Microbial Gold Biosortion and Biomineralization from Aqueous HAuCl4 Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Microorganism Culture
2.3. Gold (III) Removal Experiment
2.3.1. Microorganism Screening for Gold (III) Removal from the Solution for 72 h
2.3.2. The Time Required for Gold Removal Using C. krusei, AHU3993
2.3.3. Effect of pH on Gold (III) Removal by C. krusei AHU3993
2.3.4. Effect of Cell Amounts of C. krusei AHU3993 Added to the Solution on Gold (III) Removal
2.3.5. Effect of Gold (III) Concentration on Gold Removal Using C. krusei AHU3993
2.3.6. Absorption Spectrometry Analysis of Gold Removal Using C. krusei AHU3993
3. Results and Discussion
3.1. Screening Gold (III) Removing Microorganisms after 72 h in Gold-Containing Solution
3.2. Time Required for Gold Removal Using C. krusei, AHU3993
3.3. Effect of pH on the Removal of Gold (III)
3.4. Effect of Cell Amount on Gold (III) Removal by C. krusei, AHU3993
3.5. Absorption Spectrometry Analysis of Gold Removal Using Varying Cell Amounts of C. krusei
3.6. Effect of Gold (III) Concentration on Gold Removal by C. krusei
3.7. Absorption Spectrometry Analysis of the Effect of Gold (III) Concentration on Gold Removal by C. krusei
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Suhr, M.; Raff, J.; Pollmann, K. Au-Interaction of Slp1 Polymers and Monolayer from Lysinibacillus sphaericus JG-B53-QCM-D, ICP-MS and AFM as Tools for Biomolecule-metal Studies. J. Vis. Exp. 2016, 107, e53572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paez-Velez, C.; Rivas, R.E.; Dussan, J. Enhanced Gold Biosorption of Lysinibacillus sphaericus CBAM5 by Encapsulation of Bacteria in an Alginate Matrix. Metals 2019, 9, 818. [Google Scholar] [CrossRef] [Green Version]
- Gomes, N.C.M.; Camargos, E.R.S.; Dias, J.C.T.; Linardi, V.R. Gold and silver accumulation by Aspergillus niger from cyanide-containing solution obtained from the gold mining industry. World J. Microbiol. Biotechnol. 1998, 14, 149. [Google Scholar] [CrossRef]
- Matsumoto, M.; Nishimura, Y. Recovery by Aspergillus oryzae of gold from waste water from gold plating. Nippon Nougeikagakukaishi 1992, 66, 1765–1770. (In Japanese) [Google Scholar] [CrossRef]
- Pethkar, A.V.; Paknikar, K.M. Recovery of gold from solutions using Cladsporium cladosporioides biomass beads. J. Biotechnol. 1998, 63, 121–136. [Google Scholar] [CrossRef]
- Karamuchka, V.; Gadd, G.M. Interaction of Saccharomyces cerevisiae with gold: Toxicity and accumulation. BioMetals 1999, 12, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Hosea, M.; Greene, B.; McPherson, R.; Henzl, M.; Alexander, M.D.; Darnall, D.W. Accumulation of elemental gold on the alga Chlorella vulgaris. Inorg. Chim. Acta 1986, 123, 161–165. [Google Scholar] [CrossRef]
- Kuyucak, N.; Volesky, B. Accumulation of gold by algal biosorbent. Biorecovery 1989, 1, 189–204. [Google Scholar]
- Tsuruta, T. Biosorption and recycling of gold using various microorganisms. J. Gen. Appl. Microbiol. 2004, 50, 221–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuruta, T. Removal and recovery of lithium using various microorganisms. J. Biosci. Bioeng. 2005, 100, 562–566. [Google Scholar] [CrossRef] [PubMed]
- Tsuruta, T.; Umenai, D.; Hatano, T.; Hirajima, T.; Sasaki, K. Screening micro-organisms for cadmium absorption from aqueous solution and cadmium absorption properties of Arthrobacter nicotianae. Biosci. Biotechnol. Biochem. 2014, 78, 1791–1796. [Google Scholar] [CrossRef] [PubMed]
- Tsuruta, T. Removal and recovery of uranyl ion using various microorganisms. J. Biosci. Bioeng. 2002, 94, 23–28. [Google Scholar] [CrossRef]
- Tsuruta, T. Accumulation of thorium ion using various microorganisms. J. Gen. Appl. Microbiol. 2003, 49, 215–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuruta, T. Accumulation of rare earth elements in various microorganisms. J. Rare Earths 2007, 25, 526–532. [Google Scholar] [CrossRef]
- Conn, E.E.; Stumpf, P.K.; Bruening, G.; Doi, R.H. Outlines of Biochemistry, 5th ed.; Wiley: New York, NY, USA, 1987; pp. 292–293. [Google Scholar]
- Fischer, W.; Ishizuka, I.; Landgraf, H.R.; Herrmann, J. Glycerophosphoryl diglucosyl diglyceride, a new phosphoglycolipid from Streptococcus. Biochim. Biophys. Acta 1973, 296, 527–545. [Google Scholar] [CrossRef]
- Fischer, W.; Landgraf, H.R.; Herrmann, J. Phosphatidyldiglucosyl diglyceride from Streptococci and its relationship to other polar lipids. Biochim. Biophys. Acta 1973, 306, 353–367. [Google Scholar] [CrossRef]
- Paul, R.J.; Schneckenburger, H. Oxygen concentration and the oxidation-reduction state of yeast: Determination of free/bound NADH and flavins by time-resolved spectroscopy. Sci. Nat. 1996, 83, 32–35. [Google Scholar] [CrossRef] [PubMed]
- Doremus, R.H. Optical properties of small gold particles. J. Chem. Phys. 1964, 40, 2389–2396. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maeda, I.; Tsuruta, T. Microbial Gold Biosortion and Biomineralization from Aqueous HAuCl4 Solution. Minerals 2020, 10, 285. https://doi.org/10.3390/min10030285
Maeda I, Tsuruta T. Microbial Gold Biosortion and Biomineralization from Aqueous HAuCl4 Solution. Minerals. 2020; 10(3):285. https://doi.org/10.3390/min10030285
Chicago/Turabian StyleMaeda, Ichiro, and Takehiko Tsuruta. 2020. "Microbial Gold Biosortion and Biomineralization from Aqueous HAuCl4 Solution" Minerals 10, no. 3: 285. https://doi.org/10.3390/min10030285
APA StyleMaeda, I., & Tsuruta, T. (2020). Microbial Gold Biosortion and Biomineralization from Aqueous HAuCl4 Solution. Minerals, 10(3), 285. https://doi.org/10.3390/min10030285