Fingerprints of Kamafugite-Like Magmas in Mesozoic Lamproites of the Aldan Shield: Evidence from Olivine and Olivine-Hosted Inclusions
Abstract
:1. Introduction
2. Geological Background
3. Samples and Methods
4. Results
4.1. Lamproite Petrography and Geochemistry
4.2. Olivine Morphology and Chemistry
4.3. Olivine-Hosted Silicate Inclusions
4.4. Olivine-Hosted Cr-Spinel Inclusions
5. Discussion
5.1. Olivine Chemistry
5.1.1. Olivine-1: “Ordinary” Phenocrysts
5.1.2. Olivine-2: “Cumulate-Derived” Macrocrysts
5.1.3. Olivine-3: A Fingerprint of a High-Ca Potassic Magma
5.1.4. Olivine-4: Mantle Xenocrysts
5.2. Olivine-Hosted Melt Inclusions—Evidence of Lamproite-Kamafugite Magmatism
5.3. Olivine-Hosted Cr-Spinel Inclusions: Temperature and Redox-State
5.4. Petrogenetic Constraints
6. Conclusions
- Olivine phenocrysts with step-like regular zoning and a broad compositional range.
- High-Mg, high-Ni olivine macrocrysts, considered to be the earliest olivine, crystallized from lamproite magma and stored in cumulate layers.
- Olivine crystallized from kamafugite-like alkaline magma, and subsequently trapped within the lamproitic magma as xenocrysts or intergrowths.
- Mantle-derived xenocrysts.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Mitchell, R.H.; Bergman, S.C. Petrology of Lamproites; Springer: New York, NY, USA, 1991; p. 447. [Google Scholar]
- Woolley, A.R.; Bergman, S.C.; Edgar, A.D.; Le Bas, M.J.; Mitchell, R.H.; Rock, N.M.S.; Smith, B.H.S. Classification of lamprophyres, lamproites, kimberlites, and the kalsilitic, melilitic, and leucitic rocks. Can. Miner. 1996, 34, 175–186. [Google Scholar]
- Foley, S.F.; Venturelli, G.; Green, D.H.; Toscani, L. The Ultrapotassic Rocks—Characteristics, Classification, and Constraints for Petrogenetic Models. Earth Sci. Rev. 1987, 24, 81–134. [Google Scholar] [CrossRef]
- Prelevic, D.; Foley, S.F.; Romer, R.; Conticelli, S. Mediterranean tertiary lamproites derived from multiple source components in postcollisional geodynamics. Geochim. Cosmochim. Acta 2008, 72, 2125–2156. [Google Scholar] [CrossRef]
- Conticelli, S.; Laurenzi, M.A.; Giordano, G.; Avanzinelli, R.; Melluso, L.; Tommasini, S.; Boari, E. Leucite-beaing (kamafugitic/leucititic) and -free (lamproitic) ultrapotassic rocks and associated shoshonites from Italy: Constraints on petrogenesis and geodynamics. J. Virtual Explor. 2010, 36, 20. [Google Scholar] [CrossRef]
- Prelevic, D.; Foley, S.F.; Romer, R.L.; Cvetkovic, V.; Downes, H. Tertiary ultrapotassic volcanism in Serbia: Constraints on petrogenesis and mantle source characteristics. J. Pet. 2005, 46, 1443–1487. [Google Scholar] [CrossRef]
- Prelevic, D.; Foley, S.F. Accretion of arc-oceanic lithospheric mantle in the Mediterranean: Evidence from extremely high-Mg olivines and Cr-rich spinel inclusions in lamproites. Earth Planet Sci. Lett. 2007, 256, 120–135. [Google Scholar] [CrossRef]
- Khomich, V.G.; Boriskina, N.G.; Santosh, M. Geodynamics of late Mesozoic PGE, Au, and U mineralization in the Aldan shield, North Asian Craton. Ore Geol. Rev. 2015, 68, 30–42. [Google Scholar] [CrossRef]
- Bilibin, Y.A. Petrography of Aldan. Post-Jurassic Intrusions of the Aldan region. Selected Works; AN SSSR: Moscow, Russia, 1958; Volume 1. (In Russian) [Google Scholar]
- Bilibina, T.V.; Dashkova, A.D.; Donakov, V.I.; Titov, V.K.; Shchukin, S.I. Petrology of the alkaline volcanogenic-intrusive complex of the Aldan Shield (Mesozoic); Nedra: Leningrad, Russia, 1967. (In Russian) [Google Scholar]
- Bogatikov, O.A. Lamproites; Nauka: Moscow, Russia, 1991. (In Russian) [Google Scholar]
- Davies, G.R.; Stolz, A.J.; Mahotkin, I.L.; Nowell, G.M.; Pearson, D.G. Trace element and Sr–Pb–Nd–Hf isotope evidence for ancient, fluid-dominated enrichment of the source of Aldan shield lamproites. J. Pet. 2006, 47, 1119–1146. [Google Scholar] [CrossRef] [Green Version]
