Fine-Scale Heterogeneity of Pyrite and Organics within Mudrocks: Scanning Electron Microscopy and Image Analysis at the Large Scale
Abstract
:1. Introduction
2. Materials and Methods
- Thirteen Jurassic (Toarcian) mudstones from the Grey Shale Member, at the base of the Whitby Mudstone Formation, Cleveland Basin, NE England [22], with a variety of pyrite distributions, approximately 1–16%.
- Six Cretaceous ultra-deep-water mudstones (Southern Atlantic Margin), with a range of total organic carbon (TOC) content of approximately 2%, 4%, 15%, 26%, 36% and 48%. Two samples from Deep Sea Drilling Program (DSDP) site 364 (Kwanza Basin), continental slope (11°34.32′ S, 11°58.30′ E), water depth 2448 m, samples approximately 1000 m below sea floor. Two samples from Ocean Drilling Program (ODP) 959 Hole D (Tano Basin), on the continental slope margin (3°37.656′ N, 2°44.149′ W), water depth 2102 m, samples approximately 1000 m below sea floor. One sample from ODP 962 Hole D (Tano Basin), on the marginal ridge (3°15.082′ N, 3°10.898′ W), water depth 4650 m, 157 m below sea floor. One sample from DSDP 367 (Mauritania-Senegal-Guinea Bissau Basin), from the Abyssal Plain (120°29.2′ N, 200°02.8′ W), water depth 4748 m, 641 m below sea floor.
2.1. Scanning Electron Microscopy
2.2. Image Analysis and Processing
2.3. Pyrite Elemental Analysis Method
2.4. Total Organic Carbon (TOC) Content Method
3. Results and Discussion
3.1. Pyrite
3.2. Organics
3.3. User Bias
3.4. Significance of Tile Size
3.5. Atomic Number
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pettijohn, F.J. Sedimentary Rocks; Harper: New York, NY, USA, 1967. [Google Scholar]
- Blatt, H. Sedimentary Petrology; W.H. Freeman and Company: San Francisco, CA, USA, 1982. [Google Scholar]
- Franklin, J.A. Evaluation of Shales for Construction Projects: An Ontario Shale Rating System; Report RR229; Research and Development Branch, Ministry of Transportation and Research: Toronto, ON, Canada, 1983; p. 9. [Google Scholar]
- Ibbeken, H.; Schleyer, R. Source and Sediment: A Case Study of Provenance and Mass Balance at an Active Plate Margin (Calabria, Southern Italy); Springer: New York, NY, USA, 1991; p. 286. [Google Scholar]
- Komameni, S.; Roy, D.M. Shale as a radioactive waste repository: The importance of vermiculite. J. Inorg. Nucl. Chem. 1979, 41, 1793–1796. [Google Scholar] [CrossRef]
- Al-Rawas, A.; Cheema, T.; Al-Aghbari, M. Geological and Engineering Classification Systems of Mudrocks. Sci. Technol. Spec. Rev. 2000, 5, 137–155. [Google Scholar] [CrossRef] [Green Version]
- Al-Bazali, T.M.; Zhang, J.; Chenevert, M.E.; Sharma, M.M. Measurement of the sealing capacity of shale caprocks. In Proceedings of the SPE Annual Technical Conference and Exhibition, Dallas, TX, USA, 9–12 October 2005. [Google Scholar]
- Delage, P.; Cui, Y.J.; Tang, A.M. Clays in radioactive waste disposal. J. Rock Mech. Geotech. Eng. 2010, 2, 111–123. [Google Scholar] [CrossRef]
- Olabode, A.; Bentley, L.; Radonjic, M. Shale caprock integrity under carbon sequestration conditions. Porous Media and its Applications in Science, Engineering, and Industry. Am. Inst. Phys. Conf. Proc. 2012, 1453, 347–352. [Google Scholar]
- Wagner, T.; Floegel, S.; Hofmann, P. Marine black shale and Hadley Cell dynamics: A conceptual framework for the Cretaceous Atlantic Ocean. Mar. Pet. Geol. 2013, 43, 222–238. [Google Scholar] [CrossRef]
- Zou, C.; Yang, Z.; Dai, J.; Dong, D.; Zhang, B.; Wang, Y.; Deng, S.; Huang, J.; Liu, K.; Yang, C.; et al. The characteristics and significance of conventional and unconventional Sinian-Silurian gas systems in the Sichuan Basin, central China. Mar. Pet. Geol. 2015, 64, 386–402. [Google Scholar] [CrossRef]
- Camp, W.K.; Diaz, E.; Wawak, B. Electron Microscopy of Shale Hydrocarbon Reservoirs, Memoir 102; The American Association of Petroleum Geologists: Tulsa, OK, USA, 2013; p. 260. [Google Scholar]
- Milliken, K. A compositional classification for grain assemblages in fine-grained sediments and sedimentary rocks. J. Sediment. Res. 2014, 84, 1185–1199. [Google Scholar] [CrossRef]
