Water Content in Garnet from Eclogites: Implications for Water Cycle in Subduction Channels
Abstract
:1. Introduction
2. Sample Description
3. Methods
4. Results
4.1. FTIR Analysis
4.2. TEM Observations
5. Discussion
5.1. Influence of Major Elements on Water Content in Garnet
5.2. Origin of the Broad Band Near 3400 cm−1
5.3. Origin of Nanometer-Sized Inclusions in Garent
5.4. Contribution of Garnet to the Water Cycle
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bell, D.; Rossman, G. Water in Earth’s Mantle: The role of nominally anhydrous minerals. Science 1992, 255, 1391–1397. [Google Scholar] [CrossRef]
- Libowitzky, E.; Beran, A. The structure of hydrous species in nominally anhydrous minerals: Information from polarized IR spectroscopy. Rev. Mineral. Geochem. 2006, 62, 29–52. [Google Scholar] [CrossRef]
- Beran, A.; Libowitzky, E. Water in natural mantle minerals II: Olivine, garnet and accessory minerals. Rev. Mineral. Geochem. 2006, 62, 169–191. [Google Scholar] [CrossRef]
- Peslier, A.H. A review of water contents of nominally anhydrous natural minerals in the mantles of Earth, Mars and the Moon. J. Volcanol. Geotherm. Res. 2010, 197, 239–258. [Google Scholar] [CrossRef]
- Su, W.; You, Z.; Cong, B.; Ye, K.; Zhong, Z. Cluster of water molecules in garnet from ultrahigh-pressure eclogite. Geology 2002, 30, 611–614. [Google Scholar] [CrossRef]
- Gong, B.; Chen, R.X.; Zheng, Y.F. Water contents and hydrogen isotopes in nominally anhydrous minerals from UHP metamorphic rocks in the Dabie-Sulu orogenic belt. Chin. Sci. Bull. 2013, 58, 4384–4389. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.F.; Chen, R.X.; Xu, Z.; Zhang, S.B. The transport of water in subduction zones. Sci. China Earth Sci. 2016, 59, 651–682. [Google Scholar] [CrossRef]
- Katayama, I.; Nakashima, S.; Yurimoto, H. Water content in natural eclogite and implication for water transport into the deep upper mantle. Lithos 2006, 86, 245–259. [Google Scholar] [CrossRef]
- Langer, K.; Robarick, E.; Sobolev, N.V.; Shatsky, V.S.; Wang, W.Y. Single-crystal spectra of garnets from diamondiferous high-pressure metamorphic rocks from Kazakhstan—Indications for OH−, H2O, and FeTi charge-transfer. Eur. J. Mineral. 1993, 5, 1091–1100. [Google Scholar] [CrossRef]
- Xia, Q.K.; Sheng, Y.M.; Yang, X.Z.; Yu, H.M. Heterogeneity of water in garnets from UHP eclogites, eastern Dabieshan, China. Chem. Geol. 2005, 224, 237–246. [Google Scholar] [CrossRef]
- Chen, R.X.; Zheng, Y.F.; Gong, B.; Zhao, Z.F.; Gao, T.S.; Chen, B.; Wu, Y.B. Origin of retrograde fluid in ultrahigh-pressure metamorphic rocks: Constraints from mineral hydrogen isotope and water content changes in eclogite–gneiss transitions in the Sulu orogen. Geochim. Cosmochim. Acta 2007, 71, 2299–2325. [Google Scholar] [CrossRef]
- Sheng, Y.M.; Xia, Q.K.; Yang, X.Z.; Hao, Y.T. H2O contents and D/H ratios of nominally anhydrous minerals from ultrahigh-pressure eclogites of the Dabie orogen, eastern China. Geochim. Cosmochim. Acta 2007, 71, 2079–2103. [Google Scholar] [CrossRef]
