U–Pb Dating and Trace Element Composition of Zircons from the Gujiao Ore-Bearing Intrusion, Shanxi, China: Implications for Timing and Mineralization of the Guojialiang Iron Skarn Deposit
Abstract
:1. Introduction
2. Geological Background
2.1. Ore Field Geology
2.2. Iron Deposit Geology
3. Sample and Analytical Methods
4. Results
4.1. Zircon U–Pb Age
4.2. Zircon Trace Elements
4.3. Zircon Thermometer and Oxygen Meter
5. Discussion
5.1. Geochronology of the Ore Deposits
5.2. The Condition of Magma
5.3. Implication for Mineralization
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhu, R.X.; Yang, J.H.; Wu, F.Y. Timing of destruction of the North China Craton. Lithos 2012, 149, 51–60. [Google Scholar] [CrossRef]
- Fan, W.M.; Zhang, H.F.; Baker, J.; Jarvis, K.E.; Mason, P.R.D.; Menzies, M.A. On and off the North China Craton: Where is the Archaean keel? J. Petrol. 2000, 41, 933–950. [Google Scholar] [CrossRef]
- Menzies, M.; Xu, Y.; Zhang, H.; Fan, W. Integration of geology, geophysics and geochemistry: A key to understanding the North China Craton. Lithos 2007, 96, 1–21. [Google Scholar] [CrossRef]
- Li, S.R.; Santosh, M. Geodynamics of heterogeneous gold mineralization in the North China Craton and its relationship to lithospheric destruction. Gondwana Res. 2017, 50, 267–292. [Google Scholar] [CrossRef]
- Wu, F.Y.; Lin, J.Q.; Wilde, S.A.; Zhang, X.O.; Yang, J.H. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth Planet. Sci. Lett. 2005, 233, 103–119. [Google Scholar] [CrossRef]
- Zhu, R.X.; Zhang, H.F.; Zhu, G.; Meng, Q.R.; Fan, H.R.; Yang, J.H.; Wu, F.Y.; Zhang, Z.Y.; Zheng, T.Y. Craton destruction and related resources. Int. J. Earth Sci. 2017, 106, 2233–2257. [Google Scholar] [CrossRef]
- Deng, X.-D.; Li, J.-W.; Wen, G. U–Pb Geochronology of hydrothermal zircons from the early cretaceous Iron Skarn Deposits in the Handan-Xingtai District, North China Craton. Econ. Geol. 2015, 110, 2159–2180. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, T.; Xiao, L.; Bai, M.; Zhang, Y. U–Pb ages, Hf–O isotopes and trace elements of zircons from the ore-bearing and ore-barren adakitic rocks in the Handan-Xingtai district: Implications for petrogenesis and iron mineralization. Ore Geol. Rev. 2019, 104, 14–25. [Google Scholar] [CrossRef]
- Chen, B.; Zhai, M. Geochemistry of late Mesozoic lamprophyre dykes from the Taihang Mountains, north China, and implications for the sub-continental lithospheric mantle. Geol. Mag. 2003, 140, 87–93. [Google Scholar] [CrossRef]
- Zhang, Z.; Hou, T.; Santosh, M.; Li, H.; Li, J.; Zhang, Z.; Song, X.; Wang, M. Spatio-temporal distribution and tectonic settings of the major iron deposits in China: An overview. Ore Geol. Rev. 2014, 57, 247–263. [Google Scholar] [CrossRef]
- Meinert, L.; Dipple, G.; Nicolescu, S. World Skarn Deposits. In Economic Geology 100th Anniversary Volume; Society of Economic Geologists, Inc.: Littleton, CO, USA, 2005; pp. 299–336. [Google Scholar]
