Fracture Propagation and Morphology Due to Non-Aqueous Fracturing: Competing Roles between Fluid Characteristics and In Situ Stress State
Abstract
:1. Introduction
2. Experimental Research
2.1. Apparatus and Sample Preparation
2.2. Experimental Procedure
2.3. Experimental Results
3. Numerical Simulation Research
3.1. Governing Equations for Numerical Simulation
3.1.1. Governing Equations for Rock Deformation
3.1.2. Governing Equations for Fluid Flow
3.1.3. Damage Law for Rock
3.2. Numerical Simulation Model and Parameters
3.3. Numerical Simulation Results
4. Discussion
5. Conclusions
- (1)
- The in situ stress state is the dominant parameter in controlling fracture propagation for fluid-driven fractures. Fracture networks are easily formed when horizontal stress difference is small and a smooth fracture parallel to the maximum horizontal stress direction will be formed when the horizontal stress difference is large. Moreover, the effect of natural fractures and bedding plans may deflect the fracture propagation direction.
- (2)
- The fracturing fluid with lower viscosity may induce secondary fractures and creates more branches during main fracture propagation. Due to the low-viscosity property, non-aqueous fluid is more likely to penetrate into smaller pore throats in which large viscosity fluid will be excluded in the shale matrix. More branches and secondary fractures may benefit the shale gas production through increasing reservoir permeability.
- (3)
- The competing effect of fluid viscosity and stress state decides the fracture propagation and morphology. The non-aqueous fluids like liquid carbon dioxide, supercritical carbon dioxide, and nitrogen are promising for working as fracturing fluid by creating more branches and secondary fractures and finally forming the fracture networks. However, economic, safety and filtration quality should be further analyzed before wide utilization of non-aqueous fluid for fracturing in shale reservoirs.
Author Contributions
Funding
Conflicts of Interest
References
- Beckwith, R. Hydraulic fracturing: The fuss, the facts, the Future. J. Pet. Technol. 2010, 62, 34–40. [Google Scholar] [CrossRef]
- Sovacool, B.K. Cornucopia or curse? Reviewing the costs and benefits of shale gas hydraulic fracturing (fracking). Renew. Sustain. Energy Rev. 2014, 37, 249–264. [Google Scholar] [CrossRef]
- Rivard, C.; Lavoie, D.; Lefebvre, R.; Séjourné, S.; Lamontagne, C.; Duchesne, M. An overview of Canadian shale gas production and environmental concerns. Int. J. Coal Geol. 2014, 126, 64–76. [Google Scholar] [CrossRef]
- Mahadevan, J.; Sharma, M.M.; Yortsos, Y.C. Capillary wicking in gas wells. SPE J. 2007, 12, 429–437. [Google Scholar] [CrossRef]
- Lu, Y.; Ao, X.; Tang, J.; Jia, Y.; Zhang, X.; Chen, Y. Swelling of shale in supercritical carbon dioxide. J. Nat. Gas Sci. Eng. 2016, 30, 268–275. [Google Scholar] [CrossRef]
- Lyu, Q.; Ranjith, P.G.; Long, X.; Kang, Y.; Huang, M. A review of shale swelling by water adsorption. J. Nat. Gas Sci. Eng. 2015, 27, 1421–1431. [Google Scholar] [CrossRef]
- Kreipl, M.P.; Kreipl, A.T. Hydraulic fracturing fluids and their environmental impact: Then, today, and tomorrow. Environ. Earth Sci. 2017, 76, 160. [Google Scholar] [CrossRef]
- Elsworth, D.; Spiers, C.J.; Niemeijer, A.R. Understanding induced seismicity. Science 2016, 354, 1380–1381. [Google Scholar] [CrossRef]
- Ellsworth, W.L. Injection-induced earthquakes. Science 2013, 341, 142–143. [Google Scholar] [CrossRef]
- Das, I.; Zoback, M.D. Long-period long-duration seismic events during hydraulic stimulation of shale and tight-gas reservoirs—Part 2: Location and mechanisms. Geophysics 2013, 78, 2–10. [Google Scholar] [CrossRef] [Green Version]
- Hou, P.; Gao, F.; Ju, Y.; Liang, X.; Zhang, Z.; Cheng, H.; Gao, Y. Experimental investigation on the failure and acoustic emission characteristics of shale, sandstone and coal under gas fracturing. J. Nat. Gas Sci. Eng. 2016, 35, 211–223. [Google Scholar] [CrossRef]