- Liu, X.W.; Xie, Z.J.; Wang, L.; Xu, W.; Jin, Z.M. Water incorporation in garnets from ultrahigh pressure eclogites at Shuanghe, Dabieshan. Mineral. Mag. 2016, 80, 959–975. [Google Scholar] [CrossRef]
- Schmädicke, E.; Gose, J. Water transport by subduction: Clues from garnet of Erzgebirge UHP eclogite. Am. Mineral. 2017, 102, 975–986. [Google Scholar] [CrossRef]
- Gose, J.; Schmädicke, E. Water incorporation in garnet: Coesite versus quartz eclogite from Erzgebirge and Fichtelgebirge. J. Petrol. 2018, 59, 207–232. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Mei, S.; Dixon, N.; Jin, Z.; Suzuki, A.M.; Kohlstedt, D.L. Effect of water on rheological properties of garnet at high temperatures and pressures. Earth Planet. Sci. Lett. 2013, 379, 158–165. [Google Scholar] [CrossRef]
- Xie, Z.; Liu, X.; Jin, Z. Effect of water on the dislocation mobility in garnet: Evidence from the Shuanghe UHP eclogites, Dabie orogen, China. Phys. Earth Planet. Inter. 2019, 293, 106273. [Google Scholar] [CrossRef]
- Dai, L.; Li, H.; Hu, H.; Shan, S.M.; Jiang, J.; Hui, K. The effect of chemical composition and oxygen fugacity on the electrical conductivity of dry and hydrous garnet at high temperatures and pressures. Contrib. Mineral. Petrol. 2012, 163, 689–700. [Google Scholar] [CrossRef]
- Zhang, B.; Li, B.; Zhao, C.; Yang, X. Large effect of water on Fe-Mg interdiffusion in garnet. Earth Planet. Sci. Lett. 2019, 505, 20–29. [Google Scholar] [CrossRef]
- Bell, D.R.; Rossman, G.R. The distribution of hydroxyl in garnets from the subcontinental mantle of southern Africa. Contrib. Mineral. Petrol. 1992, 111, 161–178. [Google Scholar] [CrossRef]
- Snyder, G.A.; Taylor, L.A.; Jerde, E.A.; Clayton, R.N.; Mayeda, T.K.; Deines, P.; Rossman, G.R.; Sobolev, N.V. Archean mantle heterogeneity and the origin of diamondiferous eclogites, Siberia—Evidence from stable isotopes and hydroxyl in garnet. Am. Mineral. 1995, 80, 799–809. [Google Scholar] [CrossRef]
- Matsyuk, S.S.; Langer, K.; Hosch, A. Hydroxyl defects in garnets from mantle xenoliths in kimberlites of the Siberian platform. Contrib. Mineral. Petrol. 1998, 132, 163–179. [Google Scholar] [CrossRef]
- Peslier, A.H.; Woodland, A.B.; Bell, D.R.; Lazarov, M.; Lapen, T.J. Metasomatic control of water contents in the Kaapvaal cratonic mantle. Geochim. Cosmochim. Acta 2012, 97, 213–246. [Google Scholar] [CrossRef]
- Doucet, L.S.; Peslier, A.H.; Ionov, D.A.; Brandon, A.D.; Golovin, A.V.; Goncharov, A.G.; Ashchepkov, I.V. High water contents in the Siberian cratonic mantle linked to metasomatism: An FTIR study of Udachnaya peridotite xenoliths. Geochim. Cosmochim. Acta 2014, 137, 159–187. [Google Scholar] [CrossRef]
- Ragozin, A.L.; Karimova, A.A.; Litasov, K.D.; Zedgenizov, D.A.; Shatsky, V.S. Water content in minerals of mantle xenoliths from the Udachnaya pipe kimberlites (Yakutia). Russ. Geol. Geophys. 2014, 55, 428–442. [Google Scholar] [CrossRef]