- Duan, Z.; Li, J.-W. Zircon and titanite U–Pb dating of the Zhangjiawa iron skarn deposit, Luxi district, North China Craton: Implications for a craton-wide iron skarn mineralization. Ore Geol. Rev. 2017, 89, 309–323. [Google Scholar] [CrossRef]
- Shen, J.F.; Santosh, M.; Li, S.R.; Zhang, H.F.; Yin, N.; Dong, G.C.; Wang, Y.J.; Ma, G.G.; Yu, H.J. The Beiminghe skarn iron deposit, eastern China: Geochronology, isotope geochemistry and implications for the destruction of the North China Craton. Lithos 2013, 156, 218–229. [Google Scholar] [CrossRef]
- Ying, J.F.; Zhang, H.F.; Tang, Y.J. Crust-mantle interaction in the central North China Craton during the Mesozoic: Evidence from zircon U–Pb chronology, Hf isotope and geochemistry of syenitic-monzonitic intrusions from Shanxi province. Lithos 2011, 125, 449–462. [Google Scholar] [CrossRef]
- Huo, T.; Yang, D.; Shi, J.; Xu, W.; Yang, H. Petrogenesis of the Early Cretaceous alkali-rich intrusive rocks in the central North China Block: Constraints from zircon U–Pb chronology and Sr–Nd–Hf isotopes. Acta Petrol. Sin. 2016, 32, 697–712. (In Chinese) [Google Scholar]
- He, W.Y.; Mo, X.X.; Yang, L.Q.; Xing, Y.L.; Dong, G.C.; Yang, Z.; Gao, X.; Bao, X.S. Origin of the Eocene porphyries and mafic microgranular enclaves from the Beiya porphyry Au polymetallic deposit, western Yunnan, China: Implications for magma mixing/mingling and mineralization. Gondwana Res. 2016, 40, 230–248. [Google Scholar] [CrossRef]
- Chen, J.; Xu, J.; Ren, J.; Huang, X. Late Triassic E-MORB-like basalts associated with porphyry Cu-deposits in the southern Yidun continental arc, eastern Tibet: Evidence of slab-tear during subduction? Ore Geol. Rev. 2017, 90, 1054–1062. [Google Scholar] [CrossRef]
- Liang, H.-Y.; Campbell, I.H.; Allen, C.; Sun, W.-D.; Liu, C.-Q.; Yu, H.-X.; Xie, Y.-W.; Zhang, Y.-Q. Zircon Ce4+/Ce3+ ratios and ages for Yulong ore-bearing porphyries in eastern Tibet. Miner. Depos. 2006, 41, 152–159. [Google Scholar] [CrossRef]
- Blevin, P.L.; Chappell, B.W. The role of magma sources, oxidation states and fractionation in determining the granite metallogeny of eastern Australia. Trans. R. Soc. Edinb. Earth Sci. 1992, 83, 305–316. [Google Scholar]
- Ma, X.; Wang, Z.; Wang, C.; Yan, X. Crust-mantle magma mixing and implications for the formation of high Sr/Y ore-bearing porphyries in non-arc environments: A case study and discussion. Acta Petrol. Sin. 2014, 30, 2020–2030. (In Chinese) [Google Scholar]
- Yao, L.; Lü, Z.; Zhao, C.; Pang, Z.; Yu, X.; Yang, T.; Li, Y.; Liu, P.; Zhang, M. Zircon U–Pb geochronological, trace element, and Hf isotopic constraints on the genesis of the Fe and Cu skarn deposits in the Qiman Tagh area, Qinghai Province, Eastern Kunlun Orogen, China. Ore Geol. Rev. 2017, 91, 387–403. [Google Scholar] [CrossRef]
- Ballard, J.R.; Palin, M.J.; Campbell, I.H. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: Application to porphyry copper deposits of northern Chile. Contrib. Mineral. Petrol. 2002, 144, 347–364. [Google Scholar] [CrossRef]
