Two-Stage Late Jurassic to Early Cretaceous Hydrothermal Activity in the Sakar Unit of Southeastern Bulgaria
Abstract
:1. Introduction
2. Geological Setting
3. Sample Locality and Methods
3.1. Microscopy
3.2. Electron Probe Micro-Analyses (EMPA)
3.3. LA–ICP-MS U–Pb Apatite and Titanite Dating
4. Results
4.1. Petrography
4.2. U–Pb Geochronology
5. Discussion
5.1. Age Significance: Apatite vs. Titanite
5.2. Geotectonic Implications of the Apatite and Titanite Ages
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dewey, J.F.; Burke, K. Tibetan, Variscan and Precambrian basement reactivation: Products of continental collision. J. Geol. 1973, 81, 683–692. [Google Scholar] [CrossRef]
- Hsü, K.J.; Nachev, I.K.; Vuchev, V.T. Geologic evolution of Bulgaria in light of plate tectonics. Tectonophysics 1977, 40, 245–256. [Google Scholar] [CrossRef]
- Carrigan, C.W.; Mukasa, S.B.; Haydoutov, I.; Kolcheva, K. Age of Variscan magmatism from the Balkan sector of the orogen, central Bulgaria. Lithos 2005, 82, 125–147. [Google Scholar] [CrossRef]
- Şengör, A.M.C.; Altıner, D.; Cin, A.; Ustaömer, T.; Hsü, K.J. Origin and Assembly of the Tethyside Orogenic Collage at the Expense of Gondwana Land; Special Publications; Geological Society: London, UK, 1988; Volume 27, pp. 119–181. [Google Scholar] [CrossRef]
- Zanchi, A.; Berra, F.; Mattei, M.; Ghassemi, M.R.; Sabouri, J. Inversion tectonics in central Alborz, Iran. J. Struct. Geol. 2006, 28, 2023–2037. [Google Scholar] [CrossRef]
- Wilmsen, M.; Fürsich, F.T.; Seyed-Emami, K.; Majidifard, M.R.; Taheri, J. The Cimmerian Orogeny in northern Iran: Tectono-stratigraphic evidence from the foreland. Terra Nova 2009, 21, 211–218. [Google Scholar] [CrossRef]
- Angiolini, L.; Jadoul, F.; Leng, M.J.; Stephenson, M.H.; Rushton, J.; Chenery, S.; Crippa, G. How cold were the Early Permian glacial tropics? Testing sea-surface temperature using the oxygen isotope composition of rigorously screened brachiopod shells. J. Geol. Soc. 2009, 166, 933–945. [Google Scholar] [CrossRef]
- Cattò, S.; Cavazza, W.; Zattin, M.; Okay, A.I. No significant Alpine tectonic overprint on the Cimmerian Strandja Massif (SE Bulgaria and NW Turkey). Int. Geol. Rev. 2018, 60, 513–529. [Google Scholar] [CrossRef]
- Bonev, N.; Filipov, P.; Raicheva, R.; Moritz, R. Timing and tectonic significance of Paleozoic magmatism in the Sakar unit of the SakarStrandzha Zone, SE Bulgaria. Int. Geol. Rev. 2019, 61, 1957–1979. [Google Scholar] [CrossRef]
- Gerdjikov, I. Alpine Metamorphism and Granitoid Magmatism in the Strandja Zone: New Data from the Sakar Unit, SE Bulgaria. Turkish J. Earth Sci. 2005, 14, 167–183. [Google Scholar]
- Kamenov, B.K.; Vergilov, V.; Dabovski, C.; Vergiloc, I.; Ivchinova, L. The Sakar Batolithpetrology, geochemistry and magmatic evolution. Geochemistry. Mineral. Petrol. 2010, 48, 1–37. [Google Scholar]
- Pristavova, S.; Tzankova, N.; Gospodinov, N.; Filipov, P. Petrological study of metasomatic altered granitoids from Kanarata deposit, Sakar Mountain, southeastern Bulgaria. J. Min. Geol. Sci. 2019, 62, 53–61. [Google Scholar]