- Panina, L.I.; Vladykin, N.V. Lamproite rocks of Murun massif and their origin. Geol. Geofiz. 1994, 35, 100–113. (In Russian) [Google Scholar]
- Rokosova, E.Y.; Panina, L.I. Shonkinites and minettes of the Ryabinovyi massif (Central Aldan): Composition and crystallization conditions. Russ. Geol. Geophys. 2013, 54, 613–626. [Google Scholar] [CrossRef]
- Sharygin, V.V. Potassic picrites of Ryabinoviy massif (Central Aldan). Geol. Geofiz. 1993, 4, 60–70. (In Russian) [Google Scholar]
- Vladykin, N.V. Geochemistry and genesis of lamproites of the Aldan shield. Geol. Geofiz. 1997, 38, 123–135. (In Russian) [Google Scholar]
- Batanova, V.G.; Sobolev, A.V.; Magnin, V. Trace element analysis by EPMA in geosciences: Detection limit, precision and accuracy. Iop Conf. Ser. Mater. Sci. Eng. 2018, 304, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Foley, S.F.; Prelevic, D.; Rehfeldt, T.; Jacob, D.E. Minor and trace elements in olivines as probes into early igneous and mantle melting processes. Earth Planet. Sc. Lett. 2013, 363, 181–191. [Google Scholar] [CrossRef]
- Sobolev, A.; Hofmann, A.; Kuzmin, D.; Yaxley, G.; Arndt, N.; Chung, S.-L.; Danyushevsky, L.; Elliott, T.; Frey, F.; Garcia, M.; et al. The Amount of Recycled Crust in Sources of Mantle-Derived Melts. Science 2007, 316, 412–417. [Google Scholar] [CrossRef]
- Veter, M.; Foley, S.F.; Mertz-Kraus, R.; Groschopf, N. Trace elements in olivine of ultramafic lamprophyres controlled by phlogopite-rich mineral assemblages in the mantle source. Lithos 2017, 292, 81–95. [Google Scholar] [CrossRef]
- Gurenko, A.A.; Chaussidon, M. Enriched and depleted primitive melts included in olivine from Icelandic tholeites: origin by continuous melting of a single mantle column. Geochim. et Cosmochim. Acta 1995, 59, 2905–2917. [Google Scholar] [CrossRef]
- Kamenetsky, V.; Métrich, N.; Cioni, R. Potassic primary melts of Vulsini (Roman Province): Evidence from mineralogy and melt inclusions. Contrib. Miner. Petr. 1995, 120, 186–196. [Google Scholar] [CrossRef]
- Sobolev, A.V. Melt inclusions in minerals as a source of principle petrological information. Petrology 1996, 4, 228–239. [Google Scholar]
- Sobolev, A.V.; Asafov, E.V.; Gurenko, A.A.; Arndt, N.T.; Batanova, V.G.; Portnyagin, M.V.; Garbe-Schonberg, D.; Krasheninnikov, S.P. Komatiites reveal a hydrous Archaean deep-mantle reservoir. Nature 2016, 531, 628–632. [Google Scholar] [CrossRef]
- Jaques, A.L.; Foley, S.F. Insights into the petrogenesis of the West Kimberley lamproites from trace elements in olivine. Min. Pet. 2018, 112, 519–537. [Google Scholar] [CrossRef]
- Panina, L.I. Low-titanium Aldan lamproites (Siberia): Melt inclusions in minerals. Geol. Geofiz. 1997, 38, 112–122. [Google Scholar]
- Entin, A.; Tyan, O. Before-Carbonatite Step of Formation of Apatite Deposits of Seligdar Type (Aldan); Siberian Branch, Acad Sci USSR: Yakutsk, Russia, 1984; Volume 28. [Google Scholar]
- Parfenov, L.M.; Kuz’min, M.I. Metallogenic units of North-Asian craton. In Tectonics, geodynamics and metallogeny of the Sakha Republic (Yakutia); Parfenov, L.M.; Kuz’min, M.I. MAIK Nauka Interperiodica: Moscow, Russia, 2001; pp. 301–333. [Google Scholar]
- Khomich, V.; Boriskina, N. Structural position of large gold ore districts in the Central Aldan (Yakutia) and Argun (Transbaikalia) superterranes. Russ. Geol. Geophys. 2010, 51, 661–671. [Google Scholar] [CrossRef]
- Doroshkevich, A.G.; Prokopyev, I.R.; Izokh, A.E.; Klemd, R.; Ponomarchuk, A.V.; Nikolaeva, I.V.; Vladykin, N.V. Isotopic and trace element geochemistry of the Seligdar magnesiocarbonatites (South Yakutia, Russia): Insights regarding the mantle evolution beneath the Aldan-Stanovoy shield. J. Asian Earth Sci. 2018, 154, 354–368. [Google Scholar] [CrossRef]