- Schmädicke, E.; Gose, J.; Reinhardt, J.; Will, T.M.; Stalder, R. Garnet in cratonic and non-cratonic mantle and lower crustal xenoliths from southern Africa: Composition, water incorporation and geodynamic constraints. Precambrian Res. 2015, 270, 285–299. [Google Scholar] [CrossRef]
- Bell, D.R.; Rossman, G.R.; Moore, R.O. Abundance and partitioning of OH in a high-pressure magmatic system: Megacrysts from the Monastery kimberlite, South Africa. J. Petrol. 2004, 45, 1539–1564. [Google Scholar] [CrossRef] [Green Version]
- Mookherjee, M.; Karato, S. Solubility of water in pyrope-rich garnet at high pressures and temperature. Geophys. Res. Lett. 2010, 37, L03310. [Google Scholar] [CrossRef] [Green Version]
- Lu, R.; Keppler, H. Water solubility in pyrope to 100 kbar. Contrib. Mineral. Petrol. 1997, 129, 35–42. [Google Scholar] [CrossRef]
- Withers, A.C.; Wood, B.J.; Carroll, M.R. The OH content of pyrope at high pressure. Chem. Geol. 1998, 147, 161–171. [Google Scholar] [CrossRef]
- Miller, G.; Rossman, G.; Harlow, G. The natural occurrence of hydroxide in olivine. Phys. Chem. Miner. 1987, 14, 461–472. [Google Scholar] [CrossRef]
- Jung, H.; Lee, J.; Ko, B.; Jung, S.; Park, M.; Cao, Y.; Song, S. Natural type-C olivine fabrics in garnet peridotites in North Qaidam UHP collision belt, NW China. Tectonophysics 2013, 594, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Koch-Müller, M.; Matsyuk, S.; Wirth, R. Hydroxyl in omphacites and omphacitic clinopyoxenes of upper mantle to lower crustal origin beneath the Siberian platform. Am. Mineral. 2004, 89, 921–931. [Google Scholar] [CrossRef]
- Song, S.G.; Zhang, L.F.; Chen, J.; Liou, J.G.; Niu, Y.N. Sodic amphibole exsolutions in garnet from garnet-peridotite, North Qaidam UHPM belt, NW China: Implications for ultradeep-origin and hydroxyl defects in mantle garnets. Am. Mineral. 2005, 90, 814–820. [Google Scholar] [CrossRef]
- Zheng, Y.F. A perspective view on ultrahigh-pressure metamorphism and continental collision in the Dabie-Sulu orogenic belt. Chin. Sci. Bull. 2008, 53, 3081–3104. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.M.; Shen, K.; Wang, J.L.; Dong, H.L. Petrological and geochronological constraints on the formation, subduction and exhumation of the continental crust in the southern Sulu orogen, eastern-central China. Tectonophysics 2009, 475, 291–307. [Google Scholar] [CrossRef]
- Liu, F.L.; Liou, J.G. Zircon as the best mineral for P-T-time history of UHP metamorphism: A review on mineral inclusions and U-Pb SHRIMP ages of zircons from the Dabie–Sulu UHP rocks. J. Asian Earth Sci. 2011, 40, 1–39. [Google Scholar] [CrossRef]
- Yang, J.; Xu, Z.; Li, Z.; Xua, X.; Li, T.; Ren, Y.; Li, H.; Chen, S.; Robinson, P.T. Discovery of an eclogite belt in the Lhasa block, Tibet: A new border for Paleo-Tethys? J. Asian Earth Sci. 2009, 34, 76–89. [Google Scholar] [CrossRef]
- Zeng, L.; Liu, J.; Gao, L.; Chen, F.; Xie, K. Early Mesozoic high-pressure metamorphism within the Lhasa Block, Tibet and its implications for regional tectonics. Earth Sci. Front. 2009, 16, 140–151. [Google Scholar] [CrossRef]