- Gerdjikov, I. Transformation of porphyritic granite into banded eye gneiss—An example from the NW margin of Sakar Pluton. C. R. Acad. Bulg. Sci. 2003, 56, 51–56. [Google Scholar]
- Okay, A.I.; Satur, M.; Tüysüz, O.; Akyüz, S.; Chen, F. The tectonics of Strandja Massif: Late-Variscan and mid-Mesozoic deformation and metamorphism in the northern Aegean. Int. J. Earth Sci. 2001, 90, 217–233. [Google Scholar] [CrossRef]
- Natal’in, B.; Sunal, G.; Gün, E.; Wang, B.; Zhiqing, Y. Precambrian to Early Cretaceous rocks of the Strandja Massif (northwestern Turkey): Evolution of a long lasting magmatic arc. Can. J. Earth Sci. 2016, 53, 1312–1335. [Google Scholar] [CrossRef]
- Bedi, Y.; Vasilev, E.; Dabovski, C.; Ergen, A.; Okuyucu, C.; Dogan, A.; Kagan Tekin, U.; Ivanova, D.; Boncheva, I.; Lakova, I.; et al. New age data from the tectonostratigraphic units of the Istranca “Massif” in NW Turkey: A correlation with SE Bulgaria. Geol. Carpath. 2013, 64, 255–277. [Google Scholar] [CrossRef] [Green Version]
- Dabovski, C.; Zagorchev, I. Bulgarian lands in the Alpine tectonic models of the Balkan Peninsula and Eastern Mediterranean region. In Geology of Bulgaria; Mesozoic, G., Zagorchev, I., Dabovski, C., Nikolov, T., Eds.; Prof. Marin Drinov Academic Publishing House: Sofia, Bulgaria, 2009; Volume 2, pp. 15–20. (In Bulgarian) [Google Scholar]
- Dabovski, C.; Boyanov, I.; Khrischev, K.; Nikolov, T.; Sapounov, L.; Yanev, Y.; Zagorchev, I. Structure and Alpine evolution of Bulgaria. Geol. Balc. 2002, 32, 9–15. [Google Scholar]
- Gerdjikov, I.; Gautier, P.; Cherneva, Z.; Kostopoulos, D. Tectonic setting of ultrahigh-pressure metamorphic rocks form the Chepelare area, Central Rhodope. In Proceedings of the Bulgarian Geological Society Annual Conference, Sofia, Bulgaria, 4–5 November 2003; pp. 44–45. [Google Scholar]
- Zagorchev, I. Alpine evolution of the pre-Alpine amphibolites facies basement in south Bulgaria. Mitt. Österr. Geol. Ges. 1993, 86, 9–23. [Google Scholar]
- Lilov, P. Rb-Sr and K-Ar dating of the Sakar granitoid pluton. Geol. Balc. 1990, 20, 53–60. (In Russian) [Google Scholar]
- Skenderov, G.; Skenderova, T. Subduction of the Vardar oceanic crust at the end of Jurassic and its role for the Alpine tectonic-magmatic development of parts of the Balkan Peninsula. Rev. Bulg. Geol. Soc. 1995, 56, 45–63. (In Russian) [Google Scholar]
- Ivanov, Z.; Gerdjikov, I.; Kounov, A. New data and considerations about structure and tectonic evolution of Sakar region, SE Bulgaria. Annu. Univ. Sofia Geol. Geogr. 2001, 91, 35–80. (In Bulgarian) [Google Scholar]
- Palshin, I.; Skenderov, G.; Bojkov, I.; Michailov, Y.; Kotov, E.; Bedrinov, I.; Ivanov, I. New geochronological data for the Cimmeridian and Alpine magmatic and hydrothermal products in the Srednogorie and Stara Planina Zones in Bulgaria. Rev. Bulg. Geol. Soc. 1989, 50, 75–92. (In Bulgarian) [Google Scholar]
- Skenderov, G.; Palshin, I.; Michailov, Y.; Bojkov, I.; Savova, L. On the age of the Sakar granite pluton (South-Eastern Srednogorie). Geochem. Mineral. Petrol. 1986, 22, 69–81. (In Russian) [Google Scholar]
