the mantle: Implications for metasomatic processes and high heat production in Phanerozoic mantle. Lithos 2000, 53, 217–232. [Google Scholar] [CrossRef]
- Zozulya, D.R.; Savchenko, E.E.; Kullerud, K.; Ravna, E.K.; Lyalina, L.M. Unique accessory Ti-Ba-P mineralization in the Kvalöya ultrapotassic dike, Northern Norway. Geol. Ore Depos. 2010, 52, 843–851. [Google Scholar] [CrossRef]
- Boukhris, A.; Hidouri, M.; Glorieux, B.; Amara, M.B. Na2BaMg(PO4)2: Synthesis, crystal structure and europium photoluminescence properties. J. Rare Earths 2013, 31, 849–856. [Google Scholar] [CrossRef]
- Fuchs, L.H.; Olsen, E.; Henderson, E.P. On the occurrence of brianite and panethite, two new phosphate minerals from the Dayton meteorite. Geochim. Cosmochim. Acta 1967, 31, 1711–1719. [Google Scholar] [CrossRef]
- Nishio-Hamane, D.; Minakawa, T.; Okada, H. Iwateite, Na2BaMn(PO4)2, a new mineral from the Tanohata mine, Iwate Prefecture, Japan. J. Mineral. Petrol. Sci. 2014, 109, 34–37. [Google Scholar] [CrossRef] [Green Version]
- Mikhailenko, D.S.; Korsakov, A.V.; Rashchenko, S.V.; Seryotkin, Y.V.; Belakovskiy, D.I.; Golovin, A.V. Kuliginite, a new hydroxychloride mineral from the Udachnaya kimberlite pipe, Yakutia: Implications for low-temperature hydrothermal alteration of the kimberlites. Am. Mineral. J. Earth Planet. Mater. 2018, 103, 1435–1444. [Google Scholar] [CrossRef]
- Gibson, S.A. On the nature and origin of garnet in highly-refractory Archean lithospheric mantle: Constraints from garnet exsolved in Kaapvaal craton orthopyroxenes. Mineral. Mag. 2017, 81, 781–809. [Google Scholar] [CrossRef]
- Tomlinson, E.L.; Kamber, B.S.; Hoare, B.C.; Stead, C.V.; Ildefonse, B. An exsolution origin for Archean mantle garnet. Geology 2017, 46, 123–126. [Google Scholar] [CrossRef]
- Jones, A.P.; Smith, J.V.; Dawson, J.B. Mantle metasomatism in 14 veined peridotites from Bultfontein mine, South Africa. J. Geol. 1982, 90, 435–453. [Google Scholar] [CrossRef]
- Haggerty, S.E. The mineral chemistry of new titanates from the Jagersfontein kimberlite, South Africa—Implications for metasomatism in the upper mantle. Geochim. Cosmochim. Acta 1983, 47, 1833–1854. [Google Scholar] [CrossRef]
- Wang, L.; Essene, E.J.; Zhang, Y. Mineral inclusions in pyrope crystals from Garnet Ridge, Arizona, USA: Implications for processes in the upper mantle. Contrib. Mineral. Petrol. 1999, 135, 164–178. [Google Scholar] [CrossRef] [Green Version]
- Almeida, V.; Janasi, V.; Svisero, D.; Nannini, F. Mathiasite-loveringite and priderite in mantle xenoliths from the Alto Paranaíba Igneous Province, Brazil: Genesis and constraints on mantle metasomatism. Cent. Eur. J. Geosci. 2014, 6, 614–632. [Google Scholar] [CrossRef]
- Griffin, W.L.; Pearson, N.J.; Andersen, T.; Jackson, S.E.; O’Reilly, S.Y.; Zhang, M. Sources of cratonic metasomatic fluids: In situ LA-MC-ICPMS analysis of Sr, Nd, Hf and Pb isotopes in LIMA from the Jagersfontein kimberlite. Am. J. Sci. 2014, 314, 435–461. [Google Scholar] [CrossRef]
