Geochronology, Geochemistry, and Pb–Hf Isotopic Composition of Mineralization-Related Magmatic Rocks in the Erdaohezi Pb–Zn Polymetallic Deposit, Great Xing’an Range, Northeast China
Abstract
:1. Introduction
2. Regional Geology
3. Geology of the Erdaohezi Deposit
4. Sampling and Analytical Techniques
4.1. Sample Descriptions
4.2. LA-ICP-MS Zircon U–Pb Dating
4.3. Major and Trace Element Determinations
4.4. Zircon Lu–Hf Isotopic Analyses
4.5. Pb Isotopic Analyses
5. Results
5.1. Whole-Rock Geochemistry
5.2. Zircon U–Pb Dating
5.3. Zircon Lu–Hf Isotopic Data
5.4. Pb Isotopic Compositions
6. Discussion
6.1. Timing of Magmatism and Mineralization
6.2. Petrogenesis and Nature of Magma Source
6.2.1. Quartz Porphyry
6.2.2. Andesite Porphyry
6.3. Geodynamic Setting of Diagenesis and Metallization
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Meng, E.; Xu, W.L.; Pei, F.P.; Yang, D.B.; Wang, F.; Zhang, X.Z. Permian bimodal volcanism in the Zhangguangcai Range of eastern Heilongjiang Province, NE China: Zircon U–Pb–Hf isotopes and geochemical evidence. J. Asian Earth Sci. 2011, 41, 119–132. [Google Scholar] [CrossRef]
- Meng, Q.R. What drove late mesozoic extension of the northern China–Mongolia tract? Tectonophysics 2003, 369, 155–174. [Google Scholar] [CrossRef]
- Wang, W.; Tang, J.; Xu, W.L.; Wang, F. Geochronology and geochemistry of Early Jurassic volcanic rocks in the Erguna Massif, northeast China: Petrogenesis and implications for the tectonic evolution of the Mongol–Okhotsk suture belt. Lithos 2015, 218, 73–86. [Google Scholar] [CrossRef]
- Wu, F.Y.; Yang, J.H.; Wilde, S.A.; Zhang, X.O. Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China. Chem. Geol. 2005, 221, 127–156. [Google Scholar] [CrossRef]
- Xu, W.L.; Wang, F.; Pei, F.P.; Meng, E.; Tang, J.; Xu, M.J. Mesozoic tectonic regimes and regional ore–forming background in NE China: Constraints from spatial and temporal variations of Mesozoic volcanic rock associations. Acta Petrol. Sin. 2013, 29, 339–353. [Google Scholar]
- Zhang, F.Q.; Chen, H.L.; Yu, X.; Dong, C.W.; Yang, S.F.; Pang, Y.M.; Batt, G.E. Early Cretaceous volcanism in the northern Songliao Basin, NE China, and its geodynamic implication. Gondwana Res. 2011, 19, 163–176. [Google Scholar] [CrossRef]
- Bonham, H.F. Models for volcanic–hosted epithermal precious metal deposits: A review. In Proceedings of the International Volcanological Congress, Symposium 5, Hamilton, New Zealand, 1–9 February 1986; pp. 13–17. [Google Scholar]
- Cocker, H.A.; Mauk, J.L.; Rabone, S.D.C. The origin of Ag–Au–S–Se minerals in adularia–sericite epithermal deposits: Constraints from the Broken Hills deposit, Hauraki Goldfield, New Zealand. Miner. Depos. 2013, 48, 249–266. [Google Scholar] [CrossRef]
- Cooke, D.R.; Bloom, M.S. Epithermal and subjacent porphyry mineralization, Acupan, Baguio district, Philippines: A fluid–inclusion and paragenetic study. J. Geochem. Explor. 1990, 35, 297–340. [Google Scholar] [CrossRef]
- Dai, Z.X.; Zhang, J.R. The present situation of world lead and zinc resources and their exploitation and utilization. World Nonferr. Metals 2004, 3, 29–34. (In Chinese) [Google Scholar]
- Hedenquist, J.W.; Arribnas, R.A.; Arribas, R.A.; Gonzalez, U.E. Exploration for epithermal gold deposits. Rev. Econ. Geol. 2000, 13, 245–277. [Google Scholar]
- Mao, J.W.; Cheng, Y.B.; Chen, M.H.; Pirajno, F. Major types and time–space distribution of mesozoic ore deposits in south china and their geodynamic settings. Miner. Depos. 2013, 48, 267–294. [Google Scholar]
- Qin, K.Z.; Wang, Z.T.; Pan, L.J. Metallogenic conditions and criteria for evaluating the ore potentiality of porphyry bodies in the Manzhouli–Xingbaerhuyouqi Cu, Mo, Pb, Zn and Ag metallogenic belt. Geol. Rev. 1990, 36, 3–12. (In Chinese) [Google Scholar]
- Zhang, Q.; Wang, Y.; Qian, Q.; Yang, J.H.; Wang, Y.L.; Zhao, T.P.; Guo, G.J. The characteristics and tectonic-metallogenic significances of the adakites in Yanshan period from eatern China. Acta Petrol. Sin. 2001, 17, 236–244. (In Chinese) [Google Scholar]
- Yan, J.; Sun, J.G.; Zhao, S.F.; Ming, Z. LA–ICP–MS Zircon U–Pb age of rhyolitic lithic crystal tuffs in Erdaohezi lead–zinc deposit,Innermongolia. Glob. Geol. 2015, 18, 213–220. (In Chinese) [Google Scholar]
- Wu, T.T.; Zhao, D.F.; Shao, J.; Bao, Q.Z.; Wang, H.B. Geological and geochemical characteristies and genesis of Biliyagu lead–zinc–silver deposit, Inner Mongolia. Chin. Geol. 2014, 41, 1242–1252. (In Chinese) [Google Scholar]
- Xie, C.B.; Liu, M. Geological features and genetic type of Chaganbulagen Ag, Pb, Zn(Au) deposit. Glob. Geol. 2001, 20, 25–29. [Google Scholar]
- Xu, L.Q.; Liu, C.; Deng, J.F.; Li, N.; Dai, M.; Bai, L.B. Geochemical characteristics and zircon U–Pb SHRIMP age ofigneous rocks in Erentaolegai silver deposit, Inner Mongolia. Acta Petrol. Sin. 2014, 30, 3203–3212. [Google Scholar]
- Zhai, D.G.; Liu, J.J.; Wang, J.P.; Yao, M.J.; Wu, S.H.; Fu, C. Fluid evolution of the Jiawula Ag–Pb–Zn deposit, Inner mongolia: Mineralogical, fluid inclusion, and stable isotopic evidence. Int. Geol. Rev. 2013, 55, 204–224. [Google Scholar] [CrossRef]
- Zhao, Y.; Lv, J.C.; Zhang, D.B.; Zhou, Y.H.; Shao, J.; Wang, B. Rb–Sr isochron age of Derbur Pb–Zn–Ag deposit in Erguna massif of northeast Inner Mongolia and its geological significance. Miner. Depos. 2017, 36, 893–904. (In Chinese) [Google Scholar]