- Boyadjiev, S.; Lilov, P. On the K-Ar dating of the South Bulgarian granitoids from Srednogorie and Sakar-Strandja Zones. Proceedings of the Geological Institute, ser. Geochem. Mineral. Petrogr. 1972, 26, 121–220. (In Bulgarian) [Google Scholar]
- Firsov, L. On the age of South-Bulgarian granites in the Rhodopes, Srednogorie and Sakar-Strandja areas. Geol. Geophys. 1975, 1, 27–34. (In Russian) [Google Scholar]
- Peytcheva, I.; Georgiev, S.; von Quadt, A. U/Pb ID-TIMS dating of zircons from the Sakar-Strandzha Zone: New data and old questions about the Variscan orogeny in SE Europe. In Proceedings of the Annual Conference of the Bulgaria Geological Society “Geosciences 2016”, Sofia, Bulgaria, 7–8 December 2016; Bulgarian Geological Society: Sofia, Bulgaria, 2016; pp. 71–72. [Google Scholar]
- Zagorchev, I.; Lilov, P.; Moorbath, S. Results of the Rubidium-Strontium and Potassium-Argon radiogeochronological studies on the metamorphic and magmatic rocks in South Bulgaria. Geol. Balc. 1989, 19, 41–54. [Google Scholar]
- Dencheva, S. Apatite from Sakar Mountain, Bulgaria—Morphology and physical properties. In Proceedings of the National Conference with International Participation “Geosciences 2017”, Sofia, Bulgaria, 7–8 December 2017; Bulgarian Geological Society: Sofia, Bulgaria, 2017; pp. 21–22. [Google Scholar]
- Chew, D.M.; Petrus, J.A.; Kamber, B.S. U-Pb LA-ICPMS dating using accessory mineral standards with variable common Pb. Chem. Geol. 2014, 363, 185–199. [Google Scholar] [CrossRef]
- Petrus, J.A.; Kamber, B.S. VizualAge: A Novel Approach to Laser Ablation ICP-MS U-Pb Geochronology Data Reduction. Geostand. Geoanalytical Res. 2012, 36, 247–270. [Google Scholar] [CrossRef]
- Paton, C.; Helistrom, J.; Paul, B.; Woodhead, J.; Herqt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 2011, 26, 2508–2518. [Google Scholar] [CrossRef]
- Thomson, S.N.; Gehrels, G.E.; Ruiz, J.; Buchwaldt, R. Routine low-damage apatite U–Pb dating using laser ablation-multicollector-ICPMS. Geochem. Geophys. Geosyst. 2012, 13, Q0AA21. [Google Scholar] [CrossRef]
- Schoene, B.; Bowring, S.A. U-Pb systematics of the McClure Mountain syenite: Thermochronological constraints on the age of the Ar-40/Ar-39 standard MMhb. Contrib. Mineral. Petrol. 2006, 151, 615–630. [Google Scholar] [CrossRef]
- McDowell, F.W.; McIntosh, W.C.; Farley, K.A. A precise 40Ar-39Ar reference age for the Durango apatite (U-Th)/He and fission-track dating standard. Chem. Geol. 2005, 214, 249–263. [Google Scholar] [CrossRef]
- Stacey, J.S.; Kramers, J.D. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 1975, 26, 207–221. [Google Scholar] [CrossRef]
- Spandler, C.; Hammerli, J.; Sha, P.; Hilbert-Wolf, H.; Hu, Y.; Roberts, E.; Schmitz, M. MKED1: A new titanite standard for in situ analysis of Sm-Nd isotopes and U–Pb geochronology. Chem. Geol. 2016, 425, 110–126. [Google Scholar] [CrossRef]