- Zhang, C.; Bader, T.; Van Roermund, H.L.M.; Yang, J.S.; Shen, T.T.; Qiu, T.; Li, P. The metamorphic evolution and tectonic significance of the Sumdo HP–UHP metamorphic terrane, central-south Lhasa Block, Tibet. In HP–UHP Metamorphism and Tectonic Evolution of Orogenic Belts; Zhang, L., Zhang, Z., Schertl, H.P., Wei, C., Eds.; Geological Society of London, Special Publication: London, UK, 2018; Volume 474, pp. 209–229. [Google Scholar]
- Whitney, D.L.; Evans, B.W. Abbreviations for names of rock-forming minerals. Am. Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- Bell, D.R.; Ihinger, P.D.; Rossman, G.R. Quantitative-analysis of trace OH in garnet and pyroxenes. Am. Mineral. 1995, 80, 465–474. [Google Scholar] [CrossRef]
- Wojdyr, M. Fityk: A general-purpose peak fitting program. J. Appl. Crystallogr. 2010, 43, 1126–1128. [Google Scholar] [CrossRef]
- Rossman, G.R.; Aines, R.D. The hydrous components in garnets: Grossular-hydrogrossular. Am. Mineral. 1991, 76, 1153–1164. [Google Scholar]
- Wirth, R. Focused Ion Beam (FIB) combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale. Chem. Geol. 2009, 261, 217–229. [Google Scholar] [CrossRef]
- Aines, R.D.; Rossman, G.R. The hydrous component in garnets—Pyralspites. Am. Mineral. 1984, 69, 1116–1126. [Google Scholar]
- Birkett, T.C.; Trzcienski, W.E. Hydrogarnet—Multi-site hydrogen occupancy in the garnet structure. Can. Mineral. 1984, 22, 675–680. [Google Scholar]
- Beran, A.; Langer, K.; Andrut, M. Single-crystal infrared-spectra in the range of OH fundamentals of paragenetic garnet, omphacite and kyanite in an eclogitic mantle xenolith. Mineral. Petrol. 1993, 48, 257–268. [Google Scholar] [CrossRef]
- Wirth, R. Water in minerals detectable by electron energy-loss spectroscopy EELS. Phys. Chem. Miner. 1997, 24, 561–568. [Google Scholar] [CrossRef]
- Wirth, R.; Wunder, B. Characterization of OH-containing phases by TEM using electron energy-loss spectroscopy (EELS): Clinohumite-OH, chondrodite-OH, phase A and the (F,OH)-solid solution series of topaz. J. Trace Microprobe Tech. 2000, 18, 35–49. [Google Scholar]
- Cohen-Addad, C.; Ducros, P.; Bertaut, E.F. Etude de la substitution du groupement SiO4 par (OH)4 dans les composés Al2Ca3(OH)12 et Al2Ca3(SiO4)2,16(OH)3,36 de type grenat. Acta Crystallogr. 1967, 23, 220. [Google Scholar] [CrossRef]
- Lager, G.A.; Armbruster, T.; Rotella, F.J.; Rossman, G.R. OH substitution in garnets—X-ray and neutron-diffraction, infrared, and geometric-modeling studies. Am. Mineral. 1989, 74, 840–851. [Google Scholar]
- Lager, G.A.; Von Dreele, R.B. Neutron powder diffraction study of hydrogarnet to 9.0 GPa. Am. Mineral. 1996, 81, 1097–1104. [Google Scholar] [CrossRef]
- Harmon, K.M.; Gabriele, J.M.; Nuttall, A.S. Hydrogen-bonding. 14. Hydrogen-bonding in the tetrahedral O4H44− cluster in hydrogrossular. J. Mol. Struct. 1982, 82, 213–219. [Google Scholar] [CrossRef]