- Sun, W.D.; Huang, R.F.; Li, H.; Hu, Y.B.; Zhang, C.C.; Sun, S.J.; Zhang, L.P.; Ding, X.; Li, C.Y.; Zartman, R.E.; et al. Porphyry deposits and oxidized magmas. Ore Geol. Rev. 2015, 65, 97–131. [Google Scholar] [CrossRef]
- Zheng, Y.C.; Fu, Q.; Hou, Z.Q.; Yang, Z.S.; Huang, K.X.; Wu, C.D.; Sun, Q.Z. Metallogeny of the northeastern Gangdese Pb–Zn–Ag–Fe–Mo–W polymetallic belt in the Lhasa terrane, southern Tibet. Ore Geol. Rev. 2015, 70, 510–532. [Google Scholar] [CrossRef]
- Qiu, J.T.; Yu, X.Q.; Santosh, M.; Zhang, D.H.; Chen, S.Q.; Li, P.J. Geochronology and magmatic oxygen fugacity of the Tongcun molybdenum deposit, northwest Zhejiang, SE China. Miner. Depos. 2013, 48, 545–556. [Google Scholar] [CrossRef]
- Shu, Q.; Chang, Z.; Lai, Y.; Hu, X.; Wu, H.; Zhang, Y.; Wang, P.; Zhai, D.; Zhang, C. Zircon trace elements and magma fertility: Insights from porphyry (-skarn) Mo deposits in NE China. Miner. Depos. 2019, 54, 645–656. [Google Scholar] [CrossRef]
- Jin, Z.; Zhang, Z.; Hou, T.; Santosh, M.; Han, L. Genetic relationship of high-Mg dioritic pluton to iron mineralization: A case study from the Jinling skarn-type iron deposit in the North China Craton. J. Asian Earth Sci. 2015, 113, 957–979. [Google Scholar] [CrossRef]
- Smythe, D.J.; Brenan, J.M. Magmatic oxygen fugacity estimated using zircon-melt partitioning of cerium. Earth Planet. Sci. Lett. 2016, 453, 260–266. [Google Scholar] [CrossRef] [Green Version]
- Trail, D.; Bruce Watson, E.; Tailby, N.D. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochim. Cosmochim. Acta 2012, 97, 70–87. [Google Scholar] [CrossRef]
- Chapman, J.B.; Gehrels, G.E.; Ducea, M.N.; Giesler, N.; Pullen, A. A new method for estimating parent rock trace element concentrations from zircon. Chem. Geol. 2016, 439, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Watson, E.B.; Harrison, T.M. Zircon thermometer reveals minimum melting conditions on earliest Earth. Science 2005, 308, 841–844. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Xiao, L.; Zhan, Q.; Wu, J.; Zhu, D.; Huang, W.; Bai, M.; Zhang, Y. Petrogenesis of the Kuangshancun and Hongshan intrusive complexes from the Handan-Xingtai district: Implications for iron mineralization associated with Mesozoic magmatism in the North China Craton. J. Asian Earth Sci. 2015, 113, 1162–1178. [Google Scholar] [CrossRef]
- Sun, Y.; Xiao, L.; Zhu, D.; Wu, T.; Deng, X.; Bai, M.; Wen, G. Geochemical, geochronological, and Sr–Nd–Hf isotopic constraints on the petrogenesis of the Qicun intrusive complex from the Handan–Xingtai district: Implications for the mechanism of lithospheric thinning of the North China Craton. Ore Geol. Rev. 2014, 57, 363–374. [Google Scholar] [CrossRef]
- Chen, B.; Jahn, B.M.; Arakawa, Y.; Zhai, M.G. Petrogenesis of the Mesozoic intrusive complexes from the southern Taihang Orogen, North China Craton: Elemental and Sr–Nd–Pb isotopic constraints. Contrib. Mineral. Petrol. 2004, 148, 489–501. [Google Scholar] [CrossRef]