- Kennedy, A.K.; Kamo, S.L.; Nasdala, L.; Timms, N.E. Grenville skarn titanite: Potential reference material for SIMS U–Th–Pb analysis. Can. Mineral. 2010, 48, 1423–1443. [Google Scholar] [CrossRef]
- Aleinikoff, J.N.; Wintsch, R.; Tollo, R.P.; Unruh, D.M.; Fanning, C.M.; Schmitz, M.D. Ages and origins of rocks of the Killingworth dome, south-central Connecticut: Implications for the tectonic evolution of southern New England. Am. J. Sci. 2007, 307, 63–118. [Google Scholar] [CrossRef]
- Bailey, S.W. Structures of Layer Silicates: In Crystal Structures of Clay Minerals and Their X-Ray Identification; Brindley, G.W., Brown, G., Eds.; Mineralogical Society: London, UK, 1980; pp. 1–123. [Google Scholar]
- Cathelineau, M.; Nieva, D. A chlorite solid solution geothermometer. The Los Azufres (Mexico) geothermal system. Contrib. Mineral. Petrol. 1985, 91, 235–244. [Google Scholar] [CrossRef]
- Jowett, E. Fitting iron and magnesium into the hydrothermal chlorite geothermometer. In Abstract Book. In Proceedings of the GAC/MAC/SEG Joint Annual Meeting, Toronto, ON, Canada, 27–29 May 1991; Volume 16, p. A62. [Google Scholar]
- Kranidiotis, P.; MacLean, W.H. Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit, Matagami, Quebec. Econ. Geol. 1987, 82, 1898–1911. [Google Scholar] [CrossRef]
- Tilton, G.R.; Grünenfelder, M. Sphene: Uranium-lead ages. Science 1968, 159, 1458–1461. [Google Scholar] [CrossRef]
- Tucker, R.D.; Raheim, A.; Krogh, T.E.; Corfu, F. Uranium-lead zircon and titanite ages from the northern portion of the Western Gneiss region, south-central Norway. EPSL 1987, 81, 203–211. [Google Scholar] [CrossRef]
- Heaman, L.; Parrish, R. U-Pb geochronology of accessory minerals. In Applications of Radiometric Isotope Systems to Problems in Geology; Heaman, L., Ludden, J.N., Eds.; Mineralogical Association of Canada: Quebec, QC, Canada, 1991; Volume 19, pp. 59–102. [Google Scholar]
- Scott, D.J.; St-Onge, M.R. Constraints on Pb closure temperature in titanite based on rocks from the Ungava orogen, Canada: Implications for U-Pb geochronology and P-T-t path determinations. Geology 1995, 23, 1123–1126. [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M.; Ryerson, F.J. Diffusion of Sm, Sr and Pb in fluoroapatite. Geochim. Cosmochim. Acta 1985, 49, 1813–1823. [Google Scholar] [CrossRef]
- Chemiak, D.J.; Lanford, W.A.; Ryerson, F.J. Lead diffusion in apatite and zircon using ion implantation and Rutherford backscattering techniques. Geochim. Cosmochim. Acta 1991, 55, 1663–1674. [Google Scholar]
- Chamberlain, K.R.; Bowring, S.A. Apatite–feldspar U–Pb thermochronometer: A reliable, mid-range (∼450 °C), diffusion-controlled system. Chem. Geol. 2000, 172, 173–200. [Google Scholar] [CrossRef]
- Stalder, H.A. Petrographische und mineralogische Untersu-chungen im Grimselgebiet (Mittleres Aarmassiv). Schweiz. Min. Alogischen Petrogr. Mitt. 1964, 44, 187–398. [Google Scholar]
- Schmid, S.M.; Fügenschuh, B.; Kissling, E.; Schuster, R. Tectonic map and overall architecture of the Alpine orogen. Eclogae Geol. Helv. 2004, 97, 93–117. [Google Scholar] [CrossRef]