- Maximov, E.P.; Uyutov, V.I.; Nikitin, V.M. The Central Aldan gold-uranium ore magmatogenic system, Aldan-Stanovoy shield, Russia. Russ. J. Pac. Geol. 2010, 4, 95–115. [Google Scholar] [CrossRef]
- Jahn, B.M.; Gruau, G.; Capdevila, R.; Cornichet, J.; Nemchin, A.; Pidgeon, R.; Rudnik, V.A. Archean crustal evolution of the Aldan Shield, Siberia: Geochemical and isotopic constraints. Precambrian Res. 1998, 91, 333–363. [Google Scholar] [CrossRef]
- Smelov, A.P.; Timofeev, V.F. The tectonics and metallogeny of the Precambrian of the Aldan-Stanovoy Shield. Proceedings of Mineral Deposit Research: Meeting the Global Challenge, Beijing, China, 18–21 August 2005; Springer: Berlin/Heidelberg, Germany, 2005; pp. 53–56. [Google Scholar]
- Gladkochub, D.; Pisarevsky, S.; Donskaya, T.; Natapov, L.; Mazukabzov, A.; Stanevich, A.; Sklyarov, E. Siberian Craton and its evolution in terms of Rodinia hypothesis. Epis. Newsmag. Int. Union Geol. Sci. 2006, 29, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Kononova, V.A.; Pervov, V.A.; Bogatikov, O.A.; Mues-Schumacher, U.; Keller, I. Mesozoic potassic magmatism of the Central Aldan: Geodynamics and genesis. Geotectonics 1995, 29, 224–234. [Google Scholar]
- Mues-Schumacher, U.; Keller, J.S.; Kononova, V.A.; Suddaby, P. Petrology and age determinations of the ultramafic (lamproitic) rocks form the Yakokut complex, Aldan Shield, Eastern Siberia. Mineral. Mag. 1995, 59, 409–428. [Google Scholar] [CrossRef]
- Chayka, I.F.; Izokh, A.E.; Sobolev, A.V.; Batanova, V.G.; Lobastov, B.M. Evolution of low-Ti lamproite rock series from Ryabinoviy massif (Aldan shield, Russia) and connected carbonatite-hydrothermal mineralization. Proceedings of Petrology of Magmatic and Metamorphic Complexes, Tomsk, Russia; 2017; pp. 441–447. [Google Scholar]
- Batanova, V.G.; Sobolev, A.V.; Kuzmin, D.V. Trace element analysis of olivine: High precision analytical method for JEOL JXA-8230 electron probe microanalyser. Chem. Geol. 2015, 419, 149–157. [Google Scholar] [CrossRef]
- Batanova, V.G.; Thompson, J.M.; Danyushevsky, L.V.; Portnyagin, M.V.; Garbe-Schönberg, D.; Hauri, E.; Kimura, J.-I.; Chang, Q.; Senda, R.; Goemann, K.; et al. New Olivine reference material for in-situ microanalysis. Geostand. Geoanalytical Res. 2019, 43, 453–473. [Google Scholar] [CrossRef] [Green Version]
- Krasheninnikov, S.P.; Sobolev, A.V.; Batanova, V.G.; Kargaltsev, A.A.; Borisov, A.A. Experimental testing of olivine-melt equilibrium models at high temperatures. Dokl. Earth Sci. 2017, 475, 919–922. [Google Scholar] [CrossRef]
- Morgan, G.B.V.; London, D. Optimizing the electron microprobe analysis of hydrous alkali aluminosilicate glasses. Am. Miner. 1996, 81, 1176–1185. [Google Scholar] [CrossRef]
- Jochum, K.P.; Dingwell, D.B.; Roscholl, A.; Stoll, B.; Hoffmann, A.W.; Becker, S.; Besmehn, A.; Bessette, D.; Dietze, H.-J.; Dulski, P.; et al. The Preparation and Preliminary Characterisation of Eight Geological MPI-DING Reference Glasses for In-Situ Microanalysis. Geostand. Newslett. 2000, 24, 87–133. [Google Scholar] [CrossRef]
- Jochum, K.P.; Stoll, B.; Herwig, K.; Willbold, M.; Hofmann, A.W.; Amini, M.; Aarburg, S.; Abouchami, W.; Hellebrand, E.; Mocek, B.; et al. MPI-DING reference glasses for in situ microanalysis: New reference values for element concentrations and isotope ratios. Geochem. Geophys. Geosyst. 2006, 7, Q02008. [Google Scholar] [CrossRef]
- Rocholl, A.B.E.; Simon, K.; Jochum, K.P.; Molzahn, M.; Pernicka, E.; Seufert, M.; Spettel, B.; Stummeier, J. Chemical characterization of NIST Silicate Glass Certified Reference Material SRM 610 by ICP-MS, TIMS, LIMS, SSMS, INAA, AAS and PIXE. Geostandards 1997, 21, 101–114. [Google Scholar] [CrossRef]