- Rossman, G.R.; Beran, A.; Langer, K. The hydrous component of pyrope from the Dora Maira massif, western Alps. Eur. J. Mineral. 1989, 1, 151–154. [Google Scholar] [CrossRef] [Green Version]
- Khomenko, V.M.; Langer, K.; Beran, A.; Kochmuller, M.; Fehr, T. Titanium substitution and OH-bearing defects in hydrothermally grown pyrope crystals. Phys. Chem. Miner. 1994, 20, 483–488. [Google Scholar] [CrossRef]
- Armbruster, T.; Birrer, J.; Libowitzky, E.; Beran, A. Crystal chemistry of Ti-bearing andradites. Eur. J. Mineral. 1998, 10, 907–921. [Google Scholar] [CrossRef]
- Li, H.Y.; Chen, R.X.; Zheng, Y.F.; Hu, Z. Water in garnet pyroxenite from the Sulu orogen: Implications for crust-mantle interaction in continental subduction zone. Chem. Geol. 2018, 478, 18–38. [Google Scholar] [CrossRef]
- Xu, W.; Liu, X.W.; Jin, Z.M. Water in UHP eclogites at CCSD: FTIR analysis. J. China Univ. Geosci. 2006, 31, 830–838. [Google Scholar]
- Thompson, E.C.; Campbell, A.J.; Liu, Z. In-situ infrared spectroscopic studies of hydroxyl in amphiboles at high pressure. Am. Mineral. 2016, 101, 706–712. [Google Scholar] [CrossRef]
- Ackermann, L.; Cemič, L.; Langer, K. Hydrogarnet substitution in pyrope: A possible location for “water” in the mantle. Earth Planet. Sci. Lett. 1983, 62, 208–214. [Google Scholar] [CrossRef]
- Lafuente, B.; Downs, R.T.; Yang, H.; Stone, N. The power of databases: The RRUFF project. In Highlights in Mineralogical Crystallography; Armbruster, T., Danisi, R.M., Eds.; W. De Gruyter: Berlin, Germany, 2015; pp. 1–30. [Google Scholar]
- Prieto, A.C.; Dubessy, J.; Cathelineau, M. Structure-composition relationships in trioctahedral chlorites: A vibrational spectroscopy study. Clays Clay Miner. 1991, 39, 531–539. [Google Scholar] [CrossRef]
- Yang, M.; Ye, M.; Han, H.; Ren, G.; Han, L.; Zhang, Z. Near-infrared spectroscopic study of chlorite minerals. J. Spectrosc. 2018, 2018, 6958260. [Google Scholar] [CrossRef]
- Gong, B.; Zheng, Y.-F.; Chen, R.-X. TC/EA–MS online determination of hydrogen isotope composition and water concentration in eclogitic garnet. Phys. Chem. Miner. 2007, 34, 687–698. [Google Scholar] [CrossRef]
- Zhang, Y.X. H2O in rhyolitic glasses and melts: Measurement, speciation, solubility, and diffusion. Rev. Geophys. 1999, 37, 493–516. [Google Scholar] [CrossRef] [Green Version]
- Okumura, S.; Nakashima, S. Water diffusion in basaltic to dacitic glasses. Chem. Geol. 2006, 227, 70–82. [Google Scholar] [CrossRef]
- Ni, H.; Liu, Y.; Wang, L.; Zhang, Y. Water speciation and diffusion in haploandesitic melts at 743–873 K and 100 MPa. Geochim. Cosmochim. Acta 2009, 73, 3630–3641. [Google Scholar] [CrossRef]
- Mconie, A.W.; Fawcett, J.J.; James, R.S. The stability of intermediate chlorites of the clinochlore-daphnite series at 2 kbar PH2O. Am. Mineral. 1975, 60, 1047–1062. [Google Scholar]
- Chen, R.X.; Zheng, Y.F.; Gong, B. Mineral hydrogen isotopes and water contents in ultrahigh-pressure metabasite and metagranite: Constraints on fluid flow during continental subduction-zone metamorphism. Chem. Geol. 2011, 281, 103–124. [Google Scholar] [CrossRef]