- Giuliani, A.; Phillips, D.; Maas, R.; Woodhead, J.D.; Kendrick, M.A.; Greig, A.; Armstrong, R.A.; Chew, D.; Kamenetsky, V.S.; Fiorentini, M.L. LIMA U-Pb ages link lithospheric mantle metasomatism to Karoo magmatism beneath the Kimberley region, South Africa. Earth Planet. Sci. Lett. 2014, 401, 132–147. [Google Scholar] [CrossRef]
- Rezvukhin, D.I.; Malkovets, V.G.; Sharygin, I.S.; Tretiakova, I.G.; Griffin, W.L.; O’Reilly, S.Y. Inclusions of crichtonite-group minerals in Cr-pyropes from the Internatsionalnaya kimberlite pipe, Siberian Craton: Crystal chemistry, parageneses and relationships to mantle metasomatism. Lithos 2018, 308, 181–195. [Google Scholar] [CrossRef]
- Haggerty, S.E. Mantle metasomes and the kinship between carbonatites and kimberlites. In Carbonatites; Bell, K., Ed.; Unwin Hyman: New South Wales, Australia, 1989; pp. 546–560. [Google Scholar]
- Kinny, P.D.; Griffin, B.J.; Heaman, L.M.; Brakhfogel, F.F.; Spetsius, Z.V. SHRIMP U–Pb ages of perovskite from Yakutian kimberlites. Russ. Geol. Geophys. 1997, 38, 91–99. [Google Scholar]
- Irving, A.J.; Wyllie, P.J. Subsolidus and melting relationships for calcite, magnesite and the join CaCO3-MgCO3 to 36 kbar. Geochim. Cosmochim. Acta 1975, 39, 35–53. [Google Scholar] [CrossRef]
- Sharygin, V.V.; Golovin, A.V.; Pokhilenko, N.P.; Sobolev, N.V. Djerfisherite in unaltered kimberlites of the Udachnaya-East pipe, Yakutia. Dokl. Earth Sci. 2003, 390, 554–557. [Google Scholar]
- Sharygin, V.V.; Golovin, A.V.; Pokhilenko, N.P.; Kamenetsky, V.S. Djerfisherite in the Udachnaya-East pipe kimberlites (Sakha-Yakutia, Russia): Paragenesis, composition and origin. Eur. J. Mineral. 2007, 19, 51–63. [Google Scholar] [CrossRef]
- Golovin, A.V.; Goryainov, S.V.; Kokh, S.N.; Sharygin, I.S.; Rashchenko, S.V.; Kokh, K.A.; Sokol, E.V.; Devyatiyarova, A.S. The application of Raman spectroscopy to djerfisherite identification. J. Raman Spectrosc. 2017, 48, 1574–1582. [Google Scholar] [CrossRef]
- Golovin, A.V.; Sharygin, V.V.; Pokhilenko, N.P.; Mal’kovets, V.G.; Kolesov, B.A.; Sobolev, N.V. Secondary melt inclusions in olivine from unaltered kimberlites of the Udachnaya-East pipe, Yakutia. Dokl. Earth Sci. 2003, 388, 93–96. [Google Scholar]
- Golovin, A.V.; Sharygin, V.V.; Pokhilenko, N.P. Melt inclusions in olivine phenocrysts in unaltered kimberlites from the Udachnaya-East pipe, Yakutia: Some aspects of kimberlite magma evolution during late crystallization stages. Petrology 2007, 15, 168–183. [Google Scholar] [CrossRef]
- Kamenetsky, M.B.; Sobolev, A.V.; Kamenetsky, V.S.; Maas, R.; Danyushevsky, L.V.; Thomas, R.; Pokhilenko, N.P.; Sobolev, N.V. Kimberlite melts rich in alkali chlorides and carbonates: A potent metasomatic agent in the mantle. Geology 2004, 32, 845–848. [Google Scholar] [CrossRef]
- Sharygin, I.S.; Litasov, K.D.; Sharygin, V.V.; Shatskiy, A.; Ohtani, E. Genesis of djerfisherite in kimberlite-hosted mantle xenoliths. In Proceedings of the Goldschmidt Conference, Yokohama, Japan, 26 June–1 July 2016. Abstract No. 2812. [Google Scholar]
