Bastnaesite, Barite, and Calcite Flotation Behaviors with Salicylhydroxamic Acid as the Collector
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Reagents
2.3. Micro-Flotation Experiments
2.4. Zeta-Potential Measurements
2.5. FT-IR Spectroscopy Measurements
2.6. XPS Analysis
3. Results
3.1. Micro-Flotation Tests
3.2. Zeta-Potential Tests
3.3. FT-IR Analysis
3.4. Solution Chemistry Analysis
3.5. XPS Analysis
3.6. Discussion
4. Conclusions
- (1)
- The results of micro-flotation experiments using SHA as the collector molecule indicate that bastnaesite exhibits good flotability around pH 6.5–8.5. Calcite possesses low flotability at pH 8.0–9.5. Barite has little flotation response across the whole pH range used in the experiments.
- (2)
- The decrease in the zeta-potential of bastnaesite, barite, and calcite can be attributed to the adsorption of SHA anions. SHA can more selectively interact with the bastnaesite surface than the barite and calcite surface.
- (3)
- The FT-IR, XPS, and solution chemistry results indicate that SHA anions can react with RE3+, REOH2+, and RE(OH)2+ on the surface of bastnaesite, and SHA molecule may be chemically adsorbed on the surface. The adsorption between SHA and barite or calcite may be physical. This is the reason for the significantly better flotability of bastnaesite than barite and calcite.
Author Contributions
Funding
Conflicts of Interest
References
- Kumari, A.; Panda, R.; Jha, M.K.; Kumar, J.R.; Lee, J.Y. Process development to recover rare earth metals from monazite mineral: A review. Miner. Eng. 2015, 79, 102–115. [Google Scholar] [CrossRef]
- Xiong, W.; Deng, J.; Chen, B.; Deng, S.; Wei, D. Flotation-magnetic separation for the beneficiation of rare earth ores. Miner. Eng. 2018, 119, 49–56. [Google Scholar] [CrossRef]
- Zhang, X.; Du, H.; Wang, X.; Miller, J.D. Surface chemistry aspects of bastnaesite flotation with octylhydroxamate. Int. J. Miner. Process. 2014, 133, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Golev, A.; Scott, M.; Erskine, P.D.; Ali, S.H.; Ballantyne, G.R. Rare earths supply chains: Current status, constraints and opportunities. Resour. Policy 2014, 41, 52–59. [Google Scholar] [CrossRef]
- Zhou, F.; Wang, L.; Xu, Z.; Liu, Q.; Deng, M.; Chi, R. Application of reactive oily bubbles to bastnaesite flotation. Miner. Eng. 2014, 64, 139–145. [Google Scholar] [CrossRef]
- Jordens, A.; Cheng, Y.P.; Waters, K.E. A review of the beneficiation of rare earth element bearing minerals. Miner. Eng. 2013, 41, 97–114. [Google Scholar] [CrossRef]
- Li, L.Z.; Yang, X. Chapter 9—China’s Rare Earth Resources, Mineralogy, and Beneficiation A2—Lima, Ismar Borges De. In Rare Earths Industry; Filho, W.L., Ed.; Elsevier: Boston, CA, USA, 2016; pp. 139–150. [Google Scholar]
- Liu, Y.; Chakhmouradian, A.R.; Hou, Z.; Song, W.; Kynický, J. Development of REE mineralization in the giant Maoniuping deposit (Sichuan, China): Insights from mineralogy, fluid inclusions, and trace-element geochemistry. Miner. Depos. 2018, 54, 701–718. [Google Scholar] [CrossRef]