- Xu, Z.T.; Sun, J.G.; Liang, X.L.; Sun, F.T.; Ming, Z.; Liu, C.; He, Y.P.; Lei, F.Z. Genesis of ore-bearing volcanic rocks in the Derbur lead-zinc mining area of the Erguna Massif, western slope of the Great Xing’an Range, NE China: Geochemistry, Sr-Nd-Pb isotopes, and zircon U-Pb geochronology. Geol. J. 2019, 54, 3891–3908. [Google Scholar] [CrossRef]
- Bai, L.A.; Sun, J.G.; Gu, A.L.; Zhao, K.Q.; Sun, Q.L. A review of the genesis, geochronology, and geological significance of hydrothermal copper and associated metals deposits in the Great Xing’an Range, NE China. Ore Geol. Rev. 2014, 61, 192–203. [Google Scholar] [CrossRef]
- Yan, J. The Study on Metallogenic Geological Background and Ore Genesis of Erdaohezi Pb–Zn Deposit, the East Slope of the Great Xing’an Range, Jilin Province. Master’s Thesis, Jilin University, Changchun, China, 2016; pp. 1–49. (In Chinese). [Google Scholar]
- Li, J.W.; Liang, Y.W.; Wang, X.Y.; Zhang, B.; Yang, Y.C.; She, H.Q. The Origin of the Erdaohezi Lead–Zinc Deposit,Inner Mongolia. J. Jilin Univ. Geosci. Ed. 2011, 41, 1745–1754. (In Chinese) [Google Scholar]
- Xiao, W.J.; Sun, M.; Santosh, M. Continental reconstruction and metallogeny of the Circum–Junggar areas and termination of the southern Central Asian Orogenic Belt. Geosci. Front. 2015, 6, 137–140. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.Y.; Sun, D.Y.; Ge, W.C.; Zhang, Y.B.; Grant, M.L.; Wilde, S.A. Geochronology of the Phanerozoic granitoids in northeastern China. J. Asian Earth Sci. 2011, 41, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Groves, D.I.; Bierlein, F.P.; Meinert, L.D.; Hitzman, M.W. Iron oxide copper–gold IOCG deposits through earth history; implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits. Econ. Geol. 2010, 105, 641–654. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, H.G.; Mao, J.W.; Santosh, M.; Zhou, J.; Zhou, Z.H.; Wu, Y.; Hou, L. Geodynamic setting of Mesozoic magmatism in NE China and surrounding regions: Perspectives from spatio–temporal distribution patterns of ore deposits. J. Asian Earth Sci. 2013, 78, 222–236. [Google Scholar] [CrossRef]
- Porter, T.M. The geology, structure and mineralisation of the Oyu Tolgoi porphyry copper–gold–molybdenum deposits, Mongolia: A review. Geosci. Front. 2016, 7, 375–407. [Google Scholar] [CrossRef] [Green Version]
- Ren, L.; Sun, J.; Han, J.; Liu, Y.; Wang, C.; Gu, A. Magmatism and metallogenic mechanisms of the Baoshan Cu–polymetallic deposit from the lesser Xing’an range, NE China: Constraints from geology, geochronology, geochemistry, and Hf isotopes. Ore Geol. Rev. 2017, 88, 270–288. [Google Scholar] [CrossRef]
- Yang, Y.T.; Guo, Z.X.; Song, C.C.; Li, X.B.; He, S. A short–lived but significant Mongol–Okhotsk collisional orogeny in latest Jurassic–earliest Cretaceous. Gondwana Res. 2015, 28, 1096–1116. [Google Scholar] [CrossRef]
- Gou, J.; Sun, D.Y.; Ren, Y.S.; Liu, Y.J.; Zhang, S.Y.; Fu, C.L.; Wang, T.H.; Wu, P.F.; Liu, X.M. Petrogenesis and geodynamic setting of Neoproterozoic and Late Paleozoic magmatism in the Manzhouli-Erguna area of Inner Mongolia, China: Geochronological, geochemical and Hf isotopic evidence. Asian Earth. Sci. 2013, 67, 114–137. [Google Scholar] [CrossRef]
- Mao, J.W.; Zhang, Z.H.; Wang, Y.T.; Jia, Y.F.; Robert, K. Nitrogen isotope and content record of mesozoic orogenic gold deposits surrounding the north china craton. Sci. China 2003, 46, 231–245. [Google Scholar] [CrossRef]
- Zhou, J.B.; Wilde, S.A.; Zhang, X.Z.; Zhao, G.C.; Zheng, C.Q.; Wang, Y.J.; Zhang, X.H. The onset of Pacific margin accretion in NE China: Evidence from the Heilongjiang high–pressure metamorphic belt. Tectonophysics 2009, 478, 230–246. [Google Scholar] [CrossRef]
- Zhou, Z.H.; Lv, L.S.; Feng, J.R.; Li, C.; Li, T. Molybdenite Re–Os ages of Huanggang skarn Sn–Fe deposit and their geological significance, Inner Mongolia. Acta Petrol. Sin. 2010, 26, 667–679. (In Chinese) [Google Scholar]
- Zhou, Z.H.; Mao, J.W.; Lyckberg, P. Geochronology and isotopic geochemistry of the A–type granites from the Huanggang Sn–Fe deposit, southern Great Hinggan Range, NE China: Implication for their origin and tectonic setting. J. Asian Earth Sci. 2012, 49, 272–286. [Google Scholar] [CrossRef]
- Zhou, Z.H.; Ouyang, H.G.; Wu, X.L.; Liu, J.; Che, H.W. Geochronology and geochemistry study of the biotite granite from the Daolundaba Cu–W polymetallic deposit in the Inner Mogolia and its geological significance. Acta Petrol. Sin. 2014, 30, 79–94. (In Chinese) [Google Scholar]
- Niu, S.D.; Li, S.R.; Santosh, M.; Zhang, D.H.; Li, Z.D.; Shan, M.J. Mineralogical and isotopic studies of base metal sulfides from the Jiawula Ag–Pb–Zn deposit, Inner Mongolia, NE China. J. Asian Earth Sci. 2016, 115, 480–491. [Google Scholar] [CrossRef]
- Vander, V.R.; Spakman, W.; Bijwaard, H. Mesozoic subducted slabs under Siberia. Nature 1999, 397, 246–249. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.Y.; Sun, D.Y.; Li, H.; Jahn, B.M.; Wilde, S. A–type granites in northeastern China: Age and geochemical constraints on their petrogenesis. Chem. Geol. 2002, 187, 143–173. [Google Scholar] [CrossRef]
- Zhai, D.G.; Liu, J.; Tombros, S.; Williams–Jones, A.E. The genesis of the Hashitu porphyry molybdenum deposit, Inner Mongolia, NE China: Constraints from mineralogical, fluid inclusion, and multiple isotope (H, O, S, Mo, Pb) studies. Miner. Depos. 2017, 53, 377–397. [Google Scholar] [CrossRef] [Green Version]