- Giuliani, A.; Phillips, D.; Kamenetsky, V.S.; Goemann, K. Constraints on kimberlite ascent mechanisms revealed by phlogopite compositions in kimberlites and mantle xenoliths. Lithos 2016, 240, 189–201. [Google Scholar] [CrossRef]
- Sobolev, N.V.; Logvinova, A.M.; Zedgenizov, D.A.; Pokhilenko, N.P.; Malygina, E.V.; Kuzmin, D.V.; Sobolev, A.V. Petrogenetic significance of minor elements in olivines from diamonds and peridotite xenoliths from kimberlites of Yakutia. Lithos 2009, 112, 701–713. [Google Scholar] [CrossRef]
- Doucet, L.S.; Ionov, D.A.; Golovin, A.V.; Pokhilenko, N.P. Depth, degrees and tectonic settings of mantle melting during craton formation: Inferences from major and trace element compositions of spinel harzburgite xenoliths from the Udachnaya kimberlite, central Siberia. Earth Planet. Sci. Lett. 2012, 359, 206–218. [Google Scholar] [CrossRef]
- Doucet, L.S.; Ionov, D.A.; Golovin, A.V. The origin of coarse garnet peridotites in cratonic lithosphere: New data on xenoliths from the Udachnaya kimberlite, central Siberia. Contrib. Mineral. Petrol. 2013, 165, 1225–1242. [Google Scholar] [CrossRef]
- Agashev, A.M.; Ionov, D.A.; Pokhilenko, N.P.; Golovin, A.V.; Cherepanova, Y.; Sharygin, I.S. Metasomatism in lithospheric mantle roots: Constraints from whole-rock and mineral chemical composition of deformed peridotite xenoliths from kimberlite pipe Udachnaya. Lithos 2013, 160, 201–215. [Google Scholar] [CrossRef]
- Ionov, D.A.; Doucet, L.S.; von Strandmann, P.A.P.; Golovin, A.V.; Korsakov, A.V. Links between deformation, chemical enrichments and Li-isotope compositions in the lithospheric mantle of the central Siberian craton. Chem. Geol. 2017, 475, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Kamenetsky, V.S.; Kamenetsky, M.B.; Sobolev, A.V.; Golovin, A.V.; Demouchy, S.; Faure, K.; Sharygin, V.V.; Kuzmin, D.V. Olivine in the Udachnaya-East kimberlite (Yakutia, Russia): Types, compositions and origins. J. Petrol. 2008, 49, 823–839. [Google Scholar] [CrossRef]
- Sobolev, N.V.; Sobolev, A.V.; Tomilenko, A.A.; Kovyazin, S.V.; Batanova, V.G.; Kuz’min, D.V. Paragenesis and complex zoning of olivine macrocrysts from unaltered kimberlite of the Udachnaya-East pipe, Yakutia: Relationship with the kimberlite formation conditions and evolution. Russ. Geol. Geophys. 2015, 56, 260–279. [Google Scholar] [CrossRef]
- Bussweiler, Y.; Foley, S.F.; Prelević, D.; Jacob, D.E. The olivine macrocryst problem: New insights from minor and trace element compositions of olivine from Lac de Gras kimberlites, Canada. Lithos 2015, 220, 238–252. [Google Scholar] [CrossRef]
- De Hoog, J.C.; Gall, L.; Cornell, D.H. Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry. Chem. Geol. 2010, 270, 196–215. [Google Scholar] [CrossRef] [Green Version]