- Lazar, R.; Bohacs, K.M.; Schieber, J.; Macquaker, J.; Demko, T. Mudstone primer: Lithofacies variations, diagnostic criteria, and sedimentologic-stratigraphic implications at lamina to bedset scale. SEPM Concepts Sedimentol. Paleontol. 2015, 12, 200. [Google Scholar]
- Milliken, K.L.; Ergene, S.M.; Ozkan, A. Quartz types, authigenic and detrital, in the Upper Cretaceous Eagle Ford Formation, South Texas, USA. Sediment. Geol. 2016, 339, 273–288. [Google Scholar] [CrossRef]
- Ma, L.; Fauchille, A.L.; Dowey, P.; Figueroa Pilz, F.; Courtois, L.; Taylor, K.G.; Lee, P.D. Correlative multi-scale imaging of shales: A review and future perspectives. Geol. Soc. Lond. Spec. Publ. 2017, 454, 175–199. [Google Scholar] [CrossRef] [Green Version]
- Lemmens, H.; Richards, D. Multiscale imaging of shale samples in the scanning electron microscope. In AAPG Memoir, 102; Electron Microscopy of Shale Hydrocarbon Reservoirs; Camp, W., Diaz, E., Wawack, B., Eds.; The American Association of Petroleum Geologists: Tuksa, OK, USA, 2013; pp. 27–35. [Google Scholar]
- Buckman, J.; Mahoney, C.; Bankole, S.; Couples, G.; Lewis, H.; Wagner, T.; März, C.; Blanco, V.; Stow, D. Workflow model for the digitization of mudrocks. Geol. Soc. Spec. Publ. 2018, 484. [Google Scholar] [CrossRef]
- Buckman, J.; Busch, A. Improved visualization of heterogeneity within shales: Colour contoured maps constructed from large area high-resolution SEM montages. In Proceedings of the Sixth EAGE Shale Workshop, Bordeaux, France, 28 April–1 May 2019. [Google Scholar]
- Buckman, J.; Bankole, S.A.; Zihms, S.; Lewis, H.; Couples, G.; Corbett, P.W.M. Quantifying porosity through automated image collection and batch image processing: Case study of three carbonates and an aragonite cemented sandstone. Geosciences 2017, 7, 70. [Google Scholar] [CrossRef] [Green Version]
- Buckman, J.; Charalampidou, E.-M.C.; Zihms, S.; Lewis, M.H.; Corbett, P.W.M.; Couples, G.D.; Jiang, Z.; Huang, T. High-resolution large area scanning electron microscopy: An imaging tool for porosity and diagenesis of carbonate rock systems. In Carbonate Pore Systems: New Developments and Case Studies; SEPM Society for Sedimentary Geology, SEPM Special Publications: Tulsa, OK, USA, 2017. [Google Scholar]
- Aboussou, A.; Lamoureux-Var, V.; Wagner, T.; Pillot, D.; Kowalewski, I.; Marz, C.; Garcia, B.; Doligez, B. Application of an advanced method for pyrite and organic Sulphur quantification to organic rich marine sediments (extended abstract). In Proceedings of the 80th EAGE Conference & Exhibition 2018, Copenhagen, Denmark, 11–14 June 2018. [Google Scholar]
- Vandenbroucke, M.; Largeau, C. Kerogen origin, evolution and structure. Org. Geochem. 2007, 38, 719–833. [Google Scholar] [CrossRef]
- Krom, M.D.; Berner, R.A. A rapid method for the determination of organic and carbonate carbon in geological samples. J. Sediment. Petrol. 1983, 53, 660–663. [Google Scholar] [CrossRef]
- Krinsley, D.H.; Pye, K.; Boggs, S.; Tovey, N.K. Backscattered Scanning Electron Microscopy and Image Analysis of Sediments and Sedimentary Rocks; Cambridge University Press: Cambridge, UK, 1998; p. 193. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buckman, J.; Aboussou, A.; Esegbue, O.; Wagner, T.; Gambacorta, G. Fine-Scale Heterogeneity of Pyrite and Organics within Mudrocks: Scanning Electron Microscopy and Image Analysis at the Large Scale. Minerals 2020, 10, 354. https://doi.org/10.3390/min10040354
Buckman J, Aboussou A, Esegbue O, Wagner T, Gambacorta G. Fine-Scale Heterogeneity of Pyrite and Organics within Mudrocks: Scanning Electron Microscopy and Image Analysis at the Large Scale. Minerals. 2020; 10(4):354. https://doi.org/10.3390/min10040354
Chicago/Turabian StyleBuckman, Jim, Anabel Aboussou, Onoriode Esegbue, Thomas Wagner, and Gabriele Gambacorta. 2020. "Fine-Scale Heterogeneity of Pyrite and Organics within Mudrocks: Scanning Electron Microscopy and Image Analysis at the Large Scale" Minerals 10, no. 4: 354. https://doi.org/10.3390/min10040354
APA StyleBuckman, J., Aboussou, A., Esegbue, O., Wagner, T., & Gambacorta, G. (2020). Fine-Scale Heterogeneity of Pyrite and Organics within Mudrocks: Scanning Electron Microscopy and Image Analysis at the Large Scale. Minerals, 10(4), 354. https://doi.org/10.3390/min10040354