- Mao, J.W.; Xie, G.Q.; Zhang, Z.H.; Li, X.F.; Wang, Y.T.; Zhang, C.Q.; Li, Y.F. Mesozoic large–scale metallogenic pulses in North China and corresponding geodynamic settings. Acta Petrol. Sin. 2005, 21, 169–188. (In Chinese) [Google Scholar]
- Sun, D.Y.; Gou, J.; Wang, T.H.; Ren, Y.S.; Liu, Y.J.; Guo, H.Y. Geochronological and geochemical constraints on the Erguna massif basement, NE China: Subduction history of the Mongola–Okhotsk Oceanic crust. Int. Geol. Rev. 2013, 55, 1801–1816. [Google Scholar] [CrossRef]
- Sun, G.R.; Li, Y.C.; Zhang, Y. The basement tectonics of Erguna Massif. Geol. Resour. 2002, 11, 129–139. (In Chinese) [Google Scholar]
- Gantumur, H.; Batulzii, D.; Wang, L.; Zhu, H. Tsav: A shoshonite–hosted intermediate sulfidation epithermal Ag–Pb–Zn deposit, eastern Mongolia. In Mineral Deposit Research: Meeting the Global Challenge; Springer: Berlin, Germany, 2005; pp. 389–392. [Google Scholar]
- She, H.Q.; Li, J.W.; Xiang, P.A.; Guan, J.J.; Yang, Y.C.; Zhang, D.Q. U–Pb ages of the zircons from primary rocks in middle–northern Daxinganling and its implications to geotectonic evolution. Acta Petrol. Sin. 2012, 28, 217–240. (In Chinese) [Google Scholar]
- Xu, Z.T.; Liu, Y.; Sun, J.G.; Liang, X.L.; Xu, Z.K. Nature and ore formation of the Erdaohezi Pb-Zn deposit in the Great Xing’an Range, NE China. Ore Geol. Rev. 2020, 119, 103385. [Google Scholar] [CrossRef]
- Zhang, B. The Geologieal Features and Genesis of the Dongjun Lead–Zinc–Silver Deposit in Innermongolia, China. Master’s Thesis, Chinese Academy of Geological Sciences, Beijing, China, 2011; pp. 1–35. (In Chinese). [Google Scholar]
- Liu, C.; Bagas, L.; Wang, F. Isotopic analysis of the super–large Shuangjianzishan Pb–Zn–Ag deposit in Inner Mongolia, China: Constraints on magmatism, metallogenesis, and tectonic setting. Ore Geol. Rev. 2016, 75, 252–267. [Google Scholar] [CrossRef]
- Liu, J.; Mao, J.W.; Wu, G.; Wang, F.; Luo, D.F.; Hu, Y.B. Zircon U–Pb and molybdenite Re–Os dating of the Chalukou porphyry Mo deposit in the northern Great Xing’an range, China and its geological significance. J. Asian Earth Sci. 2014, 79, 696–709. [Google Scholar] [CrossRef]
- Liu, L.; Stegman, D.R. Origin of Columbia River flood basalt controlled by propagating rupture of the Farallon slab. Nature 2012, 482, 386–389. [Google Scholar] [CrossRef]
- Liu, R.L.; Wu, G.; Cheng, G.Z.; Li, T.G.J.B.; Wu, L.W.; Zhang, P.C.; Zhang, T.; Chen, Y.C. Characteristics of fluid inclusions and H–O–C–S–Pb isotopes of Weilasituo Sn–polymetallic deposit in southern Da Hinggan Mountains. Miner. Depos. 2018, 37, 199–224. [Google Scholar]
- Ming, Z.; Sun, J.G.; Yan, J.; Zhao, S.F.; Zhu, J.Q.; Liu, C. Forming environment and magmatic–hydrothermal evolution history of andesite in Derbuer lead–zinc deposit of eastern Inner Mongolia:Zircon U–Pb dating. Glob. Geol. 2015, 34, 590–598. (In Chinese) [Google Scholar]
- Li, T.G. Metallogenesis of the Jiawula–Chaganbulagen Pb–Zn–Ag Orefield, Inner Mongolia, China. Doctoral Dissertation, China University of Geosciences, Beijing, China, 2016; pp. 1–109. (In Chinese). [Google Scholar]
- Griffin, W.L.; Belousova, E.A.; Shee, S.R.; Pearson, N.J.; O’Reilly, S.Y. Archean crustal evolution in the northern Yilgarn Craton: U–Pb and Hf–isotope evidence from detrital zircons. Precambrian Res. 2004, 131, 231–282. [Google Scholar] [CrossRef]
- Jackson, S.E.; Pearson, N.J.; Griffin, W.L.; Belousova, E.A. The application of laser ablation–inductively coupled plasma–mass spectrometry to in situ U–Pb zircon geochronology. Chem. Geol. 2004, 211, 47–69. [Google Scholar] [CrossRef]
- Wiedenbeck, M.; Alle, P.; Corfu, F.; Griffin, W.L.; Meier, M.; Oberli, F.; Vonquadt, A.; Roddick, J.C.; Speigel, W. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace–element and REE analyses. Geostand. Newsl. 1995, 19, 1–23. [Google Scholar] [CrossRef]
- Black, L.P.; Gulson, B.L. The age of the Mud Tank carbonatite, Strangways Range, Northern Territory. BMR. J. Aust. Geol. Geophys. 1978, 3, 227–232. [Google Scholar]
- Ludwig, K.R. User’s Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center: Berkeley, CA, USA, 2003. [Google Scholar]
- Hou, K.J.; Li, Y.H.; Zou, T.R.; Qu, X.M.; Shi, Y.R.; Xie, G.Q. Laser ablation–MC–ICP–MS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrol. Sin. 2007, 23, 2595–2604. (In Chinese) [Google Scholar]
- Wu, F.Y.; Yang, Y.H.; Xie, L.W.; Yang, J.H.; Xu, P. Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology. Chem. Geol. 2006, 234, 105–126. [Google Scholar] [CrossRef]
- Blichert–Toft, J.; Albarède, F. The Lu–Hf geochemistry of chondrites and the evolution of the mantle–crust system. Earth Planet. Sci. Lett. 1997, 148, 243–258. [Google Scholar] [CrossRef]
- Scherer, E.; Munker, C.; Mezger, K. Calibration of the Lutetium–Hafnium clock. Science 2001, 293, 683–687. [Google Scholar] [CrossRef]
- Nowell, G.M.; Kempton, P.D.; Noble, S.R.; Fitton, J.G.; Saunders, A.D.; Mahoney, J.J.; Taylor, R.N. High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry: Insights into the depleted mantle. Chem. Geol. 1998, 149, 211–233. [Google Scholar] [CrossRef]
- Griffin, W.L.; Wang, X.; Jackson, S.E.; Pearson, N.J.; O’Reilly, S.Y.; Xu, X.S.; Zhou, X.M. Zircon chemistry and magma genesis, SE China: In–situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 2002, 61, 237–269. [Google Scholar] [CrossRef]