- Pilbeam, L.H.; Nielsen, T.; Waight, T.E. Digestion fractional crystallization (DFC): An important process in the genesis of kimberlites. Evidence from olivine in the Majuagaa kimberlite, southern West Greenland. J. Petrol. 2013, 54, 1399–1425. [Google Scholar] [CrossRef] [Green Version]
- Tompkins, L.A.; Haggerty, S.E. Groundmass oxide minerals in the Koidu kimberlite dikes, Sierra Leone, West Africa. Contrib. Mineral. Petrol. 1985, 91, 245–263. [Google Scholar] [CrossRef]
- Castillo-Oliver, M.; Melgarejo, J.C.; Galí, S.; Pervov, V.; Gonçalves, A.O.; Griffin, W.L.; Pearson, N.J.; O’Reilly, S.Y. Use and misuse of Mg-and Mn-rich ilmenite in diamond exploration: A petrographic and trace element approach. Lithos 2017, 292, 348–363. [Google Scholar] [CrossRef]
- Chakhmouradian, A.R.; Mitchell, R.H. Occurrence, alteration patterns and compositional variation of perovskite in kimberlites. Can. Mineral. 2000, 38, 975–994. [Google Scholar] [CrossRef]
- Chakhmouradian, A.R.; Reguir, E.P.; Kamenetsky, V.S.; Sharygin, V.V.; Golovin, A.V. Trace-element partitioning in perovskite: Implications for the geochemistry of kimberlites and other mantle-derived undersaturated rocks. Chem. Geol. 2013, 353, 112–131. [Google Scholar] [CrossRef]
- Chakhmouradian, A.R.; Mitchell, R.H. Three compositional varieties of perovskite from kimberlites of the Lac de Gras field (Northwest Territories, Canada). Mineral. Mag. 2001, 65, 133–148. [Google Scholar] [CrossRef]
- Sharygin, I.S.; Litasov, K.D.; Shatskiy, A.; Safonov, O.G.; Golovin, A.V.; Ohtani, E.; Pokhilenko, N.P. Experimental constraints on orthopyroxene dissolution in alkali-carbonate melts in the lithospheric mantle: Implications for kimberlite melt composition and magma ascent. Chem. Geol. 2017, 455, 44–56. [Google Scholar] [CrossRef]
- Mitchell, R.H. Petrology of hypabyssal kimberlites: Relevance to primary magma compositions. J. Volcanol. Geotherm. Res. 2008, 174, 1–8. [Google Scholar] [CrossRef]
- Brett, R.C.; Russell, J.K.; Moss, S. Origin of olivine in kimberlite: Phenocryst or impostor? Lithos 2009, 112, 201–212. [Google Scholar] [CrossRef]
- Kamenetsky, V.S.; Kamenetsky, M.B.; Sobolev, A.V.; Golovin, A.V.; Sharygin, V.V.; Pokhilenko, N.P.; Sobolev, N.V. Can pyroxenes be liquidus minerals in the kimberlite magma? Lithos 2009, 112, 213–222. [Google Scholar] [CrossRef]
- Bowen, N.L.; Andersen, O. The binary system MgO-SiO2. Am. J. Sci. 1914, 37, 487–500. [Google Scholar] [CrossRef] [Green Version]
- Wyllie, P.J.; Huang, W.L. Peridotite, kimberlite, and carbonatite explained in the system CaO-MgO-SiO2-CO2. Geology 1975, 3, 621–624. [Google Scholar] [CrossRef] [Green Version]
- Thibault, Y.; Edgar, A.D.; Lloyd, F.E. Experimental investigation of melts from a carbonated phlogopite lherzolite: Implications for metasomatism in the continental lithospheric mantle. Am. Mineral. 1992, 77, 784–794. [Google Scholar]
- Russell, J.K.; Porritt, L.A.; Lavallee, Y.; Dingwell, D.B. Kimberlite ascent by assimilation-fuelled buoyancy. Nature 2012, 481, 352–356. [Google Scholar] [CrossRef] [PubMed]