- Xia, L.; Brian, H.; Kyle, D. The role of citric acid in the flotation separation of rare earth from the silicates. Miner. Eng. 2015, 74, 123–129. [Google Scholar] [CrossRef]
- Cao, Z.; Cao, Y.; Qu, Q.; Zhang, J.; Mu, Y. Separation of bastnäsite from fluorite using ethylenediamine tetraacetic acid as depressant. Miner. Eng. 2019, 134, 134–141. [Google Scholar] [CrossRef]
- Wang, C.; Qiu, X.; Hu, Z.; Wang, T.; Li, H. Flotation mechanism of bastnaesite by saliclhydroxamic acid. J. Chin. Soc. Rare Earths 2014, 32, 728. [Google Scholar]
- Wang, Z.; Wu, H.; Xu, Y.; Shu, K.; Fang, S.; Xu, L. The effect of dissolved calcite species on the flotation of bastnaesite using sodium oleate. Miner. Eng. 2020, 145, 106095. [Google Scholar] [CrossRef]
- Qiu, X.; He, X.; Rao, J.; Yuhe, T.; Luo, C.; Zhang, J. Flotation mechanism of sodium oleate on bastnaesite. Chin. J. Rare Met. 2013, 37, 422–427. [Google Scholar]
- Liu, Y.; Hou, Z. A synthesis of mineralization styles with an integrated genetic model of carbonatite-syenite-hosted REE deposits in the Cenozoic Mianning-Dechang REE metallogenic belt, the eastern Tibetan Plateau, southwestern China. J. Asian Earth Sci. 2017, 137, 35–79. [Google Scholar] [CrossRef]
- Zhang, X.; Du, H.; Wang, X.; Miller, J.D. Surface chemistry considerations in the flotation of rare-earth and other semisoluble salt minerals. Miner. Met. Explor. 2013, 30, 24–37. [Google Scholar] [CrossRef]
- Kupka, N.; Rudolph, M. Froth flotation of scheelite–A review. Int. J. Min. Sci. Technol. 2018, 28, 373–384. [Google Scholar] [CrossRef]
- Fuerstenau, D.W. The adsorption of hydroxamate on semi-soluble minerals. Part I: Adsorption on barite, Calcite and Bastnaesite. Colloids Surf. 1983, 8, 103–119. [Google Scholar]
- Fuerstenau, D.W.; Herrera-Urbina, R. The surface chemistry of bastnaesite, barite and calcite in aqueous carbonate solutions. Colloids Surf. 1992, 68, 95–102. [Google Scholar] [CrossRef]
- Ren, J.; Lu, S.C.; Chi, R.A. Flotation mechanism of bastnaesite with 1-hydroxy-2-napthyl hydroxamic acid. Chin. J. Nonferrous Met. 1996, 7, 24. [Google Scholar]
- Zhu, Y.S.; Zhu, J.G. Chemistry Mechanism of Flotation Reagent; Central South University of Industry Press: Changsha, China, 1996; pp. 117–129. [Google Scholar]
- Liu, W.; McDonald, L.W., IV; Wang, X.; Miller, J.D. Bastnaesite flotation chemistry issues associated with alkyl phosphate collectors. Miner. Eng. 2018, 127, 286–295. [Google Scholar] [CrossRef]
- Liu, W.; Wang, X.; Wang, Z.; Miller, J.D. Flotation chemistry features in bastnaesite flotation with potassium lauryl phosphate. Miner. Eng. 2016, 85, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Ren, J. Flotation behaviour and mechanism of bastnaesite with N-hydroxyl phthalicimide. Acta Metall. Sinica (China) (People’s Repub. China) 1993, 12, 37–41. [Google Scholar]
- Lin, Y.; Chen, C.; Wang, W.; Jiang, Y.; Cao, X. Beneficial effects and mechanism of lead ions for bastnaesite flotation with octylhydroxamic acid collector. Min. Eng. 2020, 148, 106199. [Google Scholar] [CrossRef]