- Mullis, J. Fluid inclusion studies during very low-grade metamorphism. In Low Temperature Metamorphism; Frey, M., Ed.; Blackie: London, UK, 1988; pp. 162–199. [Google Scholar]
- Mullis, J.; Dubessy, J.; Poty, B.; O’Neil, J. Fluid regimes during late stages of a continental collision: Physical, chemical, and stable isotope measurements of fluid inclusions in fissure quartz from a geotraverse through the Central Alps, Switzerland. Geochim. Cosmochim. Acta. 1994, 58, 2239–2267. [Google Scholar] [CrossRef]
- Taylor, R.P.; Fryer, B.J. Multiple-stage hydrothermal alteration in porphyry copper systems in northern Turkey: The temporal interplay of potassic, propylitic, and phyllic fluids. Can. J. Earth. Sci. 1980, 17, 901–926. [Google Scholar] [CrossRef]
- Elmas, A.; Yilmaz, I.; Yigitbas, E.; Ullrich, T. A Late Jurassic–Early Cretaceous metamorphic core complex, Strandja Massif, NW Turkey. Int. J. Earth Sci. 2011, 100, 1251–1263. [Google Scholar] [CrossRef]
- Stampfli, G.; Kozur, H. Europe from Variscan to the Alpine cycles. In European Lithosphere Dynamics, 32th ed.; Geological Society of London: London, UK, 2006; Volume 32, pp. 57–82. [Google Scholar]
- Stampfli, G.; Mosar, J.; Favre, P.; Pillevuit, A.; Vannay, J.-C. Permo-Mesozoic evolution of the western Tethyan realm: The Neotethys/EastMediterranean connection. In PeriTethys Memoir 6: Peritethyan Rift/Wrench Basins and Passive Margins; Me ´Moires du Museum Nationale d’Histoire; Ziegler, P., Cavazza, W., Robertson, A., Crasquinsoleau, S., Eds.; IGCP 369: Lisbon, Portugal, 2001; Volume 186, pp. 51–108. [Google Scholar]
- Golonka, J.; Krobicki, M.; Oszczypko, N.; Ślaczka, A.; Słomka, T. Geodynamic evolution and palaeogeoraphy of the Polish Carpathians and adjacent areas during Neo-Cimmerian and preceding events (latest Triassic-earliest cretaceous). Geol. Soc. Spec. Publ. 2003, 208, 138–158. [Google Scholar] [CrossRef]
- Szopa, K.; Włodyka, R.; Chew, D. LA-ICP-MS U-Pb apatite dating of Lower Cretaceous rocks from teschenite-picrite association in the Silesian Unit (southern Poland). Geol. Carpathica 2014, 65, 273–284. [Google Scholar] [CrossRef] [Green Version]
- Gawęda, A.; Szopa, K.; Chew, D.; O’Sullivan, G.J.; Burda, J.; Klötzli, U.; Golonka, J. Variscan post-collisional cooling and uplift of the Tatra Mountains crystalline block constrained by integrated zircon, apatite and titanite LA-(MC)-ICP-MS U-Pb dating and rare earth element analyses. Chem. Geol. 2018, 484, 191–209. [Google Scholar] [CrossRef] [Green Version]
- Ballato, P.; Nowaczyk, N.R.; Landgraf, A.; Strecker, M.R.; Friedrich, A.; Tabatabaei, S.H. Tectonic control on sedimentary facies pattern and sediment accumulation rates in the Miocene foreland basin of the southern Alborz mountains, northern Iran. Tectonics 2008, 27, TC6001. [Google Scholar] [CrossRef] [Green Version]
- Şengör, A.M.C. Mid-Mesozoic closure of Permo-Triassic Tethys and its implications. Nature 1979, 279, 590–593. [Google Scholar] [CrossRef]