- Chen, Y.; Nagaya, Y.; Ishida, T. Observations of fractures induced by hydraulic fracturing in anisotropic granite. Rock Mech. Rock Eng. 2015, 48, 1455–1461. [Google Scholar] [CrossRef]
- Ishida, T.; Chen, Y.; Bennour, Z.; Yamashita, H.; Inui, S.; Nagaya, Y.; Naoi, M.; Chen, Q.; Nakayama, Y.; Nagano, Y.; et al. Features of CO2 fracturing deduced from acoustic emission and microscopy in laboratory experiments. J. Geophys. Res. Solid Earth 2016, 121, 8080–8098. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Yao, B.; Cha, M.; Alqahtani, N.B.; Patterson, T.W.; Kneafsey, T.J.; Miskimins, J.L.; Yin, X.; Wu, Y.-S. Waterless fracturing technologies for unconventional reservoirs-opportunities for liquid nitrogen. J. Nat. Gas Sci. Eng. 2016, 35, 160–174. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Feng, Z.; Han, G.; Elsworth, D.; Marone, C.; Saffer, D.; Cheon, D.-S. Breakdown pressure and fracture surface morphology of hydraulic fracturing in shale with H2O, CO2 and N2. Geomech. Geophys. Geo Energy Geo Resour. 2016, 2, 63–76. [Google Scholar] [CrossRef] [Green Version]
- Hou, P.; Gao, F.; Gao, Y.; Yang, Y.; Cai, C. Changes in breakdown pressure and fracture morphology of sandstone induced by nitrogen gas fracturing with different pore pressure distributions. Int. J. Rock Mech. Min. Sci. 2018, 109, 84–90. [Google Scholar] [CrossRef]
- Ghafoori, A.; Shahbazi, K.; Darabi, A.; Soleymanzadeh, A.; Abedini, A. The experimental investigation of nitrogen and carbon dioxide water-alternating-gas injection in a carbonate reservoir. Pet. Sci. Technol. 2012, 30, 1071–1081. [Google Scholar] [CrossRef]
- Guo, T.; Zhang, S.; Qu, Z.; Zhou, T.; Xiao, Y.; Gao, J. Experimental study of hydraulic fracturing for shale by stimulated reservoir volume. Fuel 2014, 128, 373–380. [Google Scholar] [CrossRef]
- Gan, Q.; Elsworth, D.; Alpern, J.S.; Marone, C.; Connolly, P. Breakdown pressures due to infiltration and exclusion in finite length boreholes. J. Pet. Sci. Eng. 2015, 127, 329–337. [Google Scholar] [CrossRef]
- Ha, S.J.; Choo, J.; Yun, T.S. Liquid CO2 fracturing: Effect of fluid permeation on the breakdown pressure and cracking behavior. Rock Mech. Rock Eng. 2018, 51, 3407–3420. [Google Scholar] [CrossRef]
- Peng, P.; Yang, J.; Wang, Y.; Wang, S.; Feng, G. Numerical analysis of the effect of natural microcracks on the supercritical CO2 fracturing crack network of shale rock based on bonded particle models. Int. J. Numer. Anal. Methods Geomech. 2017, 41, 1992–2013. [Google Scholar] [CrossRef]
- Wang, J.; Elsworth, D.; Wu, Y.; Liu, J.; Zhu, W.; Liu, Y. The influence of fracturing fluids on fracturing processes: A comparison between water, oil and SC-CO2. Rock Mech. Rock Eng. 2017, 51, 299–313. [Google Scholar] [CrossRef]
- Liu, L.; Zhu, W.; Wei, C.; Elsworth, D.; Wang, J. Microcrack-based geomechanical modeling of rock-gas interaction during supercritical CO2 fracturing. J. Pet. Sci. Eng. 2018, 164, 91–102. [Google Scholar] [CrossRef]
- Middleton, R.S.; Carey, J.W.; Currier, R.P.; Hyman, J.D.; Kang, Q.; Karra, S.; Jiménez-Martínez, J.; Porter, M.L.; Viswanathan, H.S. Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO2. Appl. Energy 2015, 147, 500–509. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Lu, Y.; Elsworth, D.; Fang, Y.; Tang, J. Surface characteristics and permeability enhancement of shale fractures due to water and supercritical carbon dioxide fracturing. J. Pet. Sci. Eng. 2018, 165, 284–297. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, Y.; Tang, J.; Zhou, Z.; Liao, Y. Experimental study on fracture initiation and propagation in shale using supercritical carbon dioxide fracturing. Fuel 2016, 190, 370–378. [Google Scholar] [CrossRef]
- Middleton, R.S.; Gupta, R.; Hyman, J.D.; Viswanathan, H.S. The shale gas revolution: Barriers, sustainability, and emerging opportunities. Appl. Energy 2017, 199, 88–95. [Google Scholar] [CrossRef]