- Shishkina, T.A.; Botcharnikov, R.E.; Holtz, F.; Almeev, R.R.; Portnyagin, M.V. Solubility of H2O- and CO2-bearing fluids in tholeiitic basalts at pressures up to 500 MPa. Chem. Geol. 2010, 277, 115–125. [Google Scholar] [CrossRef]
- Gurenko, A.A.; Belousov, A.B.; Trumbull, R.B.; Sobolev, A.V. Explosive basaltic volcanism of the Chikurachki Volcano (Kurile arc, Russia): Insights on pre-eruptive magmatic conditions and volatile budget revealed from phenocryst-hosted melt inclusions and groundmass glasses. J. Volcanol. Geotherm. Res. 2005, 147, 203–232. [Google Scholar] [CrossRef] [Green Version]
- Bucholz, C.E.; Gaetani, G.A.; Behn, M.D.; Shimizu, N. Post-entrapment modification of volatiles and oxygen fugacity in olivine-hosted melt inclusions. Earth Planet Sci. Lett. 2013, 374, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Danyushevsky, L.V.; McNeill, A.W.; Sobolev, A.V. Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: An overview of techniques, advantages and complications. Chem. Geol. 2002, 183, 5–24. [Google Scholar] [CrossRef] [Green Version]
- Gaetani, G.A.; O’Leary, J.A.; Shimizu, N.; Bucholz, C.E.; Newville, M. Rapid reequilibration of H2O and oxygen fugacity in olivine-hosted melt inclusions. Geology 2012, 2012 40, 915–918. [Google Scholar] [CrossRef]
- Portnyagin, M.; Almeev, R.; Matveev, S.; Holtz, F. Experimental evidence for rapid water exchange between melt inclusions in olivine and host magma. Earth Planet. Sci. Lett. 2008, 272, 541–552. [Google Scholar] [CrossRef]
- Sun, S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Boynton, W.V. Cosmochemistry of the rare earth elements: Meteorite studies. In Developments in Geochemistry; Elsevier: Amsterdam, The Netherlands, 1984; Volume 2, pp. 63–114. [Google Scholar]
- Le Maitre, R.W. (Ed.) Igneous Rocks. A Classification and Glossary of Terms. Recommendations of the International Union of Geological Sciences Subcomission on the Systematics of Igneous Rocks, 2nd ed.; Cambridge University Press: Cambridge, UK, 2002; p. 236. [Google Scholar]
- Hoa, T.T.; Thanh, H.H.; Phuong, N.T.; Anh, T.T.; Hang, H.V. Mineralization, characteristics and forming conditions of lamproite of Vietnam. J. Geol. Ser. B 1997, 9–10, 63–68. [Google Scholar]
- Mitchell, R.H.; Platt, R.G.; Downey, M. Petrology of Lamproites from Smoky Butte, Montana. J. Pet. 1987, 28, 645–677. [Google Scholar] [CrossRef] [Green Version]
- Plechov, P.Y.; Shcherbakov, V.D.; Nekrylov, N.A. Extremely magnesian olivine in igneous rocks. Russ. Geol. Geophys. 2018, 59, 1702–1717. [Google Scholar] [CrossRef]
- Sobolev, A.V.; Hofmann, A.W.; Sobolev, S.V.; Nikogosian, I.K. An olivine-free mantle source of Hawaiian shield basalts. Nature 2005, 434, 590–597. [Google Scholar] [CrossRef]
- Arndt, N.; Guitreau, M.; Boullier, A.-M.; Le Roex, A.; Tommasi, A.; Cordier, P.; Sobolev, A. Olivine, and the origin of kimberlite. J. Pet. 2010, 51, 573–602. [Google Scholar] [CrossRef] [Green Version]
- Kamenetsky, V.S.; Kamenetsky, M.B.; Sobolev, A.V.; Golovin, A.V.; Demouchy, S.; Faure, K.; Sharygin, V.V.; Kuzmin, D.V. Olivine in the Udachnaya-East Kimberlite (Yakutia, Russia): Types, Compositions and Origins. J. Pet. 2007, 49, 823–839. [Google Scholar] [CrossRef]
- Deer, W.A.; Howie, R.A.; Zussman, J. Rock-Forming Minerals: Single-Chain Silicates. Geological Society of London: London, UK, 1997; Volume 2, p. 662. [Google Scholar]
- Zharikov, V.A. Skarns (Part I). Int. Geol. Rev. 1970, 12, 541–559. [Google Scholar] [CrossRef]