- Li, S.-R.; Santosh, M.; Zhang, H.-F.; Shen, J.-F.; Dong, G.-C.; Wang, J.-Z.; Zhang, J.-Q. Inhomogeneous lithospheric thinning in the central North China Craton: Zircon U–Pb and S–He–Ar isotopic record from magmatism and metallogeny in the Taihang Mountains. Gondwana Res. 2013, 23, 141–160. [Google Scholar] [CrossRef]
- Shen, J.F.; Li, S.R.; Santosh, M.; Dong, G.C.; Wang, Y.J.; Liu, H.M.; Peng, Z.D.; Zhang, Z.Y. Zircon U-Pb geochronology of the basement rocks and dioritic intrusion associated with the Fushan skarn iron deposit, southern Taihang Mountains, China. J. Asian Earth Sci. 2015, 113, 1132–1142. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Zong, K.Q.; Gao, C.G.; Gao, S.; Xu, J.; Chen, H.H. Reappraisement and refinement of zircon U–Pb isotope and trace element analyses by LA-ICP-MS. Chin. Sci. Bull. 2010, 55, 1535–1546. [Google Scholar] [CrossRef]
- Ludwig, K.R. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel; Special Publication No. 4; Berkeley Geochronology Center: Berkeley, CA, USA, 2003; Volume 4, pp. 1–71. [Google Scholar]
- Watson, E.B.; Wark, D.A.; Thomas, J.B. Crystallization thermometers for zircon and rutile. Contrib. Mineral. Petrol. 2006, 151, 413–433. [Google Scholar] [CrossRef]
- Zhang, C.C.; Sun, W.D.; Wang, J.T.; Zhang, L.P.; Sun, S.J.; Wu, K. Oxygen fugacity and porphyry mineralization: A zircon perspective of Dexing porphyry Cu deposit, China. Geochim. Cosmochim. Acta 2017, 206, 343–363. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, G.; Liu, F.; Shi, J. 2.2Ga magnesian andesites, Nb-enriched basalt-andesites, and adakitic rocks in the Lüliang Complex: Evidence for early Paleoproterozoic subduction in the North China Craton. Lithos 2014, 208–209, 104–117. [Google Scholar] [CrossRef]
- Santosh, M.; Yang, Q.-Y.; Teng, X.; Tang, L. Paleoproterozoic crustal growth in the North China Craton: Evidence from the Lüliang Complex. Precambrian Res. 2015, 263, 197–231. [Google Scholar] [CrossRef]
- Zhao, G.; Zhai, M. Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications. Gondwana Res. 2013, 23, 1207–1240. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Schaltegger, U. The composition of zircon and igneous and metamorphic petrogenesis. In Zircon; Hanchar, J.M., Hoskin, P.W.O., Eds.; Reviews in Mineralogy and Geochemistry, Mineralogical Society of America: Chantilly, VA, USA, 2003; Volume 53, pp. 27–62. [Google Scholar]
- Belousova, E.A.; Griffin, W.L.; O’Reilly, S.Y.; Fisher, N.I. Apatite as an indicator mineral for mineral exploration: Trace-element compositions and their relationship to host rock type. J. Geochem. Explor. 2002, 76, 45–69. [Google Scholar] [CrossRef]
- Zou, X.; Qin, K.; Han, X.; Li, G.; Evans, N.J.; Li, Z.; Yang, W. Insight into zircon REE oxy-barometers: A lattice strain model perspective. Earth Planet. Sci. Lett. 2019, 506, 87–96. [Google Scholar] [CrossRef]
- Chelle-Michou, C.; Chiaradia, M.; Ovtcharova, M.; Ulianov, A.; Wotzlaw, J.F. Zircon petrochronology reveals the temporal link between porphyry systems and the magmatic evolution of their hidden plutonic roots (the Eocene Coroccohuayco deposit, Peru). Lithos 2014, 198, 129–140. [Google Scholar] [CrossRef]