- Fuerstenau, D.W. The role of inorganic and organic reagents in the flotation separation of rare-earth ores. Int. J. Miner. Process. 1991, 32, 1–22. [Google Scholar]
- Zhiren, Y.; Xue, B.; Wenyuan, W.U. Flotation performance and adsorption mechanism of styrene phosphonic acid as a collector to synthetic (Ce, La)2O3. J. Rare Earths 2017, 35, 621–628. [Google Scholar]
- Rao, J.S.; He, X.J.; Luo, C.S. Flotation Mechanism of OctylHydroxamic Acid on Bastnaesite. J. Chin. Soc. Rare Earths 2015, 33, 370. [Google Scholar]
- Li, M.; Gao, K.; Zhang, D.; Duan, H.; Ma, L.; Huang, L. The influence of temperature on rare earth flotation with naphthylhydroxamic acid. J. Rare Earths 2018, 36, 99–107. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, H.; Zhang, Y.; Liu, H.; Yin, H.; Deng, J.; Qiu, G. Interaction mechanism between marmatite and chalcocite in acidic (microbial) environments. Hydrometallurgy 2020, 191, 105217. [Google Scholar] [CrossRef]
- Zhang, X.; Ye, X.; Chen, L.; Zhao, H.; Shi, Q.; Xiao, Y.; Yang, F. Functional role of bloom-forming cyanobacterium Planktothrix in ecologically shaping aquatic environments. Sci. Total Environ. 2020, 710, 136314. [Google Scholar] [CrossRef]
- Tian, M.; Gao, Z.; Khoso, S.A.; Sun, W.; Hu, Y. Understanding the activation mechanism of Pb2+ ion in benzohydroxamic acid flotation of spodumene: Experimental findings and DFT simulations. Miner. Eng. 2019, 143, 106006. [Google Scholar] [CrossRef]
- Gao, Z.; Gao, Y.; Zhu, Y.; Hu, Y.; Sun, W. Selective flotation of calcite from fluorite: A novel reagent schedule. Minerals 2016, 6, 114. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Bai, D.; Sun, W.; Cao, X.; Hu, Y. Selective flotation of scheelite from calcite and fluorite using a collector mixture. Miner. Eng. 2015, 72, 23–26. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, Z.; Sun, W.; Hu, Y. Selective flotation of scheelite from calcite: A novel reagent scheme. Int. J. Miner. Process. 2015, 154, 10–15. [Google Scholar] [CrossRef]
- Gao, Z.; Sun, W.; Hu, Y. New insights into the dodecylamine adsorption on scheelite and calcite: An adsorption model. Miner. Eng. 2015, 79, 54–61. [Google Scholar] [CrossRef]
- Wang, D.Z.; Hu, Y.H. Solution Chemistry of Flotation; Hunan Science and Technology Press: Changsha, China, 1987; pp. 35–44. [Google Scholar]
- Rao, J. Study on flotation behavior of bastnaesite. Master’s Thesis, Central South University, Changsha, China, 2013. [Google Scholar]
Element | REO | CeO2 | La2O3 | Nd2O3 | Pr6O11 | Sm2O3 | Gd2O3 | Eu2O3 | Dy2O3 |
Content | 72.52 | 35.55 | 25.43 | 7.33 | 3.22 | 0.59 | 0.17 | 0.08 | 0.06 |
Element | Y2O3 | Tb4O7 | F | SiO2 | Al2O3 | Fe2O3 | TiO2 | CaO | LOI |
---|---|---|---|---|---|---|---|---|---|
Content | 0.05 | 0.04 | 6.68 | 0.36 | 0.22 | 1.43 | 0.09 | 0.16 | 19.90 |
FTIR Spectrum | Band (cm−1) | Chemical Bond |
---|---|---|
SHA | 3283 | O–H stretching vibration |
3050 | –CH3 stretching vibration | |
1574 | C=O stretching vibration | |
1521 | C–C stretch vibration | |
1153 | C–O stretching vibration | |