- Fu, B.; Touret, J.L.R.; Zheng, Y.F. Remnants of premetamorphic fluid and oxygen isotopic signatures in eclogites and garnet clinopyroxenite from the Dabie-Sulu terranes, eastern China. J. Metamorph. Geol. 2003, 21, 561–578. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Shen, K.; Xiao, Y.L.; Van Den Kerkhof, A.M.; Hoefs, J.; Liou, J.G. Fluid composition and evolution attending UHP metamorphism: Study of fluid inclusions from drill cores, southern Sulu belt, eastern China. Int. Geol. Rev. 2005, 47, 297–309. [Google Scholar] [CrossRef]
- Zheng, Y.F. Fluid regime in continental subduction zones: Petrological insights from ultrahigh-pressure metamorphic rocks. J. Geol. Soc. 2009, 166, 763–782. [Google Scholar] [CrossRef]
- Suzuoki, T.; Epstein, S. Hydrogen isotope fractionation between OH-bearing minerals and water. Geochim. Cosmochim. Acta 1976, 40, 1229–1240. [Google Scholar] [CrossRef]
- Graham, C.M.; Sheppard, S.M.F.; Heaton, T.H.E. Experimental hydrogen isotope studies, I. Systematics of hydrogen isotope fractionation in the systems epidote-H2O, zoisite-H2O and AlO(OH)–H2O. Geochim. Cosmochim. Acta 1980, 44, 353–364. [Google Scholar] [CrossRef]
- Graham, C.M.; Harmon, R.S.; Sheppard, S.M.F. Experimental hydrogen isotope studies: Hydrogen isotope exchange between amphibole and water. Am. Mineral. 1984, 69, 128–138. [Google Scholar]
- Xu, H.J.; Wu, Y. Oriented inclusions of pyroxene, amphibole and rutile in garnet from the Lüliangshan garnet peridotite massif, North Qaidam UHPM belt, NW China: An electron backscatter diffraction study. J. Metamorph. Geol. 2017, 35, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Sakamaki, K.; Sato, Y.; Ogasawara, Y. Hydrous Na-garnet from Garnet Ridge; products of mantle metasomatism underneath the Colorado Plateau. Prog. Earth Planet. Sci. 2016, 3, 3–20. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Xu, Z.; Liou, J.G.; Dong, H.; Xue, H. Ultrahigh-pressure mineral assemblages in zircons from the surface to 5158 m depth in cores of the main drill hole, Chinese Continental Scientific Drilling Project, southwestern Sulu belt, China. Int. Geol. Rev. 2007, 49, 454–478. [Google Scholar] [CrossRef]
- Sterner, S.M.; Pitzer, K.S. An equation of state for carbon-dioxide valid from zero to extreme pressure. Contrib. Mineral. Petrol. 1994, 117, 362–374. [Google Scholar] [CrossRef]
- Pitzer, K.S.; Sterner, S.M. Equations of state valid continuously from zero to extreme pressures with H2O and CO2 as examples. Int. J. Thermophys. 1995, 16, 511–518. [Google Scholar] [CrossRef]
- Wang, Q. A review of water contents and ductile deformation mechanisms of olivine: Implications for the lithosphere–asthenosphere boundary of continents. Lithos 2010, 120, 30–41. [Google Scholar] [CrossRef]
- Li, D.Y.; Xiao, Y.L.; Li, W.Y.; Zhu, X.; Williams, H.M.; Li, Y.L. Iron isotopic systematics of UHP eclogites respond to oxidizing fluid during exhumation. J. Metamorph. Geol. 2016, 34, 987–997. [Google Scholar] [CrossRef]