- Moecher, D.P.; McDowell, S.M.; Samson, S.D.; Miller, C.F. Ti-in-zircon thermometry and crystallization modeling support hot Grenville granite hypothesis. Geology 2014, 42, 267–270. [Google Scholar] [CrossRef]
- Cathey, H.E.; Nash, B.P.; Allen, C.M.; Campbell, I.H.; Valley, J.W.; Kita, N. U–Pb zircon geochronology and Ti-in zircon thermometry of large-volume low 6180 magmas of the Miocene Yellowstone hotspot. Geochim. Cosmochim. Acta 2008, 72, A143. [Google Scholar]
- Sepidbar, F.; Mirnejad, H.; Ma, C. Mineral chemistry and Ti in zircon thermometry: Insights into magmatic evolution of the Sangan igneous rocks, NE Iran. Chem. Erde-Geochem. 2018, 78, 205–214. [Google Scholar] [CrossRef]
- Deng, X.D.; Li, J.W.; Wen, G. Dating iron skarn mineralization using hydrothermal allanite-(La) U–Th–Pb isotopes by laser ablation ICP-MS. Chem. Geol. 2014, 382, 95–110. [Google Scholar] [CrossRef]
- Keay, S.; Steele, D.; Compston, W. Identifying granite sources by SHRIMP U–Pb zircon geochronology: An application to the Lachlan foldbelt. Contrib. Mineral. Petrol. 1999, 137, 323–341. [Google Scholar] [CrossRef]
- Torró, L.; Proenza, J.A.; Rojas-Agramonte, Y.; Garcia-Casco, A.; Yang, J.-H.; Yang, Y.-H. Recycling in the subduction factory: Archaean to Permian zircons in the oceanic Cretaceous Caribbean island-arc (Hispaniola). Gondwana Res. 2018, 54, 23–37. [Google Scholar] [CrossRef]
- Zhao, G.; Sun, M.; Wilde, S.A.; Sanzhong, L. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Res. 2005, 136, 177–202. [Google Scholar] [CrossRef]
- Yang, W.; Li, S. Geochronology and geochemistry of the Mesozoic volcanic rocks in Western Liaoning: Implications for lithospheric thinning of the North China Craton. Lithos 2008, 102, 88–117. [Google Scholar] [CrossRef]
- Wu, K.; Ling, M.-X.; Sun, W.; Guo, J.; Zhang, C.-C. Major transition of continental basalts in the Early Cretaceous: Implications for the destruction of the North China Craton. Chem. Geol. 2017, 470, 93–106. [Google Scholar] [CrossRef]
- Guo, P.; Niu, Y.; Sun, P.; Wang, X.; Gong, H.; Duan, M.; Zhang, Y.; Kong, J.; Tian, L.; Wu, S. The Early Cretaceous bimodal volcanic suite from the Yinshan Block, western North China Craton: Origin, process and geological significance. J. Asian Earth Sci. 2018, 160, 348–364. [Google Scholar] [CrossRef] [Green Version]
- Geng, X.L.; Foley, S.F.; Liu, Y.S.; Wang, Z.C.; Hu, Z.C.; Zhou, L. Thermal-chemical conditions of the North China Mesozoic lithospheric mantle and implication for the lithospheric thinning of cratons. Earth Planet. Sci. Lett. 2019, 516, 1–11. [Google Scholar] [CrossRef]
- Gao, S.; Rudnick, R.L.; Xu, W.L.; Yuan, H.L.; Liu, Y.S.; Walker, R.J.; Puchtel, I.S.; Liu, X.M.; Huang, H.; Wang, X.R.; et al. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth Planet. Sci. Lett. 2008, 270, 41–53. [Google Scholar] [CrossRef]