- Kamenetsky, V.S.; Yaxley, G.M. Carbonate–silicate liquid immiscibility in the mantle propels kimberlite magma ascent. Geochim. Cosmochim. Acta 2015, 158, 48–56. [Google Scholar] [CrossRef]
- Safonov, O.; Butvina, V.; Limanov, E. Phlogopite-Forming Reactions as Indicators of Metasomatism in the Lithospheric Mantle. Minerals 2019, 9, 685. [Google Scholar] [CrossRef] [Green Version]
- Shaw, C.S.; Thibault, Y.; Edgar, A.D.; Lloyd, F.E. Mechanisms of orthopyroxene dissolution in silica-undersaturated melts at 1 atmosphere and implications for the origin of silica-rich glass in mantle xenoliths. Contrib. Mineral. Petrol. 1998, 132, 354–370. [Google Scholar] [CrossRef]
- White, J.L.; Sparks, R.S.J.; Bailey, K.; Barnett, W.P.; Field, M.; Windsor, L. Kimberlite sills and dykes associated with the Wesselton kimberlite pipe, Kimberley, South Africa. S. Afr. J. Geol. 2012, 115, 1–32. [Google Scholar] [CrossRef]
- Kamenetsky, V.S.; Kamenetsky, M.B.; Sharygin, V.V.; Faure, K.; Golovin, A.V. Chloride and carbonate immiscible liquids at the closure of the kimberlite magma evolution (Udachnaya-East kimberlite, Siberia). Chem. Geol. 2007, 237, 384–400. [Google Scholar] [CrossRef]
- Mitchell, R.H. Paragenesis and oxygen isotopic studies of serpentine in kimberlite. In Proceedings of the 10th International Kimberlite Conference; Springer: Berlin, Germany, 2013; pp. 1–12. [Google Scholar]
- Stripp, G.R.; Field, M.; Schumacher, J.C.; Sparks, R.S.J.; Cressey, G. Post-emplacement serpentinization and related hydrothermal metamorphism in a kimberlite from Venetia, South Africa. J. Metamorph. Geol. 2006, 24, 515–534. [Google Scholar] [CrossRef]
- Sparks, R.S.J. Kimberlite volcanism. Annu. Rev. Earth Planet. Sci. 2013, 41, 497–528. [Google Scholar] [CrossRef]
- Afanasyev, A.A.; Melnik, O.; Porritt, L.; Schumacher, J.C.; Sparks, R.S.J. Hydrothermal alteration of kimberlite by convective flows of external water. Contrib. Mineral. Petrol. 2014, 168, 1038–1054. [Google Scholar] [CrossRef] [Green Version]
- Devouard, B.; Baronnet, A.; Van Tendeloo, G.; Amelinckx, S. First evidence of synthetic polygonal serpentines. Eur. J. Mineral. 1997, 9, 539–546. [Google Scholar] [CrossRef]
- Giuliani, A.; Soltys, A.; Phillips, D.; Kamenetsky, V.S.; Maas, R.; Goemann, K.; Woodhead, J.D.; Drysdale, R.N.; Griffin, W.L. The final stages of kimberlite petrogenesis: Petrography, mineral chemistry, melt inclusions and Sr-CO isotope geochemistry of the Bultfontein kimberlite (Kimberley, South Africa). Chem. Geol. 2017, 455, 342–356. [Google Scholar] [CrossRef]
- Armstrong, J.P.; Wilson, M.; Barnett, R.L.; Nowicki, T.; Kjarsgaard, B.A. Mineralogy of primary carbonate-bearing hypabyssal kimberlite, Lac de Gras, Slave Province, Northwest Territories, Canada. Lithos 2004, 76, 415–433. [Google Scholar] [CrossRef]
- Zurevinski, S.E.; Mitchell, R.H. Highly evolved hypabyssal kimberlite sills from Wemindji, Quebec, Canada: Insights into the process of flow differentiation in kimberlite magmas. Contrib. Mineral. Petrol. 2011, 161, 765–776. [Google Scholar] [CrossRef]