- Goncharov, A.G.; Ionov, D.A.; Doucet, L.S.; Pokhilenko, L.N. Thermal state, oxygen fugacity and C–O–H fluid speciation in cratonic lithospheric mantle: New data on peridotite xenoliths from the Udachnaya kimberlite, Siberia. Earth Planet. Sci. Lett. 2012, 357–358, 99–110. [Google Scholar] [CrossRef]
- Peslier, A.H.; Woodland, A.B.; Wolff, J.A. Fast kimberlite ascent rates estimated from hydrogen diffusion profiles in xenolithic mantle olivines from southern Africa. Geochim. Cosmochim. Acta 2008, 72, 2711–2722. [Google Scholar] [CrossRef]
- Carswell, D.A.; Brueckner, H.K.; Cuthbert, S.J.; Mehta, K.; O’Brien, P.J. The timing of stabilisation and the exhumation rate for ultrahigh-pressure rocks in the Western Gneiss Region of Norway. J. Metamorph. Geol. 2003, 21, 601–612. [Google Scholar] [CrossRef]
- O’Brien, P.J.; Zotov, N.; Law, R.; Khan, M.A.; Jan, M.Q. Coesite in Himalayan eclogite and implications for models of India-Asia collision. Geology 2001, 29, 435–438. [Google Scholar] [CrossRef]
- Olker, B.; Altherr, R.; Paquin, J. Fast exhumation of the ultrahigh-pressure Alpe Arami garnet peridotite (Central Alps, Switzerland): Constraints from geospeedometry and thermal modelling. J. Metamorph. Geol. 2003, 21, 395–402. [Google Scholar] [CrossRef]
- Chakraborty, S. Diffusion in solid silicates: A tool to track timescales of processes comes of age. Annu. Rev. Earth Planet. Sci. 2008, 36, 153–190. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B. An overview of Fe–Mg interdiffusion in mantle minerals. Surv. Geophys. 2017, 38, 727–755. [Google Scholar] [CrossRef]
- Wang, L.P.; Zhang, Y.X.; Essene, E.J. Diffusion of the hydrous component in pyrope. Am. Mineral. 1996, 81, 706–718. [Google Scholar] [CrossRef]
- Crank, J. The Mathematics of Diffusion, 2nd ed.; Oxford University Press: Oxford, UK, 1975. [Google Scholar]
Sample | Locality | Grain No. | SiO2 | TiO2 | Al2O3 | FeO | MnO | MgO | CaO | Cr2O3 | NiO | Na2O | K2O | Total | Si:12O |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X | Maobei, Sulu | 31 | 40.13 | 0.04 | 24.44 | 10.59 | 0.04 | 14.76 | 10.12 | 0.05 | 0.01 | 0.06 | 0.01 | 100.25 | 2.91 |
σ | 0.27 | 0.02 | 0.23 | 0.40 | 0.01 | 0.57 | 0.71 | 0.03 | 0.01 | 0.02 | 0.01 | 0.40 | |||
B295 | CCSD-MH,547.20 m | 10 | 38.14 | 0.24 | 20.64 | 24.59 | 0.18 | 4.85 | 10.96 | - | 0.03 | 0.02 | - | 99.66 | 2.98 |
σ | 0.24 | 0.15 | 0.44 | 0.71 | 0.01 | 0.16 | 0.63 | - | 0.04 | 0.02 | - | 0.71 | |||
MBF1 | Maobei, Sulu | 10 | 41.20 | 0.09 | 22.56 | 9.78 | 0.07 | 13.78 | 12.79 | 0.01 | 0.01 | 0.01 | - | 100.30 | 2.99 |
σ | 0.17 | 0.09 | 0.23 | 0.34 | 0.01 | 0.24 | 0.33 | 0.01 | 0.01 | 0.01 | - | 0.39 | |||
MBF3 | Maobei, Sulu | 10 | 41.04 | 0.11 | 22.51 | 9.01 | 0.07 | 13.84 | 13.21 | 0.03 | 0.01 | 0.01 | - | 99.83 | 2.99 |
σ | 0.25 | 0.09 | 0.18 | 0.35 | 0.01 | 0.37 | 0.63 | 0.02 | 0.03 | 0.01 | - | 0.50 | |||