- Jahn, B.M.; Wu, F.Y.; Lo, C.H.; Tsai, C.H. Crust-mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr–Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chem. Geol. 1999, 157, 119–146. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, W.; Zhang, H.; Peng, T. Early Cretaceous gabbroic rocks from the Taihang Mountains: Implications for a paleosubduction-related lithospheric mantle beneath the central North China Craton. Lithos 2006, 86, 281–302. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, J.; Chen, Z.; Chen, B.; Peng, S.; Men, W. Petrogensis of the Pingshun complexes in the southern Taihang Mountains: Petrology, geochronology and geochemistry. Geotecton. Metallog. 2014, 38, 454–471. [Google Scholar]
- Belousova, E.; Griffin, W.; O’Reilly, S.Y.; Fisher, N. Igneous zircon: Trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol. 2002, 143, 602–622. [Google Scholar] [CrossRef]
- Kemp, A.I.S.; Hawkesworth, C.J.; Foster, G.L.; Paterson, B.A.; Woodhead, J.D.; Hergt, J.M.; Gray, C.M.; Whitehouse, M.J. Magmatic and crustal differentiation history of granitic rocks from Hf–O isotopes in zircon. Science 2007, 315, 980–983. [Google Scholar] [CrossRef] [PubMed]
- Van Kranendonk, M.J.; Kirkland, C.L. Orogenic climax of Earth: The 1.2–1.1 Ga Grenvillian superevent. Geology 2013, 41, 735–738. [Google Scholar] [CrossRef]
- Richards, J.P. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geol. Rev. 2011, 40, 1–26. [Google Scholar] [CrossRef]
- Cao, M.J.; Qin, K.Z.; Li, G.M.; Evans, N.J.; McInnes, B.I.A.; Li, J.X.; Zhao, J.X. Oxidation state inherited from the magma source and implications for mineralization: Late Jurassic to Early Cretaceous granitoids, Central Lhasa subterrane, Tibet. Miner. Depos. 2018, 53, 299–309. [Google Scholar] [CrossRef]
- Hattori, K.H.; Keith, J.D. Contribution of mafic melt to porphyry copper mineralization: Evidence from Mount Pinatubo, Philippines, and Bingham Canyon, Utah, USA. Miner. Depos. 2001, 36, 799–806. [Google Scholar] [CrossRef]
- Konecke, B.A.; Fiege, A.; Simon, A.C.; Parat, F.; Stechern, A. Co-variability of S6+, S4+, and S2− in apatite as a function of oxidation state: Implications for a new oxybarometer. Am. Mineral. 2017, 102, 548–557. [Google Scholar] [CrossRef]
- Brown, P.E.; Essene, E.J. Activity variations attending tungsten skarn formation, Pine Creek, California. Contrib. Mineral. Petrol. 1985, 89, 358–369. [Google Scholar] [CrossRef] [Green Version]
- Meinert, L.D. Skarns and skarn deposits. Geosci. Can. 1992, 19, 145–162. [Google Scholar]
Spot | Th ppm | U ppm | Th/U | 207Pb/206Pb | 2σ | 207Pb/235U | 2σ | 206Pb/238U | 2σ | 207Pb/206Pb | 2σ | 207Pb/235U | 2σ | 206Pb/238U | 2σ | Concordance |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Age (Ma) | Age (Ma) | Age (Ma) | ||||||||||||||
1 | 2290 | 2547 | 0.90 | 0.0494 | 0.0021 | 0.1373 | 0.0070 | 0.0199 | 0.0005 | 168.6 | 100 | 130.7 | 6.2 | 127.1 | 3.0 | 97% |
2 | 2421 | 2568 | 0.94 | 0.0576 | 0.0027 | 0.1625 | 0.0079 | 0.0202 | 0.0004 | 516.7 | 104 | 152.9 | 6.9 | 129.1 | 2.6 | 83% |
3 | 1480 | 1663 | 0.89 | 0.0557 | 0.0033 | 0.1489 | 0.0093 | 0.0192 | 0.0005 | 442.6 | 133 | 140.9 | 8.2 | 122.7 | 3.2 | 86% |