- Stampfli, G.; Borel, G. The TRANSMED transects in space and time: Constraints on the Paleotectonic evolution of the Mediterranean Domain. In The TRANSMED Atlas: The Mediterranean Region from Crust to Mantle; Cavazza, W., Roure, F., Spakman, W., Ziegler, P., Eds.; Springer: Berlin, Germany, 2004; pp. 53–80. [Google Scholar]
- Stampfli, G.; Hochard, C. Plate tectonics of the Alpine realm. Geol. Soc. London. In Ancient Orogens and Modern Analogues; Special Publications; The Geological Society of London: London, UK, 2009; Volume 327, pp. 89–111. [Google Scholar]
- Okay, A.I.; Sunal, G.; Sherlock, S.; Altiner, D.; Tüysüz, O.; Kylander-Clark, A.R.C.; Aygül, M. Early Cretaceous sedimentation and orogeny on the southern active margin of Eurasia: Central Pontides, Turkey. Tectonics 2013, 32, 1247–1271. [Google Scholar] [CrossRef]
- Okay, A.I.; Altiner, D.; Kiliç, A.M. Triassic limestone, turbidites and serpentinite–the Cimmeride orogeny in the Central Pontides. Geol. Mag. 2015, 152, 460–479. [Google Scholar] [CrossRef] [Green Version]
- Topuz, G.; Göçmengil, G.; Rolland, Y.; Çelic, Ö.F.; Zack, T.; Schmitt, A.K. Jurassic accretionary complex and ophiolite from northeast Turkey: No evidence for the Cimmerian continental ribbon. Geology 2013, 41, 255–258. [Google Scholar] [CrossRef] [Green Version]
- Hrubcová, P.; Środa, P.; Grad, M.; Geissler, W.H.; Guterch, A.; Vozár, J.; Hegedűs, E. From the Variscan to the Alpine Orogeny: Crustal structure of the Bohemian Massif and the Western Carpathians in the light of the SUDETES 2003 seismic data 2010. Geophys. J. Int. 2010, 183, 611–633. [Google Scholar] [CrossRef] [Green Version]
- Georgiev, S.; von Quadt, A.; Heinrich, C.A.; Peytcheva, I.; Marchev, P. Time evolution of a rifted continental arc: Integrated ID-TIMS and LA-ICPMS study of magmatic zircons from the Eastern Srednogorie, Bulgaria. Lithos 2012, 154, 53–67. [Google Scholar] [CrossRef] [Green Version]
- Lips, A.; White, S.; Wijbrans, J. Middle-Late Alpine thermotectonic evolution of the southern Rhodope Massif, Greece. Geodin. Acta 2000, 13, 281–292. [Google Scholar] [CrossRef] [Green Version]
Compound | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
CaO (wt.%) | 55.69 | 55.82 | 55.57 | 55.57 | 55.83 | 55.77 | 55.75 | 56.13 | 56.11 | 56.26 |
SiO2 | 0.23 | 0.10 | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. |
P2O5 | 41.51 | 42.32 | 41.83 | 42.56 | 42.58 | 42.31 | 41.87 | 42.61 | 42.42 | 42.07 |
SO3 | 0.12 | 0.13 | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. |
F | 2.83 | 2.82 | 3.05 | 2.55 | 2.27 | 2.88 | 1.99 | 2.79 | 2.64 | 2.40 |
H2O | 0.39 | 0.41 | 0.27 | 0.54 | 0.68 | 0.37 | 0.80 | 0.43 | 0.50 | 0.61 |
O=F,Cl | 1.19 | 1.19 | 1.29 | 1.07 | 0.96 | 1.22 | 0.84 | 1.18 | 1.11 | 1.01 |
Total | 99.58 | 100.42 | 99.44 | 100.14 | 100.41 | 100.11 | 99.57 | 100.79 | 100.56 | 100.33 |
Ca (a.p.f.u.) | 10.37 | 10.27 | 10.36 | 10.20 | 10.21 | 10.31 | 10.26 | 10.29 | 10.30 | 10.34 |
Si | 0.04 | 0.02 | - | - | - | - | - | - | - | - |
P | 6.11 | 6.15 | 6.16 | 6.18 | 6.15 | 6.18 | 6.09 | 6.17 | 6.15 | 6.11 |
S | 0.02 | 0.02 | - | - | - | - | - | - | - | - |
XF | 1.55 | 1.53 | 1.68 | 1.38 | 1.22 | 1.57 | 1.08 | 1.51 | 1.43 | 1.30 |