- Shatova, N.V. Ore potential of hydrothermal-metasomatic formations of the Ryabinovoye ore field (Southern Yakutiya). Ph.D. Thesis, VSEGEI, Saint-Petersburg, Russia, 2016. (In Russian). [Google Scholar]
- Ersoy, Ö.; Nikogosian, I.K.; van Bergen, M.J.; Mason, P.R. Phosphorous incorporation in olivine crystallized from potassium-rich magmas. Geochim. Cosmochim. Acta 2019, 253, 63–83. [Google Scholar] [CrossRef]
- Krmíček, L.; Romer, R.L.; Ulrych, J.; Glodny, J.; Prelević, D. Petrogenesis of orogenic lamproites of the Bohemian Massif: Sr–Nd–Pb–Li isotope constraints for Variscan enrichment of ultra-depleted mantle domains. Gondwana Res. 2016, 35, 198–216. [Google Scholar] [CrossRef]
- Sobolev, A.V.; Sobolev, S.V.; Kuzmin, D.V.; Malitch, K.N.; Petrunin, A.G. Siberian meimechites: Origin and relation to flood basalts and kimberlites. Russ. Geol. Geophys. 2009, 50, 999–1033. [Google Scholar] [CrossRef]
- Giuliani, A. Insights into kimberlite petrogenesis and mantle metasomatism from a review of the compositional zoning of olivine in kimberlites worldwide. Lithos 2018, 312–313, 322–342. [Google Scholar] [CrossRef]
- Ammannati, E.; Jacob, D.E.; Avanzinelli, R.; Foley, S.F.; Conticelli, S. Low Ni olivine in silica-undersaturated ultrapotassic igneous rocks as evidence for carbonate metasomatism in the mantle. Earth Planet. Sci. Lett. 2016, 444, 64–74. [Google Scholar] [CrossRef]
- Di Rocco, T.; Freda, C.; Gaeta, M.; Mollo, S.; Dallai, L. Magma chambers emplaced in carbonate substrate: Petrogenesis of skarn and cumulate rocks and implications for CO2 degassing in volcanic areas. J. Pet. 2012, 53, 2307–2332. [Google Scholar] [CrossRef] [Green Version]
- Cortes, J.A.; Wilson, M.; Condliffe, E.; Francalanci, L. The occurrence of forsterite and highly oxidizing conditions in basaltic lavas from Stromboli volcano, Italy. J. Pet. 2006, 47, 1345–1373. [Google Scholar] [CrossRef] [Green Version]
- Niida, K. Textures and olivine fabrics of the Horoman ultramafic rocks, Japan. J. Jpn. Assoc. Mineral. Petrol. Econ. Geol. 1975, 70, 265–285. [Google Scholar] [CrossRef] [Green Version]
- Bussweiler, Y.; Brey, G.; Pearson, D.; Stachel, T.; Stern, R.; Hardman, M.; Kjarsgaard, B.; Jackson, S. The aluminum-in-olivine thermometer for mantle peridotites—Experimental versus empirical calibration and potential applications. Lithos 2017, 272, 301–314. [Google Scholar] [CrossRef]
- Sobolev, N.V.; Logvinova, A.M.; Zedgenizov, D.A.; Pokhilenko, N.P.; Kuzmin, D.V.; Sobolev, A.V. Olivine inclusions in Siberian diamonds: High-precision approach to minor elements. Eur. J. Miner. 2008, 20, 305–315. [Google Scholar] [CrossRef]
- Sobolev, N.V.; Logvinova, A.M.; Zedgenizov, D.A.; Pokhilenko, N.P.; Malygina, E.V.; Kuzmin, D.V.; Sobolev, A.V. Petrogenetic significance of minor elements in olivines from diamonds and peridotite xenoliths from kimberlites of Yakutia. Lithos 2009, 112, 701–713. [Google Scholar] [CrossRef]
- Gaul, O.F.; Griffin, W.L.; O’Reilly, S.Y.; Pearson, N.J. Mapping olivine composition in the lithospheric mantle. Earth Planet. Sci. Lett. 2000, 182, 223–235. [Google Scholar] [CrossRef]
- Bernstein, S.; Kelemen, P.B.; Hanghøj, K. Consistent olivine Mg# in cratonic mantle reflects Archean mantle melting to the exhaustion of orthopyroxene. Geology 2007, 35, 459–462. [Google Scholar]
- De Hoog Jan, C.M.; Gall, L.; Cornell, D.H. Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry. Chem. Geol. 2010, 270, 196–215. [Google Scholar] [CrossRef] [Green Version]
- O’Reilly, S.Y.; Chen, D.; Griffin, W.L.; Ryan, C.G. Minor elements in olivine from spinel lherzolite xenoliths: Implications for thermobarometry. Mineral. Mag. 1997, 61, 257. [Google Scholar] [CrossRef]