- Irvine, T.N.; Baragar, W.R.A. A Guide to the Chemical Classification of the Common Volcanic Rocks. Can. J. Earth Sci. 1971, 8, 523–548. [Google Scholar] [CrossRef]
- Middlemost, E.A.K. Naming materials in the magma/igneous rock system. Earth-Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Middlemost, E.A.K. Magmas and Magmatic Rocks; Addison-Wesley Longman Ltd: Boston, London, UK, 1985; pp. 1–266. [Google Scholar]
- Du, Y. Comparative Researchs on Volcanic Rocks from Manitu Formation on the East and West Slopes of Da Hingan Range Wuhan. Master’s Thesis, China University of Geosciences, Beijing, China, 2014; pp. 1–51. (In Chinese). [Google Scholar]
- Ge, W.C.; Lin, Q.; Sun, D.Y.; Wu, F.Y.; Li, X.H. Geochemical resarch into origins of two types of Mesozoic rhyolites in Daxing’anling. Earth Sci. 2000, 25, 172–178. (In Chinese) [Google Scholar]
- Niu, S.D.; Li, S.R.; Huizenga, J.M.; Santosh, M.; Zhang, D.H.; Zeng, Y.J. Zircon U–Pb geochronology and geochemistry of the intrusions associated with the jiawula Ag–Pb–Zn deposit in the Great Xing’an Range, NE China and their implications for mineralization. Ore Geol. Rev. 2017, 86, 35–54. [Google Scholar] [CrossRef]
- Wang, X.L. The Study of the Metallogenic Characteristics and Genesis of the Bianjiadayuan Pb–Zn–Ag Deposit in Inner Mongolia, China. Master’s Thesis, China University of Geosciences, Beijing, China, 2014; pp. 1–71. (In Chinese). [Google Scholar]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In Magmatism in the Ocean Basins; Geological Society London Special Publications: London, UK, 1989; pp. 313–345. [Google Scholar]
- Lightfoot, P.C.; Hawkesworth, C.J.; Sethna, S.F. Petrogenesis of rhyolites and trachytes from the Deccan Trap:Sr,Nd and Pb isotope and trace element evidence. Contrib. Mineral. Petrol. 1987, 95, 44–54. [Google Scholar] [CrossRef]
- Li, C.N. Igneous Petrology of Trace Elements; China University of Geosciences Press: Wuhan, China, 1992; pp. 1–195. (In Chinese) [Google Scholar]
- Li, S.C.; Xu, Z.Y.; Liu, Z.H.; Li, Y.F.; Wang, X.A.; Zhang, C.; Fan, Z.W. Zircon U-Pb dating and geochemical study of volcanic rocks in Manitu Formation of central Da Hinggan Mountains. Geol. Bull. China 2013, 32, 399–407. [Google Scholar]
- Hoskin, P.W.O.; Schaltegger, U. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Chen, B.; Jahn, B.M.; Tian, W. Evolution of the Solonker suture zone: Constraints from zircon U–Pb ages, Hf isotopic ratios and whole–rock Nd–Sr isotope compositions of subduction and collision–related magmas and forearc sediments. J. Asian Earth Sci. 2009, 34, 245–257. [Google Scholar] [CrossRef]
- Xiao, W.J.; Zhang, L.C.; Qin, K.Z.; Sun, S.; Li, J.Y. Paleozoic accretionary and collisional tectonics of the eastern Tienshan (China): Implications for the continental growth of Central Asia. Am. J. Sci. 2004, 304, 370–395. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.H.; Wu, F.Y.; Shao, J.A.; Wilde, S.A.; Xie, L.W.; Liu, X.M. Constraints on the timing of uplift of the Yanshan fold and thrust belt, North China. Earth Planet. Sci. Lett. 2006, 246, 336–352. [Google Scholar] [CrossRef]
- Yu, J.J.; Wang, F.; Xu, W.L.; Gao, F.H.; Pei, F.P. Early Jurassic mafic magmatism in the Lesser Xing’an–Zhangguangcai Range, NE China, and its tectonic implications: Constraints from zircon U–Pb chronology and geochemistry. Lithos 2012, 142, 256–266. [Google Scholar] [CrossRef]
- Vervoort, J.D.; Patchett, P.J.; Gehrels, G.E.; Nutman, A.P. Constraints on early Earth differentiation from hafnium and neodymium isotopes. Nature 1996, 379, 624–627. [Google Scholar] [CrossRef]
- Sun, L.X.; Zhao, F.Q.; Wang, C.H.; Ren, B.F.; Peng, S.H.; Teng, F. Zircon U—Pb geochronology of metabase rocks form the Baoyintu block in the Langshan area, Inner Mongolia, and its tectonic significance. J. Geol. 2013, 87, 197–207. (In Chinese) [Google Scholar]
- Jahn, B.M.; Wu, F.Y.; Lo, C.H.; Tsai, C.H. Crust mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chem. Geol. 1999, 57, 119–146. [Google Scholar] [CrossRef]
- Zhang, J.H.; Ge, W.C.; Wu, F.Y.; Wilde, S.A.; Yang, J.H.; Liu, X.M. Large–scale Early Cretaceous volcanic events in the northern Great Xing’an Range, northeastern China. Lithos 2008, 102, 138–157. [Google Scholar] [CrossRef]
- Zhang, L.C.; Chen, Z.G.; Wu, H.Y.; Xiang, P.; Huang, S.W. Tectonicmagmatic mineralization and geodynamic of Mongolia–Okhotsk Orogen Deerbugan polymetallic metallogenic belt. Miner. Depos. 2010, 29, 547–548. (In Chinese) [Google Scholar]
- Tang, J.; Xu, W.L.; Wang, F.; Zhao, S.; Wang, W. Early Mesozoic southward subduction history of the Mongol–Okhotsk oceanic plate: Evidence from geochronology and geochemistry of Early Mesozoic intrusive rocks in the Erguna Massif, NE China. Gondwana Res. 2016, 31, 218–240. [Google Scholar] [CrossRef]
- Guo, F.; Fan, W.M.; Wang, Y.J.; Lin, G. Petrogenesis of the late mesozoic bimodal volcanic rocks in the Southern Da Hinggan Mts, China. Acta Petrol. Sin. 2001, 17, 161–168. (In Chinese) [Google Scholar]
- Zartman, R.E.; Doe, B.R. Plumbotectonics—The model. Tectonophysics 1981, 75, 135–162. [Google Scholar] [CrossRef]
- Zhao, Y.M.; Li, D.X. Pb–Zn–Ag–bearing Manganoan Skarns of China. J. Geol. 2004, 78, 524–528. [Google Scholar]
- Nie, F.J.; Li, Q.F.; Liu, C.H.; Ding, C.W. Geology and origin of Ag–Pb–Zn deposits occurring in the Ulaan–Jiawula metallogenic province, northeast Asia. J. Asian Earth Sci. 2015, 97, 424–441. [Google Scholar] [CrossRef]