XOH | 0.45 | 0.47 | 0.32 | 0.62 | 0.78 | 0.43 | 0.92 | 0.49 | 0.57 | 0.70 |
Compound | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
SiO2 (wt.%) | 30.20 | 30.19 | 29.93 | 30.18 | 30.04 | 30.12 | 30.31 | 30.19 | 30.23 | 29.91 |
TiO2 | 38.65 | 38.47 | 38.47 | 36.88 | 38.38 | 38.81 | 38.21 | 38.54 | 38.54 | 38.59 |
CaO | 28.33 | 28.26 | 28.07 | 28.24 | 28.25 | 28.41 | 28.24 | 28.24 | 28.26 | 28.21 |
Al2O3 | 1.11 | 1.23 | 1.02 | 1.75 | 0.95 | 0.87 | 1.18 | 1.03 | 0.84 | 0.86 |
MnO | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | 0.12 | 0.12 | b.d.l. | b.d.l. |
Fe2O3 | 0.68 | 0.60 | 0.76 | 0.64 | 0.61 | 0.74 | 0.71 | 0.34 | 0.76 | 0.43 |
Y2O3 | 0.13 | 0.16 | 0.11 | 0.16 | 0.17 | b.d.l. | 0.14 | 0.15 | 0.14 | |
V2O5 | 0.19 | 0.25 | 0.27 | 0.26 | 0.30 | 0.24 | 0.29 | 0.19 | 0.31 | 0.24 |
F | 0.24 | 0.18 | 0.10 | 0.41 | 0.12 | 0.02 | 0.22 | 0.16 | 0.26 | 0.10 |
O=F | 0.10 | 0.08 | 0.04 | 0.17 | 0.05 | 0.01 | 0.09 | 0.07 | 0.11 | 0.04 |
Total | 99.42 | 99.25 | 98.69 | 98.35 | 98.78 | 99.21 | 99.32 | 98.88 | 99.09 | 98.44 |
Si (a.p.f.u.) | 3.58 | 3.58 | 3.57 | 3.62 | 3.58 | 3.57 | 3.60 | 3.60 | 3.60 | 3.58 |
Ti | 3.45 | 3.43 | 3.45 | 3.33 | 3.44 | 3.46 | 3.41 | 3.45 | 3.45 | 3.47 |
Ca | 3.60 | 3.59 | 3.58 | 3.63 | 3.61 | 3.61 | 3.59 | 3.60 | 3.60 | 3.61 |
Al | 0.16 | 0.17 | 0.14 | 0.25 | 0.13 | 0.12 | 0.17 | 0.14 | 0.12 | 0.12 |
Mn | - | - | - | - | - | - | 0.01 | 0.01 | - | - |
Fe | 0.06 | 0.05 | 0.07 | 0.06 | 0.06 | 0.07 | 0.06 | 0.03 | 0.07 | 0.04 |
Y | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | ||
V | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
F | 0.09 | 0.07 | 0.04 | 0.16 | 0.04 | 0.01 | 0.08 | 0.06 | 0.10 | 0.04 |
Total | 10.96 | 10.92 | 10.87 | 11.08 | 10.90 | 10.85 | 10.96 | 10.92 | 10.95 | 10.88 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szopa, K.; Sałacińska, A.; Gumsley, A.P.; Chew, D.; Petrov, P.; Gawȩda, A.; Zagórska, A.; Deput, E.; Gospodinov, N.; Banasik, K. Two-Stage Late Jurassic to Early Cretaceous Hydrothermal Activity in the Sakar Unit of Southeastern Bulgaria. Minerals 2020, 10, 266. https://doi.org/10.3390/min10030266
Szopa K, Sałacińska A, Gumsley AP, Chew D, Petrov P, Gawȩda A, Zagórska A, Deput E, Gospodinov N, Banasik K. Two-Stage Late Jurassic to Early Cretaceous Hydrothermal Activity in the Sakar Unit of Southeastern Bulgaria. Minerals. 2020; 10(3):266. https://doi.org/10.3390/min10030266
Chicago/Turabian StyleSzopa, Krzysztof, Anna Sałacińska, Ashley P. Gumsley, David Chew, Petko Petrov, Aleksandra Gawȩda, Anna Zagórska, Ewa Deput, Nikolay Gospodinov, and Kamila Banasik. 2020. "Two-Stage Late Jurassic to Early Cretaceous Hydrothermal Activity in the Sakar Unit of Southeastern Bulgaria" Minerals 10, no. 3: 266. https://doi.org/10.3390/min10030266
APA StyleSzopa, K., Sałacińska, A., Gumsley, A. P., Chew, D., Petrov, P., Gawȩda, A., Zagórska, A., Deput, E., Gospodinov, N., & Banasik, K. (2020). Two-Stage Late Jurassic to Early Cretaceous Hydrothermal Activity in the Sakar Unit of Southeastern Bulgaria. Minerals, 10(3), 266. https://doi.org/10.3390/min10030266