- Sharygin, I.; Nikolenko, E.; Lobov, K. Carbonate inclusions in Cr-pyropes derived from the mantle beneath Central Aldan superterrane of Siberian craton. In Proceedings of the 11th International Kimberlite Conference, Gaborone, Botswana, 18–22 September 2017. Extended Abstract No. 11IKC-4609. [Google Scholar]
- Pollack, H.N.; Chapman, D.S. On the regional variation of heat flow, geotherms, and lithospheric thickness. Tectonophysics 1977, 38, 279–296. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, R.H. Melting Experiments on a Sanidine Phlogopite Lamproite at 4–7 Gpa and Their Bearing on the Sources of Lamproitic Magmas. J. Pet. 1995, 36, 1455–1474. [Google Scholar] [CrossRef]
- Coogan, L.A.; Saunders, A.D.; Wilson, R.N. Aluminum-in-olivine thermometry of primitive basalts: Evidence of an anomalously hot mantle source for large igneous provinces. Chem. Geol. 2014, 368, 1–10. [Google Scholar] [CrossRef]
- Ballhaus, C.; Berry, R.; Green, D. High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: Implications for the oxidation state of the upper mantle. Contrib. Mineral. Petrol. 1991, 107, 27–40. [Google Scholar] [CrossRef]
- Foley, S.F. The oxidation state of lamproitic magmas. Tschermaks Mineral. Und Petrogr. Mitt. 1985, 34, 217–238. [Google Scholar] [CrossRef]
- Tappe, S.; Foley, S.; Jenner, G.; Heaman, L.M.; Kjarsgaard, B.; Romer, R.; Stracke, A.; Joyce, N.; Hoefs, J. Genesis of Ultramafic Lamprophyres and Carbonatites at Aillik Bay, Labrador: A Consequence of Incipient Lithospheric Thinning beneath the North Atlantic Craton. J. Pet. 2006, 47, 1261–1315. [Google Scholar] [CrossRef] [Green Version]
- Canil, D. Vanadium partitioning and the oxidation state of Archaean komatiite magmas. Nature 1997, 389, 842. [Google Scholar] [CrossRef]
- Fedortchouk, Y.; Canil, D. Intensive variables in kimberlite magmas, Lac de Gras, Canada and implications for diamond survival. J. Pet. 2004, 45, 1725–1745. [Google Scholar] [CrossRef] [Green Version]
- Stormer, J. Calcium zoning in olivine and its relationship to silica activity and pressure. Geochim. Cosmochim. Acta 1973, 27, 1815–1821. [Google Scholar] [CrossRef]
- Foley, S. Petrological Characterization of the Source Components of Potassic Magmas—Geochemical and Experimental Constraints. Lithos 1992, 28, 187–204. [Google Scholar] [CrossRef]
- Gupta, A.K. Origin of Potassium-Rich Silica-Deficient Igneous Rocks; Springer: Berlin/Heidelberg, Germany, 2015; p. 546. [Google Scholar] [CrossRef]
- McKenzie, D. Some remarks on the movement of small melt fractions in the mantle. Earth Planet. Sci. Lett. 1989, 95, 53–72. [Google Scholar] [CrossRef]
- Foley, S.F. An experimental study of olivine lamproite: First results from the diamond stability field. Geochim. Cosmochim. Acta 1993, 57, 483–489. [Google Scholar] [CrossRef]
- Bailey, D.K.; Collier, J.D. Carbonatite-melilitite association in the Italian collision zone and the Ugandan rifted craton: Significant common factors. Miner. Mag. 2000, 64, 675–682. [Google Scholar] [CrossRef]
- Cundari, A.; Ferguson, A.K. Petrogenetic relationships between melilitite and lamproite in the Roman Comagmatic Region: The lavas of S. Venanzo and Cupaello. Contrib. Miner. Petr. 1991, 107, 343–357. [Google Scholar] [CrossRef]
- Conticelli, S.; Peccerillo, A. Petrology and geochemistry of potassic and ultrapotassic volcanism in central Italy: Petrogenesis and inferences on the evolution of the mantle sources. Lithos 1992, 28, 221–240. [Google Scholar] [CrossRef]
- Conticelli, S.; Avanzinelli, R.; Ammannati, E.; Casalini, M. The role of carbon from recycled sediments in the origin of ultrapotassic igneous rocks in the Central Mediterranean. Lithos 2015, 232, 174–196. [Google Scholar] [CrossRef]