- Feng, Y.Y.; Sun, J.J.; Zhu, J.Q.; Gu, A.L.; Liu, C.; Yang, M. Petrogenesis and geological implications of volcanic rocks in Erentaolegai silver polymetallic deposit on west slope of the Great Xing’an Range:zircon U–Pb geochronology and geochemistry. Global Geol. 2017, 36, 118–134. (In Chinese) [Google Scholar]
- Chen, J.; Sun, F.Y.; Pan, T.; Wang, J.; Huo, L. Geological features of Huojihe molybdenum deposit in Heilongjiang, and geochronology and geochemistry of mineralized granodiorite. J. Jilin Univ. Earth Sci. Ed. 2012, 42, 207–215. (In Chinese) [Google Scholar]
- Hu, X.L.; Ding, Z.J.; He, M.C.; Yao, S.Z.; Zhu, B.P.; Shen, J.; Chen, B. A porphyry–skarn metallogenic system in the Lesser Xing’an Range, NE China: Implications from U–Pb and Re–Os geochronology and Sr–Nd–Hf isotopes of the Luming Mo and Xulaojiugou Pb–Zn deposits. J. Asian Earth Sci. 2014, 90, 88–100. [Google Scholar] [CrossRef]
- Ma, S.Q.; Chen, J. Geochronology and geochemistry of granite of the Luming molybdenum deposit in Heilongjiang and their geological significance. Geol. China. 2012, 39, 1162–1171. (In Chinese) [Google Scholar]
- Pan, M. Mesozoic magmatism and the regionaltectonic evolution in Guligutai Balinyou qi. Master Thesis, Shijiazhuang University of Economics, Shijiazhuang, China, 2012; pp. 1–55. (In Chinese). [Google Scholar]
- Shao, J.; Zhang, L.; Mu, B. Distribution of Uranium and Molybdenum Deposits and their Relations with Medium massifs in Central Asian Orogenic Zone. J. Jilin Univ. 2011, 41, 1667–1675. (In Chinese) [Google Scholar]
- Sun, J.G.; Zhang, Y.; Han, S.J.; Men, L.J.; Li, Y.X.; Chai, P.; Yang, F. Timing of formation and geological setting of low–sulphidation epithermal gold deposits in the continental margin of NE China. Int. Geol. Rev. 2013, 55, 142–161. [Google Scholar] [CrossRef]
- Yang, Y.C.; Han, S.J.; Sun, D.Y.; Guo, J.; Zhang, S.J. Geological and geochemical features and geochronology of porphyry molybdenum deposits in the Lesser Xing’an Range–Zhangguangcai Range metallogenic belt. Acta Petrol. Sin. 2012, 28, 379–390. (In Chinese) [Google Scholar]
- Zhao, Y.; Lv, J.C.; Zhang, P.; Zhang, D.B.; Shen, X.; Bi, Z.W. Characteristics of Ore–Forming fluids in the Derbur Pb–Zn–Ag deposit in the NW Great Hinggan Mountains and Its significance. Acta Geol. Sin. 2018, 92, 142–153. (In Chinese) [Google Scholar]
- Zhao, Y.M.; Zhang, D.Q. Metallogeny and Prospective Evaluation of Copper–Polymetallic Deposits in the Da Hinggan Mountains and Adjacent Regions; Seismological Press: Beijing, China, 1997; pp. 8–156. (In Chinese) [Google Scholar]
- Ye, T.Z.; Lv, Z.C.; Pang, Z.S.; Sun, J.G. A General Discussion on the Theory and Method of Prospecting and Prediction in the Exploration Area; Geological Publishing House: Beijing, China, 2014; pp. 112–217. [Google Scholar]
- Gou, J.; Sun, D.Y.; Zhao, Z.H.; Ren, Y.S.; Zhang, X.Y.; Fu, C.L.; Wang, X.; Wei, H.Y. Zircon LA-ICP-MS U-Pb dating and petrogenesis of rhyolites in Baiyingaolao Formation from the southern Manzhouli, Inner Mongolia. Acta Petrol. Sin. 2010, 26, 333–344. (In Chinese) [Google Scholar]
- King, P.L.; White, A.J.R.; Chappell, B.W.; Allen, C.M. Characterization and origin of aluminous A–type granites from the lachlan fold belt, Southeastern Australia. J. Petrol. 1997, 38, 371–391. [Google Scholar] [CrossRef]
- Martin, R.F. A–type granites of crustal origin ultimately result from open–system fenitization–type reactions in an extensional environment. Lithos 2006, 91, 125–136. [Google Scholar] [CrossRef]
- Zhao, S.Y.; Han, Y.D.; Zhu, C.Y.; Guo, K.C.; Wang, J.M.; Liu, B.S. Geochemical characteristics and geological significance of intermediate and intermediate-acid of the Da Hinggan volcanic eruption zone. J. Geomech. 2004, 10, 276–287. (In Chinese) [Google Scholar]
- Chen, Z.G.; Zhang, L.C.; Zhou, X.H.; Wan, B.; Ying, J.F.; Wang, F. Geochronology and geochemical characteristics of volcanic rocks section in Manzhouli Xinyouqi, Inner–Mongolia. Acta Petrol. Sin. 2006, 22, 2971–2980. (In Chinese) [Google Scholar]
- Jahn, B.M.; Litvinovsky, B.A.; Zanvilevich, A.N.; Reichow, M. Peralkaline granitoid magmatism in the Mongolian–Transbaikalian Belt: Evolution, petrogenesis and tectonic significance. Lithos 2009, 113, 521–539. [Google Scholar] [CrossRef]
- Lin, Q.; Ge, W.C.; Sun, D.Y.; Wu, F.Y.; Yuan, Z.K.; Min, G.D. Tectonic significance of Mesozoic vocanic rocks in North–Eastern China. Sci. Geol. Sin. 1998, 33, 129–139. (In Chinese) [Google Scholar]
- Lin, Q.; Ge, W.C.; Sun, D.Y.; Wu, F.Y.; Yuan, Z.K.; Li, W.Y.; Yin, C.X.; Chen, M.Z.; Min, G.D.; Quan, Z.C. Genetic relationships between two types of Mesozoic rhyolite and basalts in Great Xing’an Range. J. Changchun Univ. Sci. Tech. 2000, 30, 322–328. (In Chinese) [Google Scholar]
- Lin, Q.; Ge, W.C.; Cao, L.; Sun, D.Y.; Lin, J.G. Geochemical of Mesozoic volcanic rocks in Da Hinggan Ling: The bimodal volcanic rocks. Geochimica 2003, 32, 208–222. (In Chinese) [Google Scholar]
- Mingram, B.; Trumbull, R.B.; Littman, S.; Gerstenberger, H. A petrogenetic study of anorogenic felsic magmatism in the Cretaceous Paresis ring complex, Namibia: Evidence for mixing of crust and mantle–derived components. Lithos 2000, 54, 1–22. [Google Scholar] [CrossRef]