4 | 1343 | 1607 | 0.84 | 0.0556 | 0.0031 | 0.1573 | 0.0093 | 0.0203 | 0.0004 | 435.2 | 126 | 148.4 | 8.1 | 129.7 | 2.8 | 86% |
5 | 2331 | 2236 | 1.04 | 0.0581 | 0.0027 | 0.1609 | 0.0086 | 0.0198 | 0.0005 | 600.0 | 104 | 151.5 | 7.5 | 126.7 | 3.0 | 82% |
6 | 1994 | 1912 | 1.04 | 0.0540 | 0.0027 | 0.1482 | 0.0077 | 0.0198 | 0.0004 | 368.6 | 124 | 140.3 | 6.8 | 126.2 | 2.8 | 90% |
7 | 2578 | 2334 | 1.10 | 0.0464 | 0.0021 | 0.1283 | 0.0059 | 0.0199 | 0.0004 | 16.8 | 122 | 122.6 | 5.3 | 127.3 | 2.6 | 96% |
8 | 2084 | 1683 | 1.24 | 0.0515 | 0.0029 | 0.1459 | 0.0080 | 0.0205 | 0.0005 | 264.9 | 130 | 138.3 | 7.1 | 130.6 | 3.3 | 94% |
9 | 2329 | 2145 | 1.09 | 0.0540 | 0.0026 | 0.1518 | 0.0078 | 0.0203 | 0.0005 | 372.3 | 117 | 143.5 | 6.9 | 129.4 | 3.1 | 90% |
10 | 2828 | 2297 | 1.23 | 0.0560 | 0.0041 | 0.1506 | 0.0140 | 0.0192 | 0.0006 | 453.8 | 163 | 142.4 | 12.3 | 122.3 | 4.0 | 84% |
11 | 2308 | 1916 | 1.20 | 0.0604 | 0.0043 | 0.1724 | 0.0137 | 0.0204 | 0.0006 | 616.7 | 156 | 161.5 | 11.9 | 130.5 | 3.8 | 78% |
12 | 1944 | 2398 | 0.81 | 0.0483 | 0.0020 | 0.1416 | 0.0058 | 0.0212 | 0.0004 | 116.8 | 100 | 134.5 | 5.1 | 135.2 | 2.6 | 99% |
13 | 2368 | 2090 | 1.13 | 0.0541 | 0.0029 | 0.1579 | 0.0086 | 0.0210 | 0.0004 | 376.0 | 113 | 148.8 | 7.6 | 134.1 | 2.7 | 90% |
14 | 2368 | 2189 | 1.08 | 0.0498 | 0.0021 | 0.1377 | 0.0060 | 0.0199 | 0.0004 | 187.1 | 35 | 131.0 | 5.4 | 127.3 | 2.6 | 97% |
15 | 84 | 138 | 0.60 | 0.1085 | 0.0049 | 4.5854 | 0.2592 | 0.3047 | 0.0111 | 1773.8 | 84 | 1746.6 | 47.1 | 1714.6 | 54.6 | 98% |
16 | 205 | 219 | 0.93 | 0.1324 | 0.0049 | 6.8924 | 0.2731 | 0.3757 | 0.0084 | 2129.3 | 63 | 2097.7 | 35.1 | 2055.9 | 39.2 | 97% |
17 | 247 | 483 | 0.51 | 0.1355 | 0.0044 | 7.2698 | 0.2573 | 0.3866 | 0.0079 | 2172.2 | 56 | 2145.1 | 31.6 | 2106.8 | 36.6 | 98% |
18 | 291 | 424 | 0.69 | 0.1364 | 0.0041 | 7.3884 | 0.2707 | 0.3898 | 0.0097 | 2183.3 | 54 | 2159.6 | 32.8 | 2121.7 | 45.0 | 98% |
19 | 2722 | 2452 | 1.11 | 0.0503 | 0.0020 | 0.1424 | 0.0058 | 0.0204 | 0.0004 | 209.3 | 93 | 135.2 | 5.1 | 130.2 | 2.7 | 96% |
20 | 3937 | 3090 | 1.27 | 0.0543 | 0.0023 | 0.1518 | 0.0076 | 0.0201 | 0.0005 | 388.9 | 96 | 143.5 | 6.7 | 128.0 | 2.9 | 90% |
21 | 1526 | 1510 | 1.01 | 0.0562 | 0.0027 | 0.1603 | 0.0077 | 0.0206 | 0.0005 | 461.2 | 117 | 151.0 | 6.7 | 131.5 | 3.1 | 86% |
22 | 103 | 66 | 1.55 | 0.1368 | 0.0061 | 6.8413 | 0.3343 | 0.3615 | 0.0110 | 2186.7 | 77 | 2091.1 | 43.3 | 1989.4 | 51.9 | 95% |
23 | 2168 | 2194 | 0.99 | 0.0522 | 0.0023 | 0.1491 | 0.0065 | 0.0205 | 0.0004 | 294.5 | 91 | 141.1 | 5.7 | 130.8 | 2.7 | 92% |
No. | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er |
1 | 1.63 | 291.35 | 2.49 | 20.09 | 15.37 | 6.68 | 63.01 | 19.17 | 233.09 | 101.57 | 556.62 |
6 | 2.55 | 282.60 | 3.34 | 24.56 | 16.23 | 7.55 | 63.73 | 19.49 | 237.36 | 102.77 | 574.62 |
7 | 2.66 | 322.00 | 3.80 | 28.96 | 20.32 | 8.60 | 77.51 | 22.91 | 277.39 | 118.63 | 653.33 |
8 | 1.78 | 293.10 | 3.49 | 27.40 | 19.43 | 8.15 | 77.84 | 23.84 | 297.97 | 136.49 | 754.95 |