1031 | N–O stretch vibration | |
903 | N–O stretching vibration | |
Bastnaesite | 1446 | CO32− anti-symmetric stretching vibration |
1086 | CO32− symmetric stretching vibration | |
866 | CO32− plane bending vibration | |
728 | CO32− in-plane bending vibration | |
Bastnaesite + SHA | 1436 | CO32− anti-symmetric stretching vibration |
1087 | CO32− symmetric stretching vibration | |
1035 | N–O stretch vibration | |
912 | N–O stretching vibration | |
868 | CO32− plane bending vibration | |
729 | CO32− in-plane bending vibration |
Samples | Elemental Composition (at%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
C | O | F | Ca | N | S | Ba | Nd | La | Ce | |
Bastnaesite | 42.93 | 41.66 | 8.79 | 0.00 | 0.00 | 0.00 | 0.00 | 1.57 | 2.43 | 2.62 |
Bastnaesite + SHA | 46.50 | 38.47 | 7.74 | 0.00 | 1.51 | 0.00 | 0.00 | 1.28 | 2.19 | 2.31 |
Barite | 28.90 | 47.55 | 0.00 | 0.00 | 0.00 | 13.45 | 10.10 | 0.00 | 0.00 | 0.00 |
Barite + SHA | 30.52 | 47.09 | 0.00 | 0.00 | 0.88 | 13.22 | 8.29 | 0.00 | 0.00 | 0.00 |
Calcite | 46.05 | 40.31 | 0.00 | 13.64 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Calcite + SHA | 47.81 | 38.96 | 0.00 | 12.70 | 0.53 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Samples | C | O | F | Ca | N | S | Ba | Nd | La | Ce | |
---|---|---|---|---|---|---|---|---|---|---|---|
Binding Energy (eV) | Bastnaesite | 284.58 | 531.37 | 684.39 | - | - | - | - | 978.61 | 836.52 | 885.00 |
Bastnaesite + SHA | 284.42 | 531.27 | 684.10 | - | 399.49 | - | - | 977.87 | 836.14 | 884.65 | |
Barite | 284.50 | 531.64 | - | - | - | 168.60 | 779.66 | - | - | - | |
Barite + SHA | 284.48 | 531.62 | - | - | 399.44 | 168.60 | 779.85 | - | - | - | |
Calcite | 284.38 | 530.84 | - | 346.39 | - | - | - | - | - | - | |
Calcite + SHA | 284.38 | 530.86 | - | 346.38 | 399.27 | - | - | - | - | - | |
Chemical Shift (eV) | Bastnaesite + SHA | −0.16 | −0.10 | −0.29 | - | - | - | - | −0.74 | −0.38 | −0.35 |
Barite + SHA | −0.02 | −0.02 | - | - | - | - | 0.19 | - | - | - | |
Calcite + SHA | - | 0.02 | - | -0.01 | - | - | - | - | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, W.; Deng, J.; Zhao, K.; Wang, W.; Wang, Y.; Wei, D. Bastnaesite, Barite, and Calcite Flotation Behaviors with Salicylhydroxamic Acid as the Collector. Minerals 2020, 10, 282. https://doi.org/10.3390/min10030282
Xiong W, Deng J, Zhao K, Wang W, Wang Y, Wei D. Bastnaesite, Barite, and Calcite Flotation Behaviors with Salicylhydroxamic Acid as the Collector. Minerals. 2020; 10(3):282. https://doi.org/10.3390/min10030282
Chicago/Turabian StyleXiong, Wenliang, Jie Deng, Kaile Zhao, Weiqing Wang, Yanhong Wang, and Dezhou Wei. 2020. "Bastnaesite, Barite, and Calcite Flotation Behaviors with Salicylhydroxamic Acid as the Collector" Minerals 10, no. 3: 282. https://doi.org/10.3390/min10030282
APA StyleXiong, W., Deng, J., Zhao, K., Wang, W., Wang, Y., & Wei, D. (2020). Bastnaesite, Barite, and Calcite Flotation Behaviors with Salicylhydroxamic Acid as the Collector. Minerals, 10(3), 282. https://doi.org/10.3390/min10030282