- Vernikovsky, V.A.; Pease, V.L.; Vernikovskaya, A.E.; Romanov, A.P.; Gee, D.G.; Travin, A.V. First report of early Triassic A–type granite and syenite intrusions from Taimyr: Product of the northern Eurasian superplume? Lithos 2003, 66, 23–36. [Google Scholar] [CrossRef]
- Zhang, J.H.; Ge, W.C.; Wu, F.Y.; Liu, X.M. Mesozoic bimodal volcanic suite in Zhalantun of the Da Hinggan Range and its geological significance. Zircon U–Pb age and Hf isotopic constraints. Acta Geol. Sin. 2006, 80, 58–69. [Google Scholar]
- Ge, W.C.; Lin, Q.; Sun, D.Y.; Wu, F.Y.; Won, C.K.W.; Lee, M.W.; Jin, M.Y.S.; Yun, S.H. Geochemical characteristics of the Mesozoic basalts in Da Hingg’an Ling: Evidence of the mantle-crust interaction. Acta Petrol. Sin. 1999, 15, 397–407. [Google Scholar]
- Huang, H.; Niu, Y.L.; Zhao, Z.D.; Hei, H.X.; Zhu, D.C. On the Enigma of Nb–Ta and Zr–Hf Fractionation–A Critical Review. J. Earth. Sci. 2011, 22, 52–66. [Google Scholar] [CrossRef]
- Zhao, Z.H.; Xiong, X.L.; Wang, Q.; Qiao, Y.L. Some aspects on geochemistry of Nb and Ta. Geochimica 2008, 37, 304–320. (In Chinese) [Google Scholar]
- Müller, D.; Groves, D.I. Potassic Igneous Rocks and Associated Gold–Copper Mineralization; Springer: Berlin, Germany, 2016; p. 238. [Google Scholar]
- Feiss, P.G. Magmatic sources of copper in porphyry copper deposite. Econ. Geol. 1978, 73, 397–404. [Google Scholar] [CrossRef]
- Schiano, P.; Monzier, M.; Eissen, J.P.; Martin, H.; Koga, K.T. Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes. Contrib. Miner. Petrol. 2010, 160, 297–312. [Google Scholar] [CrossRef]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef] [Green Version]
- Pearce, J.A.; Julian, A. Role of the Sub–Continental Lithosphere in Magma Genesis at Active Continental Margins. In Continental Basalts and Mantle Xenoliths; Hawkesworth, C.J., Norry, M.J., Eds.; Shiva: Nantwich, UK, 1983; pp. 230–249. [Google Scholar]
- Lin, Y.D. Zircon U-Pb Ages, Geochemical Characteristics and Its Tectonic Setting of Volcanic Rocks from Manitu Formation in Suolun Area, Central Great Xing’an Range, Jilin Province. Master’s Thesis, Jilin University, Changchun, China, 2017; pp. 1–50. (In Chinese). [Google Scholar]
- Mollel, G.F.; Swisher, C.C., III; McHenry, L.J.; Feigenson, M.D.; Carr, M.J. Petrogenesis of basalt-trachyte lavas from Olmoti Crater, Tanzania. J. Afr. Earth Sci. 2009, 54, 127–143. [Google Scholar] [CrossRef]
- Panter, K.S.; Kylem, P.R.; Smelliem, J.L. Petrogenesis of a Phonolite–Trachyte Succession at Mount Sidley, Marie Byrd Land, Antarctica. J. Petrol. 1997, 38, 1225–1253. [Google Scholar] [CrossRef]
- Wu, H.Y.; Zhang, L.C.; Zhou, X.H.; Chen, Z.G. Geoehronology and Geochemical charaeteirsitics of Late Mesozoic andeistes in the Central Da Hinggan Mountians, and its genesis. Acta Petrol. Sin. 2008, 24, 1339–1352. [Google Scholar]
- Yi, W.X. Petrological characteristics and genesis of Cenozoic volcanic rocks in volcanic cluster of Chugoku district in Japan. J. Henan Polytech. Univ. 2013, 32, 418–426. [Google Scholar]
- Zhao, Z.H.; Sun, D.Y.; Gou, J.; Ren, Y.S.; Fu, C.L.; Zhang, X.Y.; Wang, X.; Liu, X.M. Chronology and geochemistry of volcanic rocks in Tamulangou Formation from Sourthern Manchuria, Inner Mongolia. J. Jilin Univ. Earth Sci. Ed. 2011, 41, 1865–1880. (In Chinese) [Google Scholar]
- Bohrson, W.A.; Reid, M.R. Genesis of Silicic Peralkaline Volcanic Rocks in an Ocean Island Setting by Crustal Melting and Open-system Processes: Socorro Island, Mexico. J. Petrol. 1997, 38, 1137–1166. [Google Scholar] [CrossRef]
- Sun, J.G.; Men, L.J.; Chen, D.; Chen, L.; Pang, W.; Liang, S.N.; Cheng, Y.; Zhang, P.; Nie, X.T. Elemental geochemistry and zircon CL image records of magmatic hydrothermal gold-copper metallogenic constraints: A case study of the Xiaonancha gold-rich copper deposit, Yanbian, Jilin Province. J. Miner. Petrol. 2009, 29, 43–52. (In Chinese) [Google Scholar]
- Chen, Y.J.; Zhang, C.; Wang, P.; Pirajno, F.; Li, N. The Mo deposits of northeast China: A powerful indicator of tectonic settings and associated evolutionary trends. Ore Geol. Rev. 2017, 81, 602–640. [Google Scholar] [CrossRef]
- Jiang, S.H.; Nie, F.J.; Bai, D.M.; Liu, Y.F.; Liu, Y. Geochronology evidence for indosinian mineralization in baiyinnuoer pb–zn deposit of inner mongolia. Miner. Depos. 2011, 30, 787–798. [Google Scholar]
- Li, T.G.; Wu, G.; Liu, J.; Hu, Y.Q.; Zhang, Y.F.; Luo, D.F. Rb–Sr isochron age of the Jiawula Pb–Zn–Ag deposit in the Manzhouli area and its geological significance. Acta Petrol. Sin. 2014, 30, 257–270. (In Chinese) [Google Scholar]
- Shu, Q.; Chang, Z.; Lai, Y.; Zhou, Y.; Sun, Y.; Yan, C. Regional Metallogeny of Mo–Bearing Deposits in Northeastern China, with New Re–Os Dates of Porphyry Mo Deposits in the Northern Xilamulun District. Econ. Geol. 2016, 111, 1783–1798. [Google Scholar] [CrossRef]
- Zhai, D.G.; Liu, J.; Ripley, E.M.; Wang, J. Geochronological and He–Ar–S isotopic Constraints on the Origin of the Sandaowanzi Gold–Telluride Deposit, Northeastern China. Lithos 2015, 212, 338–352. [Google Scholar] [CrossRef]
- Jiang, S.H.; Chen, C.L.; Bagas, L.; Liu, Y.; Han, N.; Kang, H.; Wang, Z.H. Two mineralization events in the Baiyinnuoer Zn–Pb deposit in Inner Mongolia, China: Evidence from field observations, S–Pb isotopic compositions and U–Pb zircon ages. J. Asian Earth Sci. 2017, 144, 339–367. [Google Scholar] [CrossRef]
- Qin, K.Z.; Li, H.M.; Li, W.S.; Ishihara, S. Intrusion and Mineralization Ages of the Wunugetushan Porphry Cu–Mo Deposit, Inner Mongolia, Northwestern China. Geol. Rev. 1999, 45, 180–185. (In Chinese) [Google Scholar]