B19 | CCSD-PP4, 51.72 m | 10 | 38.14 | 0.14 | 21.01 | 26.03 | 0.26 | 4.46 | 9.39 | 0.01 | 0.01 | 0.04 | - | 99.49 | 3.00 |
σ | 0.21 | 0.09 | 0.37 | 0.30 | 0.02 | 0.12 | 0.13 | 0.01 | 0.01 | 0.02 | - | 0.55 | |||
B504 | CCSD-MH, 925.70 m | 9 | 38.29 | 0.16 | 21.24 | 25.20 | 0.21 | 5.25 | 9.10 | 0.01 | 0.01 | 0.03 | - | 99.50 | 2.99 |
σ | 0.23 | 0.06 | 0.39 | 0.36 | 0.01 | 0.12 | 0.33 | 0.01 | 0.02 | 0.02 | - | 0.53 | |||
B15 | CCSD-PP4, 45.84 m | 12 | 38.39 | 0.18 | 21.54 | 25.09 | 0.28 | 4.58 | 10.09 | - | 0.02 | 0.02 | - | 100.19 | 2.99 |
σ | 0.17 | 0.08 | 0.12 | 0.31 | 0.01 | 0.08 | 0.13 | - | 0.02 | 0.02 | 0.01 | 0.33 | |||
Y | Sumdo, Tibet | 83 | 38.94 | 0.07 | 22.12 | 19.90 | 0.46 | 7.79 | 10.20 | 0.03 | 0.02 | 0.02 | - | 99.55 | 2.98 |
σ | 0.52 | 0.05 | 0.52 | 1.13 | 0.26 | 0.87 | 0.66 | 0.03 | 0.02 | 0.02 | - | 0.66 |
Sample | Lithology | Hydroxyl Concentration (ppm H2O) | Primary Structural Water 1 (ppm H2O) | ||||||
---|---|---|---|---|---|---|---|---|---|
N | Min. | Max. | Mean | N | Min. | Max. | Mean | ||
X | UHP eclogite | 47 | 0 | 356 | 113 ± 89 | 12 | 0 | 84 | 24 ± 22 |
B295 | UHP eclogite | 14 | 44 | 124 | 87 ± 22 | 14 | 44 | 124 | 87 ± 22 |
MBF1 | UHP garnetite | 11 | 33 | 168 | 66 ± 43 | 7 | 33 | 52 | 41 ± 8 |
MBF3 | UHP garnetite | 25 | 6 | 110 | 54 ± 27 | 17 | 13 | 89 | 46 ± 18 |
B19 | Slightly retrograted UHP eclogite | 26 | 32 | 511 | 127 ± 106 | 16 | 32 | 139 | 68 ± 30 |
B504 | Slightly retrograted UHP eclogite | 18 | 36 | 315 | 124 ± 80 | 9 | 36 | 97 | 63 ± 18 |
B15 | Retrograted UHP eclogite | 23 | 183 | 635 | 366 ± 139 | 2 | 251 | 254 | 253 ± 3 |
Y | Retrograted HP eclogite | 184 | 48 | 1626 | 427 ± 372 | 37 | 55 | 299 | 133 ± 59 |
Observed Average Parameters | Calculated | |||||
---|---|---|---|---|---|---|
Anthophyllite | Enstatite | |||||
d(hkl) (Å) | σ (Å) | d(hkl) (Å) | hkl | d(hkl) (Å) | hkl | |
9.23 | 0.192 | 9.01 | (020) | 9.12 | (200) | |
4.14 | 0.084 | 4.12 | (420) | 3.97 | (220) | |
4.76 | 0.033 | 4.63 | (400) | 4.41 | (221) | |
Angle degree(°) | σ (°) | Angle degree (°) | Angle degree (°) | |||
α = 63.1 | 1.071 | 62.8 | (020)/(420) | 64.2 | (200)/(220) | |
β = 26.5 | 0.479 | 27.2 | (420)/(400) | 25.8 | (220)/(221) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gou, Y.; Wang, Q.; Li, Y.; Wirth, R. Water Content in Garnet from Eclogites: Implications for Water Cycle in Subduction Channels. Minerals 2020, 10, 410. https://doi.org/10.3390/min10050410
Gou Y, Wang Q, Li Y, Wirth R. Water Content in Garnet from Eclogites: Implications for Water Cycle in Subduction Channels. Minerals. 2020; 10(5):410. https://doi.org/10.3390/min10050410
Chicago/Turabian StyleGou, Yiren, Qin Wang, Yan Li, and Richard Wirth. 2020. "Water Content in Garnet from Eclogites: Implications for Water Cycle in Subduction Channels" Minerals 10, no. 5: 410. https://doi.org/10.3390/min10050410
APA StyleGou, Y., Wang, Q., Li, Y., & Wirth, R. (2020). Water Content in Garnet from Eclogites: Implications for Water Cycle in Subduction Channels. Minerals, 10(5), 410. https://doi.org/10.3390/min10050410