- Avanzinelli, R.; Lustrino, M.; Mattei, M.; Melluso, L.; Conticelli, S. Potassic and ultrapotassic magmatism in the circum-Tyrrhenian region: Significance of carbonated pelitic vs. pelitic sediment recycling at destructive plate margins. Lithos 2009, 113, 213–227. [Google Scholar] [CrossRef]
- Chayka, I.F.; Vasyukova, E.A. Mineralogy, geochemistry and isotopy of lamproitic rocks of the Tobuk complex and their connection with Au-bearing Ryabinoviy massif (Central Aldan). Metallog. Anc. Present Ocean. 2017, 1, 232–337. (In Russian) [Google Scholar]
- Vladykin, N.V. Geochemistry of Sr and Nd isotopes of alkaline and carbonatite complexes in Siberia and Mongolia; some geodynamic implications. In Problems of Sources of Deep Magmatism and Plumes; Glazkovskaya Printing House: Irkutsk, Russia, 2005; pp. 13–29. (In Russian) [Google Scholar]
- Edgar, A.; Pizzolato, L.; Sheen, J. Fluorine in igneous rocks and minerals with emphasis on ultrapotassic mafic and ultramafic magmas and their mantle source regions. Miner. Mag. 1996, 60, 243–257. [Google Scholar] [CrossRef]
- Peccerillo, A. Relationships between ultrapotassic and carbonate-rich volcanic rocks in central Italy: Petrogenetic and geodynamic implications. Lithos 1998, 43, 267–279. [Google Scholar] [CrossRef]
- Danyushevsky, L.V.; Leslie, R.A.; Crawford, A.J.; Durance, P. Melt inclusions in primitive olivine phenocrysts: The role of localized reaction processes in the origin of anomalous compositions. J. Petrol. 2004, 45, 2531–2553. [Google Scholar] [CrossRef]
- Frezzotti, M.-L. Silicate-melt inclusions in magmatic rocks: Applications to petrology. Lithos 2001, 55, 273–299. [Google Scholar] [CrossRef]
No. | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Sample ID | 51-12 | I52-12 | I58-12 | I55-5-12 | 50-12 |
SiO2 | 47.35 | 47.50 | 49.07 | 48.77 | 52.12 |
TiO2 | 0.74 | 0.71 | 0.74 | 0.73 | 0.72 |
Al2O3 | 9.35 | 8.51 | 10.48 | 9.51 | 12.71 |
Fe2O3 (total) | 9.61 | 9.57 | 9.06 | 9.19 | 8.55 |
MnO | 0.15 | 0.15 | 0.15 | 0.14 | 0.13 |
MgO | 13.01 | 14.90 | 10.90 | 12.46 | 6.79 |
CaO | 8.82 | 8.43 | 8.46 | 8.33 | 6.93 |
Na2O | 1.33 | 1.26 | 2.10 | 0.83 | 3.62 |
K2O | 5.75 | 5.79 | 5.56 | 6.42 | 5.13 |
P2O5 | 0.77 | 0.80 | 0.70 | 0.72 | 0.54 |
BaO | 0.28 | 0.29 | 0.37 | 0.31 | 0.21 |
SO3 | 0.18 | 0.21 | 0.32 | 0.42 | 0.21 |
V2O5 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 |
Cr2O3 | 0.15 | 0.16 | 0.11 | 0.13 | 0.04 |
NiO | 0.03 | 0.04 | b.d.l 1. | b.d.l. | 0.01 |
LOI 2 | 1.80 | 1.44 | 1.91 | 1.52 | 1.57 |
Total (With LOI) | 99.34 | 99.79 | 99.95 | 99.50 | 99.30 |
Attribute | Olivine-1 | Olivine-2 | Olivine-3 | Olivine-4 |
---|---|---|---|---|
Occurrence | Crystal-shaped or rounded grains, forming majority of olivine in the rocks | Large resorbed grains with a rim of olivine-1; cores in olivine-1. | Large (up to 1 mm) transparent grains in crushed samples | Large resorbed grains with a rim of olivine-1; cores in olivine-1. |
Amount of analyses (EPMA/LA-ICP-MS) | 259/18 | 174/20 | 116/31 | 292/20 |
Mg# | 91.56 (2.25) 1 | 94.6 (0.5) | 94.5 (0.2) | 92.3 (0.36) |
NiO, wt.% | 0.41 (0.07) | 0.50 (0.07) | 0.27 (0.02) | 0.40 (0.03) |
CaO, wt.% | 0.16 (0.04) | 0.09 (0.01) | 0.35 (0.04) | 0.006 (0.008) |
Al, ppm | 65 (19) | 101 (20) | 57 (29) | 3 (5) |
Na, ppm | 40 (21) | 36 (9) | 188 (96) | 6 (6) |
Li, ppm | 4.9 (2.1) | 2.5 (0.73) | 2.8 (1) | 2.3 (0.9) |
V/Sc | 1.7 (2.1) | 1.1 (0.4) | 0.1 (0.06) | 0.5 (0.3) |
Zoning/inhomogeneity | Distinct step-like zoning | Absent except for highly-incompatible elements | Absent except occasional linear anomalies of Ca and Na contents | Absent |
Inclusions (Cr-spinel) | Yes | Yes | No | No |
Inclusions (Melt) | Common, but too small for analysis | No | Rare, but sufficient for examination | No |