- Mitchell, R.H.; Meyer, H.O.A. Niobian K-Ba-V titanates from micaceous kimberlite, Star mine, Orange Free State, South Africa. Mineral. Mag. 1989, 53, 451–456. [Google Scholar] [CrossRef]
- Mitchell, R.H.; Yakovenchuk, V.N.; Chakhmouradian, A.R.; Burns, P.C.; Pakhomovsky, Y.A. Henrymeyerite, a new hollandite-type Ba–Fe titanate from the Kovdor Complex, Russia. Can. Mineral. 2000, 38, 617–626. [Google Scholar] [CrossRef]
- Kamenetsky, V.S.; Belousova, E.A.; Giuliani, A.; Kamenetsky, M.B.; Goemann, K.; Griffin, W.L. Chemical abrasion of zircon and ilmenite megacrysts in the Monastery kimberlite: Implications for the composition of kimberlite melts. Chem. Geol. 2014, 383, 76–85. [Google Scholar] [CrossRef]
- Zhou, H.; Lu, Q. K-Cr priderite—A new facies of the priderite series found in Mengying kimberlite, Shandong province—II. Ti, Cr, Fe oxide minerals containing LIL elements in the upper mantle Acta Mineral. Sin. 1994, 13, 234–240. [Google Scholar]
- Foley, S.; Höfer, H.; Brey, G. High-pressure synthesis of priderite and members of the lindsleyite-mathiasite and hawthorneite-yimengite series. Contrib. Mineral. Petrol. 1994, 117, 164–174. [Google Scholar] [CrossRef]
- Butvina, V.G.; Vorobey, S.S.; Safonov, O.G.; Varlamov, D.A.; Bondarenko, G.V.; Shapovalov, Y.B. Experimental study of formation of chromian priderite and yimengite as products of modal mantle metasomatism. Dokl. Earth Sci. 2019, 486, 709–713. [Google Scholar] [CrossRef]
Class | Group | Mineral | Formula | Abbreviation | Stage 1 | Stage 2 | Stage 3 | |
---|---|---|---|---|---|---|---|---|
Orthopyroxenite | Mantle Metasomatism | Kimberlite Melt Infiltration | Hydrothermal Fluid Infiltration | |||||
Silicates | enstatite (Opx*) | (Mg,Fe)2Si2O6 | Opx | + | ||||
Cr-pyrope (Grt*) | (Mg,Fe)3Al2(SiO4)3 | Grt | + | |||||
diopside (Cpx*) | CaMgSi2O6 | Cpx | + | |||||
diopside (Cpx1) | CaMgSi2O6 | Cpx | + | |||||
diopside (Cpx2) | CaMgSi2O6 | Cpx | + | |||||
olivine | (Mg,Fe)2SiO4 | Ol | + | |||||
phlogopite | KMg3AlSi3O10(F,OH)2 | Phl | + | |||||
tetraferriphlogopite (Tphl1) | KMg3Fe3+Si3O10(F,OH)2 | Tphl | + | |||||
tetraferriphlogopite (Tphl2) | KMg3Fe3+Si3O10(F,OH)2 | Tphl | + | |||||
Amphibole-group minerals | K-richterite | K(NaCa)Mg5Si8O22(OH)2 | K-Rct | + | ||||
richterite | Na(NaCa)Mg5Si8O22(OH)2 | Rct | + | |||||
K-ferri-kataphorite | K(NaCa)(Mg4Fe3+)(Si7Al)O22(OH)2 | K-Fe-Kph | + | |||||
K-magnesio-arfvedsonite | KNa2(Mg4Fe3+)Si8O22(OH)2 | K-Mg-Avs | + | |||||
magnesio-hastingsite | NaCa2(Mg4Fe3+)(Si6Al2)O22(OH)2 | Mg-Hts | + | |||||
K-ferri-taramite | K(NaCa)(Mg3Fe3+2)(Si6Al2)O22(OH)2 | K-Fe-Trm | + | |||||
serpentine | (Mg,Fe)6[Si4O10](OH)8 | Srp | + | |||||
talc | (Mg,Fe)3Si4O10(OH)2 | Talc | + | |||||
Oxides | ilmenite-group minerals | Cr-rich geikielite-ilmenite (Ilm1) | (Mg,Fe)TiO3 | Gk-Ilm | + | |||
ferroan geikielite (Ilm2) | (Mg,Fe)TiO3 | Gk | + | |||||