- Detournay, E.; Carbonell, R. Fracture-mechanics analysis of the breakdown process in mini fracture or leakoff test. SPE Prod. Facil. 1997, 12, 29–31. [Google Scholar] [CrossRef]
- Detournay, E. Mechanics of hydraulic fractures. Annu. Rev. Fluid Mech. 2016, 48, 311–339. [Google Scholar] [CrossRef]
- Savitski, A.A.; Detournay, E. Propagation of a penny-shaped fluid-driven fracture in an impermeable rock: Asymptotic solutions. Int. J. Solids Struct. 2002, 39, 6311–6337. [Google Scholar] [CrossRef]
- Tan, P.; Jin, Y.; Han, K.; Hou, B.; Chen, M.; Guo, X.; Gao, J. Analysis of hydraulic fracture initiation and vertical propagation behavior in laminated shale formation. Fuel 2017, 206, 482–493. [Google Scholar] [CrossRef]
- Kresse, O.; Weng, X.; Gu, H.; Wu, R. Numerical modeling of hydraulic fractures interaction in complex naturally fractured formations. Rock Mech. Rock Eng. 2013, 46, 555–568. [Google Scholar] [CrossRef]
- Zhu, W.C.; Tang, C.A. Micromechanical model for simulating the fracture process of rock. Rock Mech. Rock Eng. 2004, 37, 25–56. [Google Scholar] [CrossRef]
- Tang, C. Numerical simulation of progressive rock failure and associated seismicity. Int. J. Rock Mech. Min. Sci. 1997, 34, 249–261. [Google Scholar] [CrossRef]
Parameters | Values | Units |
---|---|---|
Tensile Strength | 13.5 | MPa |
Compressive Strength | 136.0 | MPa |
Young’s Modulus | 25.0 | GPa |
Porosity | 3.91% | - |
Bulk Modulus | 16.70 | GPa |
Poisson’s ratio | 0.25 | - |
Total Organic Carbon (TOC) | 0.55–4.41% | - |
Minerals | Percentage (%) |
---|---|
Quartz | 53.50 |
Calcite | 20.30 |
Illite | 9.80 |
Dolomite | 8.70 |
Pyrite | 3.60 |
Plagioclase | 3.10 |
K-feldspar | 1.00 |
Test Number | Fracturing Fluid | Stress State (σV/σH/σh) | Horizontal Stress Difference (MPa) | Temperature (°C) | Breakdown Pressure (MPa) | Injection Time (s) | Total Injection Volume (mL) |
---|---|---|---|---|---|---|---|
1 | H2O | 12/10/8 | 2 | 25 | 29.25 | 142 | 71 |
2 | L-CO2 | 12/10/8 | 2 | 25 | 18.70 | 552 | 276 |
3 | Sc-CO2 | 12/10/8 | 2 | 60 | 14.11 | 440 | 220 |
4 | Sc-CO2 | 12/10/10 | 0 | 60 | 16.21 | 469 | 234.5 |
5 | Sc-CO2 | 12/9/8 | 1 | 60 | 15.22 | 452 | 226 |
6 | Sc-CO2 | 12/9/6 | 3 | 60 | 13.33 | 435 | 217.5 |
7 | Sc-CO2 | 12/10/6 | 4 | 60 | 12.89 | 411 | 205.5 |
Parameters | Values | Units |
---|---|---|
Homogeneity index/m | 5.0 | Dimensionless |
Elastic modulus/E | 25.0 | GPa |
Uniaxial compressive strength/fc | 140 | MPa |
Uniaxial tensile strength/ft | 11 | MPa |
Poisson ratio/υ | 0.25 | Dimensionless |
Residual strength coefficient/λ | 0.1 | Dimensionless |
Ultimate strain coefficient/η | 5.0 | Dimensionless |
Initial porosity/Φ0 | 0.01 | Dimensionless |
Initial permeability/k0 | 1.0 × 10−21 | m2 |
Initial pore pressure/p0 | 0.1 | MPa |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Y.; Lu, Z.; Liu, H.; Wang, J.; Cheng, Y.; Zhang, X. Fracture Propagation and Morphology Due to Non-Aqueous Fracturing: Competing Roles between Fluid Characteristics and In Situ Stress State. Minerals 2020, 10, 428. https://doi.org/10.3390/min10050428
Jia Y, Lu Z, Liu H, Wang J, Cheng Y, Zhang X. Fracture Propagation and Morphology Due to Non-Aqueous Fracturing: Competing Roles between Fluid Characteristics and In Situ Stress State. Minerals. 2020; 10(5):428. https://doi.org/10.3390/min10050428
Chicago/Turabian StyleJia, Yunzhong, Zhaohui Lu, Hong Liu, Jiehao Wang, Yugang Cheng, and Xinwei Zhang. 2020. "Fracture Propagation and Morphology Due to Non-Aqueous Fracturing: Competing Roles between Fluid Characteristics and In Situ Stress State" Minerals 10, no. 5: 428. https://doi.org/10.3390/min10050428
APA StyleJia, Y., Lu, Z., Liu, H., Wang, J., Cheng, Y., & Zhang, X. (2020). Fracture Propagation and Morphology Due to Non-Aqueous Fracturing: Competing Roles between Fluid Characteristics and In Situ Stress State. Minerals, 10(5), 428. https://doi.org/10.3390/min10050428