- Sun, Y.G.; Li, B.L.; Sun, F.Y.; Qian, Y.; Yu, R.T.; Zhao, T.F.; Dong, J.L. Ore Genesis of the Chuduoqu Pb-Zn-Cu Deposit in the Tuotuohe Area, Central Tibet: Evidence from Fluid Inclusions and C–H–O–S–Pb Isotopes Systematics. Minerals 2019, 9, 285. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Chen, Y.; Chen, Y.; Zeng, Q.D. Zircon U–Pb ages of the metamorphic supracrustal rocks of the Xinghuadukou group and granitic complexes in the Argun massif of the northern Great Hinggan Range, NE China, and their tectonic implications. J. Asian Earth Sci. 2012, 49, 214–233. [Google Scholar] [CrossRef]
- Wu, G.; Li, X.Z.; Xu, L.Q.; Wang, G.; Liu, J.; Zhang, T. Age, geochemistry, and Sr–Nd–Hf–Pb isotopes of the Caosiyao porphyry Mo deposit in Inner Mongolia, China. Ore Geol. Rev. 2016, 81, 706–727. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Q.D.; Qin, K.Z.; Liu, J.M.; Li, G.; Zhai, M.G.; Chu, S.X.; Guo, Y.P. Porphyry molybdenum deposits in the Tianshan–Xingmeng orogenic belt, northern Chin. Int. J. Earth Sci. 2015, 104, 991–1023. [Google Scholar] [CrossRef]
- Zhang, F.Q.; Chen, H.L.; Dong, C.W.; Pang, Y.M.; Shu, P.; Wang, Y.L.; Yang, S.F. SHRIMP zircon U–Pb geochronology of volcanic rocks and discussion on the geological time of the Yingcheng formation of the northern Songliao basin. J. Stratigraph. 2008, 32, 15–20. (In Chinese) [Google Scholar]
- Evans, D.A.D.; Li, Z.X.; Kirschvink, J.L.; Wingate, M.T.D. A high–quality mid–Neoproterozoic paleomagnetic pole from South China, with implications for ice ages and the breakup configuration of Rodinia. Precambrian Res. 2000, 100, 313–334. [Google Scholar] [CrossRef]
- Hoffman, P.F. Did the Breakout of Laurentia Turn Gondwanaland Inside–Out? Science 1991, 252, 1409. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Xu, W.L.; Wang, F.; Wang, W.; Xu, M.J.; Zhang, Y.H. Geochronology and geochemistry of Neoproterozoic magmatism in the Erguna Massif, NE China: Petrogenesis and implications for the breakup of the Rodinia supercontinent. Precambrian Res. 2013, 224, 597–611. [Google Scholar] [CrossRef]
- Wingate, M.T.D.; Giddings, J.W. Age and palaeomagnetism of the Mundine Well dyke swarm, Western Australia: Implications for an Australia–laurentia connection at 755 Ma. Precambrian Res. 2000, 100, 335–357. [Google Scholar] [CrossRef]
- Guo, P.; Xu, W.L.; Yu, J.J.; Wang, F.; Tang, J.; Li, Y. Geochronology and geochemistry of Late Triassic bimodal igneous rocks at the eastern margin of the Songnen–Zhangguangcai Range Massif, Northeast China: Petrogenesis and tectonic implications. Int. Geol. Rev. 2016, 58, 196–215. [Google Scholar] [CrossRef]
- Rudnick, R.L. Making continental crust. Nature 1995, 378, 571–578. [Google Scholar] [CrossRef]
- Gao, S.; Rudnick, R.L.; Yuan, H.L.; Xu, W.L.; Ling, W.L.; John, A.; Wang, X.C.; Wang, Q.H. Recycling lower continental crust in the North China craton. Nature 2004, 432, 892–897. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.T.; Sun, F.Y.; Wang, S.; Xin, W. Geochronology and geochemistry of Late Jurassic to Early Cretaceous granitoids in the northern Great Xing’an Range, NE China: Petrogenesis and implications for late Mesozoic tectonic evolution. Lithos 2018, 312, 171–178. [Google Scholar] [CrossRef]
- Gao, S.; Jin, Z.M. Delamination and its dynamic significance of crust-mantle evolution. Geol. Sci. Tech. Inf. 1997, 16, 1–9. (In Chinese) [Google Scholar]
- Ge, W.C.; Li, X.H.; Lin, Q.; Sun, D.Y.; Wu, F.; Yun, S. Geochemistry of early cretaceous alkaline rhyolites from Hulun Lake, Daxing’anling and its tectonic implications. Sci. Geol. Sin. 2001, 36, 176–183. [Google Scholar]
- Zhang, J.H.; Gao, S.; Ge, W.C.; Wu, F.Y.; Yang, J.H.; Wilde, S.A.; Li, M. Geochronology of the Mesozoic volcanic rocks in the Great Xing’an range, northeastern China: Implications for subduction–induced delamination. Chem. Geol. 2010, 276, 144–165. [Google Scholar] [CrossRef]
- Kravchinsky, V.A.; Jean–Pascal, C.; Harbert, W.P.; Kuzmin, M.I. Evolution of the Mongol–Okhotsk Ocean as constrained by new palaeomagnetic data from the Mongol–Okhotsk suture zone, Siberia. Geophys. J. Int. 2002, 148, 34–57. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Zheng, C.Q.; Yao, W.G.; Li, J.; Cui, F.H.; Gao, F.; Gao, Y.; Xu, J.L.; Han, X.M. Geochronological framework and tectonic setting of the granitic magmatism in the Chaihe–Moguqi region, central Great Xing’an Range, China. J. Asian Earth Sci. 2015, 113, 443–453. [Google Scholar] [CrossRef]
- Sorokin, A.A.; Kotov, A.B.; Sal’Nikova, E.B.; Kudryashov, N.M.; Anisimova, I.V.; Yakovleva, S.Z.; Fedoseenko, A.M. Granitoids of the Tyrma–Bureya complex in the northern Bureya–Jiamusi superterrane of the Central Asian fold belt: Age and geodynamic setting. Russ. Geol. Geophys. 2010, 51, 563–571. [Google Scholar] [CrossRef]
- Wang, F.; Zhou, X.H.; Zhang, L.C.; Ying, J.F.; Zhang, Y.T.; Wu, F.Y. Late Mesozoic volcanism in the Great Xing’an Range (NE China): Timing and implications for the dynamic setting of NE Asia. Earth Planet. Sci. Lett. 2006, 251, 179–198. [Google Scholar] [CrossRef]
- Metelkin, D.V.; Vernikovsky, V.A.; Kazansky, A.Y.; Wingate, M.T.D. Late Mesozoic tectonics of Central Asia based on paleomagnetic evidence. Gondwana Res. 2010, 18, 400–419. [Google Scholar] [CrossRef]