Fe-poor geikielite (Ilm2) | MgTiO3 | Gk | + | |||||
Mn-rich ilmenite (Ilm3) | (Fe,Mn,Mg)TiO3 | Mn-Ilm | + | |||||
spinel-group minerals | magnesio-chromite (Spl*) | (Mg,Fe)(Cr,Al,Ti)2O4 | Mg-Chr | + | ||||
magnesio-chromite (Spl1) | (Mg,Fe)(Cr,Al,Ti)2O4 | Mg-Chr | + | |||||
magnesio-chromite (Spl2) | (Mg,Fe)(Cr,Al,Ti)2O4 | Mg-Chr | + | |||||
chromite (Spl3) | (Fe,Mg)(Cr,Al,Ti)2O4 | Chr | + | |||||
Fe3+-Ti-Cr-rich spinels (Spl4) | (Fe,Mg,Mn)(Fe3+,Cr,Ti)2O4 | Mgt-Usp-Chr | + | |||||
spinel (pleonaste; Spl5) | (Mg,Fe)Al2O4 | Spl | + | |||||
magnetite (Spl6) | Fe2+Fe3+2O4 | Mgt | + | |||||
rutile (Rt1) | TiO2 | Rt | + | |||||
rutile (Rt2) | TiO2 | Rt | + | |||||
perovskite | CaTiO3 | Prv | + | |||||
Oxides | CGM | K-Fe crichtonite-group mineral | (K,Ba)(Fe,Zr)(Ti,Cr,Fe3+,Al)18(Mg,Fe)2O38 | CGM | + | |||
Ba-Fe crichtonite-group mineral | (Ba,K)(Fe,Zr)(Ti,Cr,Fe3+,Al)18(Mg,Fe)2O38 | CGM | + | |||||
other CGM | ABC18T2O38 | CGM | + | |||||
MGM | yimengite (K) | (K,Ba)(Ti,Cr,Fe,Al)12O19 | YIHA | + | ||||
hawthorneite (Ba) | (Ba,K)(Ti,Cr,Fe,Al)12O19 | YIHA | + | |||||
HGM | priderite | KFe3+Ti7O16 | Prd | + | ||||
redledgeite | BaCr2Ti6O16 | Rlg | + | |||||
Carbonates | calcite (Cal1) | CaCO3 | Cal | + | ||||
calcite (Cal2) | CaCO3 | Cal | + | |||||
dolomite | CaMg(CO3)2 | Dol | + | |||||
Sulfides | pentlandite (Pn1) | (Fe,Ni)9S8 | Pn | + | ||||
pentlandite (Pn2) | (Fe,Ni,Co)9S8 | Pn | + | |||||
djerfisherite | K6(Fe,Ni,Cu)25S26Cl | Dj | + | |||||
pyrrhotite | Fe(1-x)S | Po | + | |||||
Sulfate | barite | BaSO4 | Brt | + | + | |||
Phosphates | apatite | Ca10[PO4]6(F,Cl,OH)2 | Ap | + | ||||
Ba-Na-Mg phosphate | Na2BaMg(PO4)2 | + | ||||||
Oxyhydroxides and hydroxyhalides | goethite | Fe3+O(OH) | Gth | + | ||||
kuliginite | Fe3Mg(OH)6Cl2 | Klg | + | |||||
iowaite | Mg4Fe3+(OH)8OCl·3(H2O) | Iow | + |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rezvukhin, D.I.; Alifirova, T.A.; Golovin, A.V.; Korsakov, A.V. A Plethora of Epigenetic Minerals Reveals a Multistage Metasomatic Overprint of a Mantle Orthopyroxenite from the Udachnaya Kimberlite. Minerals 2020, 10, 264. https://doi.org/10.3390/min10030264
Rezvukhin DI, Alifirova TA, Golovin AV, Korsakov AV. A Plethora of Epigenetic Minerals Reveals a Multistage Metasomatic Overprint of a Mantle Orthopyroxenite from the Udachnaya Kimberlite. Minerals. 2020; 10(3):264. https://doi.org/10.3390/min10030264
Chicago/Turabian StyleRezvukhin, Dmitriy I., Taisia A. Alifirova, Alexander V. Golovin, and Andrey V. Korsakov. 2020. "A Plethora of Epigenetic Minerals Reveals a Multistage Metasomatic Overprint of a Mantle Orthopyroxenite from the Udachnaya Kimberlite" Minerals 10, no. 3: 264. https://doi.org/10.3390/min10030264
APA StyleRezvukhin, D. I., Alifirova, T. A., Golovin, A. V., & Korsakov, A. V. (2020). A Plethora of Epigenetic Minerals Reveals a Multistage Metasomatic Overprint of a Mantle Orthopyroxenite from the Udachnaya Kimberlite. Minerals, 10(3), 264. https://doi.org/10.3390/min10030264