9 | 2.94 | 296.58 | 3.29 | 24.41 | 16.55 | 7.45 | 65.56 | 20.50 | 252.68 | 112.89 | 639.64 |
12 | 1.12 | 259.56 | 1.72 | 13.67 | 11.63 | 5.04 | 51.88 | 17.41 | 225.51 | 107.67 | 637.49 |
13 | 2.78 | 331.48 | 4.19 | 31.25 | 21.37 | 8.57 | 77.97 | 24.34 | 293.76 | 129.19 | 721.01 |
14 | 2.38 | 305.33 | 3.39 | 25.51 | 18.91 | 7.77 | 72.85 | 22.29 | 267.23 | 117.72 | 653.45 |
19 | 2.94 | 327.52 | 3.82 | 27.64 | 20.71 | 9.16 | 79.65 | 24.69 | 288.62 | 119.46 | 648.35 |
20 | 1.76 | 281.47 | 2.61 | 19.03 | 14.96 | 6.41 | 62.29 | 19.85 | 248.36 | 109.37 | 627.17 |
23 | 3.09 | 439.98 | 4.16 | 30.58 | 22.11 | 8.36 | 82.05 | 24.59 | 311.91 | 137.12 | 768.40 |
No. | Tm | Yb | Lu | Hf | Ti | T/°C | Eu/Eu* | Ce/Ce* | Ce4+/Ce3+ | log fO2 | ΔFMQ |
1 | 151.15 | 1779.77 | 371.64 | 6957.23 | 2.82 | 641 | 0.66 | 35.46 | 218.20 | −15.36 | 3.43 |
6 | 153.73 | 1792.44 | 377.68 | 6603.01 | 3.27 | 651 | 0.72 | 23.74 | 173.92 | −14.97 | 3.52 |
7 | 176.44 | 1948.98 | 418.54 | 6534.23 | 3.36 | 653 | 0.66 | 24.83 | 154.14 | −14.83 | 3.6 |
8 | 201.46 | 2249.38 | 491.63 | 6072.93 | 5.80 | 695 | 0.64 | 28.83 | 169.38 | −13.73 | 3.53 |
9 | 171.16 | 1918.43 | 420.42 | 6366.11 | 5.51 | 691 | 0.69 | 23.38 | 193.80 | −13.90 | 3.47 |
12 | 176.20 | 2019.06 | 453.84 | 5887.37 | 4.81 | 680 | 0.63 | 45.85 | 385.27 | −14.21 | 3.45 |
13 | 192.46 | 2176.00 | 475.35 | 5779.29 | 7.25 | 713 | 0.64 | 23.81 | 156.82 | −13.09 | 3.70 |
14 | 175.36 | 1981.16 | 431.11 | 6217.55 | 2.82 | 641 | 0.64 | 26.36 | 175.35 | −15.16 | 3.63 |
19 | 167.62 | 1901.34 | 408.66 | 6463.16 | 4.81 | 680 | 0.69 | 23.96 | 154.72 | −14.14 | 3.53 |
20 | 169.06 | 1944.30 | 426.28 | 6086.94 | 7.68 | 700 | 0.64 | 32.20 | 213.10 | −13.21 | 3.92 |
23 | 203.10 | 2253.16 | 493.31 | 5805.57 | 6.16 | 718 | 0.60 | 30.09 | 245.93 | −13.25 | 3.41 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Z.-G.; Dong, G.-C.; Somarin, A.K. U–Pb Dating and Trace Element Composition of Zircons from the Gujiao Ore-Bearing Intrusion, Shanxi, China: Implications for Timing and Mineralization of the Guojialiang Iron Skarn Deposit. Minerals 2020, 10, 316. https://doi.org/10.3390/min10040316
Chang Z-G, Dong G-C, Somarin AK. U–Pb Dating and Trace Element Composition of Zircons from the Gujiao Ore-Bearing Intrusion, Shanxi, China: Implications for Timing and Mineralization of the Guojialiang Iron Skarn Deposit. Minerals. 2020; 10(4):316. https://doi.org/10.3390/min10040316
Chicago/Turabian StyleChang, Ze-Guang, Guo-Chen Dong, and Alireza K. Somarin. 2020. "U–Pb Dating and Trace Element Composition of Zircons from the Gujiao Ore-Bearing Intrusion, Shanxi, China: Implications for Timing and Mineralization of the Guojialiang Iron Skarn Deposit" Minerals 10, no. 4: 316. https://doi.org/10.3390/min10040316
APA StyleChang, Z. -G., Dong, G. -C., & Somarin, A. K. (2020). U–Pb Dating and Trace Element Composition of Zircons from the Gujiao Ore-Bearing Intrusion, Shanxi, China: Implications for Timing and Mineralization of the Guojialiang Iron Skarn Deposit. Minerals, 10(4), 316. https://doi.org/10.3390/min10040316