Origin 2 | Relatively rapid crystallization in shallow-level chambers. | Slow crystallization from lamproitic melt in a deep chamber. | Trapped as xenocrysts from cumulates of kamafugite-like magma | Xenocrysts of sub-continental lithospheric mantle |
MI Label | Ol1-12 | Ol1-15 | Ol2-1 | Ol2-2 | Ol2-3 | Ol2-7 | Ol12-12 | Ol2-13 | Ol2-14 | Ol2-22 | Ol-25 |
---|---|---|---|---|---|---|---|---|---|---|---|
Ol Type | 1 | 1 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
SiO2 | 46.22 | 40.44 | 44.26 | 40.3 | 43.44 | 39.93 | 42.86 | 40.11 | 39.32 | 39.69 | 41.10 |
TiO2 | 0.93 | 0.93 | 0.3 | 0.27 | 0.3 | 0.34 | 0.23 | 0.18 | 0.19 | 0.33 | 0.35 |
Al2O3 | 8.05 | 9.2 | 8.29 | 8.67 | 7.82 | 10.09 | 13.79 | 12.21 | 12.57 | 11.36 | 12.29 |
FeO (total) | 6.42 | 12.55 | 5.21 | 12.67 | 13.36 | 9.68 | 12.03 | 11.69 | 11.42 | 10.69 | 11.16 |
MnO | 0.09 | 0.08 | 0.08 | 0.11 | 0.1 | 0.08 | 0.17 | 0.14 | 0.15 | 0.14 | 0.14 |
MgO | 9.95 | 8.85 | 12.82 | 7.22 | 8.45 | 10.14 | 7.53 | 8.02 | 8.28 | 8.71 | 9.21 |
CaO | 13.28 | 13.33 | 16.95 | 18.67 | 20.23 | 15.95 | 9.28 | 14.2 | 15.2 | 12.57 | 9.57 |
Na2O | 1.76 | 1.58 | 1.36 | 1.73 | 2.47 | 2.81 | 6.31 | 4.37 | 3.78 | 3 | 5.5 |
K2O | 7.43 | 7.79 | 4.54 | 3.99 | 1.41 | 4.81 | 4.43 | 4.24 | 3.98 | 4.89 | 5.9 |
P2O5 | 1.23 | 1.4 | 1.74 | 0.99 | 0.26 | 2.67 | 1.02 | 1.18 | 1.19 | 1.39 | 1.5 |
SO3 | 0.28 | 0.29 | 0.05 | 0.17 | 0.04 | 0.05 | 0.1 | 0.09 | 0.09 | 0.25 | 0.1 |
Cl | 0.46 | 0.2 | 0.06 | 0.29 | 0.09 | 0.22 | 0.19 | 0.22 | 0.28 | 0.19 | 0.26 |
F | 0.4 | 0.09 | 0.11 | ||||||||
Total | 97.5 | 97.64 | 98.75 | 98.08 | 100.97 | 99.77 | 100.94 | 99.65 | 99.45 | 96.32 | 100.08 |
Li | 10 | 3 | 4 | ||||||||
Rb | 360 | 183 | 231 | ||||||||
Ba | 4592 | 2901 | 5726 | ||||||||
Th | 7 | 8 | 6 | ||||||||
U | 2 | 2 | 2 | ||||||||
Ta | 1 | 1 | 2 | ||||||||
Nb | 5 | 8 | 6 | ||||||||
La | 38 | 34 | 51 | ||||||||
Ce | 95 | 62 | 122 | ||||||||
Nd | 46 | 27 | 41 | ||||||||
Sr | 2210 | 1187 | 2944 | ||||||||
Sm | 12 | 7 | 11 | ||||||||
Zr | 123 | 189 | 266 | ||||||||
Hf | 5 | 5 | 6 | ||||||||
Gd | 7 | 8 | 9 | ||||||||
Dy | 5 | 4 | 5 | ||||||||
Y | 19 | 14 | 16 | ||||||||
Er | 2 | 2 | 2 | ||||||||
Yb | 2.5 | 0.5 | 0.6 | ||||||||
Lu | 0.4 | 0.2 | 0.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chayka, I.F.; Sobolev, A.V.; Izokh, A.E.; Batanova, V.G.; Krasheninnikov, S.P.; Chervyakovskaya, M.V.; Kontonikas-Charos, A.; Kutyrev, A.V.; Lobastov, B.M.; Chervyakovskiy, V.S. Fingerprints of Kamafugite-Like Magmas in Mesozoic Lamproites of the Aldan Shield: Evidence from Olivine and Olivine-Hosted Inclusions. Minerals 2020, 10, 337. https://doi.org/10.3390/min10040337
Chayka IF, Sobolev AV, Izokh AE, Batanova VG, Krasheninnikov SP, Chervyakovskaya MV, Kontonikas-Charos A, Kutyrev AV, Lobastov BM, Chervyakovskiy VS. Fingerprints of Kamafugite-Like Magmas in Mesozoic Lamproites of the Aldan Shield: Evidence from Olivine and Olivine-Hosted Inclusions. Minerals. 2020; 10(4):337. https://doi.org/10.3390/min10040337
Chicago/Turabian StyleChayka, Ivan F., Alexander V. Sobolev, Andrey E. Izokh, Valentina G. Batanova, Stepan P. Krasheninnikov, Maria V. Chervyakovskaya, Alkiviadis Kontonikas-Charos, Anton V. Kutyrev, Boris M. Lobastov, and Vasiliy S. Chervyakovskiy. 2020. "Fingerprints of Kamafugite-Like Magmas in Mesozoic Lamproites of the Aldan Shield: Evidence from Olivine and Olivine-Hosted Inclusions" Minerals 10, no. 4: 337. https://doi.org/10.3390/min10040337
APA StyleChayka, I. F., Sobolev, A. V., Izokh, A. E., Batanova, V. G., Krasheninnikov, S. P., Chervyakovskaya, M. V., Kontonikas-Charos, A., Kutyrev, A. V., Lobastov, B. M., & Chervyakovskiy, V. S. (2020). Fingerprints of Kamafugite-Like Magmas in Mesozoic Lamproites of the Aldan Shield: Evidence from Olivine and Olivine-Hosted Inclusions. Minerals, 10(4), 337. https://doi.org/10.3390/min10040337