- Miao, L.; Zhang, F.; Baatar, M.; Zhu, M.; Anaad, C. SHRIMP zircon U–Pb ages and tectonic implications of igneous events in the Erendavaa metamorphic terrane in NE Mongolia. J. Asian Earth Sci. 2017, 144, 243–260. [Google Scholar] [CrossRef]
- Ouyang, H.G.; Mao, J.W.; Zhou, Z.H.; Su, H. Late Mesozoic metallogeny and intracontinental magmatism, southern Great Xing’an Range, northeastern China. Gondwana Res. 2015, 27, 1153–1172. [Google Scholar] [CrossRef]
- Zorin, Y.A. Geodynamics of the western part of the Mongolia–Okhotsk collisional belt, Trans–Baikal region (Russia) and Mongolia. Tectonophysics 1999, 306, 33–56. [Google Scholar] [CrossRef] [Green Version]
- Graham, S.A.; Hendrix, M.S.; Johnson, C.L.; Badamgarav, D.; Badarch, G.; Amory, J. Sedimentary record and tectonic implications of Mesozoic rifting in southeast Mongolia. Geol. Soc. Am. Bull. 2001, 113, 1560–1579. [Google Scholar] [CrossRef]
- Wang, P.J.; Liu, W.Z.; Wang, S.X.; Song, W.H. 40Ar/39Ar and K/Ar dating on the volcanic rocks in the Songliao basin, NE China: Constraints on stratigraphy and basin dynamics. Int. J. Earth Sci. 2002, 91, 331–340. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, J.; Chen, J.; Zhang, K.; Rao, W. The Sr and Nd isotopic variations of the Chinese Loess Plateau during the past 7 Ma: Implications for the East Asian winter monsoon and source areas of loess. Paleogeogr. Paleoclimatol. Paleoecol. 2007, 249, 351–361. [Google Scholar] [CrossRef]
- Hilde, T.W.C.; Uyeda, S.; Kroenke, L. Evolution of the western pacific and its margin. Tectonophysics 1977, 38, 145–165. [Google Scholar] [CrossRef]
- Zhao, X.; Coe, R.S.; Gilder, S.A.; Frost, G.M. Paleomagnetic constrains on the paleogeography of China: Implication for gondwanaland. Aust. J. Earth Sci. 1996, 43, 634–672. [Google Scholar] [CrossRef]
- Geng, W.H. Geology and Prespecting Indicators for Subvolcanic CU–Ag Polymetallic Deposits in the Mesozoic Terrestrial Volcanic Region of East China. Ph.D. Thesis, Chengdu University of Technology, Chengdu, China, 2005; pp. 42–49. (In Chinese). [Google Scholar]
- Lu, S.; Wang, K.Y.; Zhao, H.L.; Deng, C.Z.; Liu, Y. Geochronology and geochemistry of late Mesozoic volcanic rocks in the Wenkutu area, Great Xing’an Range, China. Geol. J. 2018, 54, 1343–1360. [Google Scholar] [CrossRef]
- Zhang, J.H. Geochronology and Geochemistry of the Mesozoic Volcanic Rocks in the Great Xing’an Range, Northeastern China. Doctoral Dissertation, China University of Geosciences, Beijing, China, 2009; pp. 1–64. (In Chinese). [Google Scholar]
- Maruyama, S. Pacific–type orogeny revisited: Miyashiro–type orogeny proposed. Isl. Arc 1997, 6, 91–120. [Google Scholar] [CrossRef]
- Şengör, A.M.C. Paleotectonics of Asia: Fragments of a synthesis. In The Tectonic Evolution of Asia; Yin, A., Harrison, M., Eds.; Cambridge University Press: Cambridge, UK, 1996; pp. 486–640. [Google Scholar]
- Shao, J.A.; Zhang, L.; Mu, B. Tectono–thermal evolution of middle–south section of the Da Hinggan Mountains. Sci. China 1998, 41, 570–579. [Google Scholar] [CrossRef]
- Uyeda, S.; Miyashiro, A. Plate Tectonics and the Japanese Islands: A Synthesis. Geol. Soc. Am. Bull. 1974, 85, 1159–1170. [Google Scholar] [CrossRef]
- Han, G.Q.; Liu, Y.J.; Wen, Q.B.; Zou, Y.X.; Yang, D.J.; Zhao, Y.X.; Li, W.; Zhao, L.M. The Characteristics of Structural Deformation for the Lingxia Ductile shear zone of Nenjing–Balihan Fault Belt in Northeastern China. J. Jilin Univ. Earth Sci. Ed. 2009, 39, 397–405. [Google Scholar]
- Han, G.Q.; Liu, Y.J.; Neubauer, F.; Genser, J.; Liang, C.Y.; Wen, Q.B.; Zhao, Y.L. Chronology of L–Type tectonite from Nierji area in the northern–middle segment of the western boundary fault of the Songliao Basin and its tectonic implications. Acta Petrol. Sin. 2014, 30, 1922–1934. [Google Scholar]
- Huang, J.; Zhao, D. High–resolution mantle tomography of China and surrounding regions. J. Geophys. Res. Solid Earth 2006, 111, B09305. [Google Scholar] [CrossRef]
- Wu, F.Y.; Zhao, G.C.; Sun, D.Y.; Wilde, S.A.; Yang, J.H. The Hulan Group: Its role in the evolution of the Central Asian Orogenic Belt of NE China. J. Asian Earth Sci. 2007, 30, 542–556. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Sun, J.; Liang, X.; Xu, Z.; Chu, X. Geochronology, Geochemistry, and Pb–Hf Isotopic Composition of Mineralization-Related Magmatic Rocks in the Erdaohezi Pb–Zn Polymetallic Deposit, Great Xing’an Range, Northeast China. Minerals 2020, 10, 274. https://doi.org/10.3390/min10030274
Xu Z, Sun J, Liang X, Xu Z, Chu X. Geochronology, Geochemistry, and Pb–Hf Isotopic Composition of Mineralization-Related Magmatic Rocks in the Erdaohezi Pb–Zn Polymetallic Deposit, Great Xing’an Range, Northeast China. Minerals. 2020; 10(3):274. https://doi.org/10.3390/min10030274
Chicago/Turabian StyleXu, Zhitao, Jinggui Sun, Xiaolong Liang, Zhikai Xu, and Xiaolei Chu. 2020. "Geochronology, Geochemistry, and Pb–Hf Isotopic Composition of Mineralization-Related Magmatic Rocks in the Erdaohezi Pb–Zn Polymetallic Deposit, Great Xing’an Range, Northeast China" Minerals 10, no. 3: 274. https://doi.org/10.3390/min10030274
APA StyleXu, Z., Sun, J., Liang, X., Xu, Z., & Chu, X. (2020). Geochronology, Geochemistry, and Pb–Hf Isotopic Composition of Mineralization-Related Magmatic Rocks in the Erdaohezi Pb–Zn Polymetallic Deposit, Great Xing’an Range, Northeast China. Minerals, 10(3), 274. https://doi.org/10.3390/min10030274