Forecast of AMD Quantity by a Series Tank Model in Three Stages: Case Studies in Two Closed Japanese Mines
Abstract
:1. Introduction
2. Materials and Methods
2.1. AMD Quantity Model
2.1.1. Tank Model
2.1.2. Correction of Rainfall Data and Judgment of Snowfall
2.1.3. Estimation of Snowmelt and Snow Cover
2.2. Forecast Data of Temperature, Rainfall, and Sunshine Duration
2.3. Case Studies in Two Closed Mines
3. Results and Discussion
3.1. AMD Quantity Model Construction
3.2. Forecast of AMD Quantity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- JOGMEC (Japan Oil, Gas and Metals National Corporation). Mine Pollution Control. Available online: http://www.jogmec.go.jp/english/mp_control/index.html (accessed on 22 March 2020).
- Tokoro, C. Removal mechanism in anionic co-precipitation with hydroxides in acid mine drainage treatment. Resour. Process. 2015, 62, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Tokoro, C. As (V) removal by Fe (III), Al or Pb salts and rapid solid/liquid separation in wastewater containing dilute arsenic—A fundamental study for efficient treatment of wastewater containing dilute arsenic (Part 1). J. Mmij. 2005, 121, 399–406. [Google Scholar] [CrossRef]
- Onoguchi, A.; Granata, G.; Haraguchi, D.; Hayashi, H.; Tokoro, C. Kinetics and mechanism of selenate and selenite removal in solution by green rust-sulfate. R. Soc. Open Sci. 2019, 6, 182147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mamun, A.; Onoguchi, A.; Granata, G.; Tokoro, C. Role of pH in green rust preparation and chromate removal from water. Appl. Clay Sci. 2018, 165, 205–213. [Google Scholar] [CrossRef]
- Tokoro, C.; Suzuki, S.; Haraguchi, D.; Izawa, S. Silicate removal in aluminum hydroxide co-precipitation process. Materials 2014, 7, 1084–1096. [Google Scholar] [CrossRef] [PubMed]
- Tokoro, C.; Kadokura, M.; Kato, T. Mechanism of arsenate coprecipitation at the solid/liquid interface of ferrihydrite: A perspective review. Adv. Powder Technol. 2020, 31, 859–866. [Google Scholar] [CrossRef]
- Mamun, A.; Morita, M.; Matsuoka, M.; Tokoro, C. Sorption mechanisms of chromate with coprecipitated ferrihydrite in aqueous solution. J. Hazard. Mater. 2017, 334, 142–149. [Google Scholar] [CrossRef]
- Haraguchi, D.; Tokoro, C.; Oda, Y.; Owada, S. Sorption mechanisms of arsenate in aqueous solution during coprecipitation with aluminum hydroxide. J. Chem. Eng. Jpn. 2012, 46, 173–180. [Google Scholar] [CrossRef]
- Tokoro, C.; Koga, H.; Oda, Y.; Owada, S.; Takahashi, Y. XAFS investigation for As (V) co-precipitation mechanism with ferrihydrite. J. Mmij. 2011, 127, 213–218. [Google Scholar] [CrossRef] [Green Version]
- Tokoro, C.; Yatsugi, Y.; Koga, H.; Owada, S. Sorption mechanisms of arsenate during coprecipitation with ferrihydrite in aqueous solution. Environ. Sci. Technol. 2010, 44, 638–643. [Google Scholar] [CrossRef]
- Sasaki, K.; Qiu, X.; Moriyama, S.; Tokoro, C.; Ideta, K.; Miyawaki, J. Characteristic sorption of H3BO3/B (OH)4−on magnesium oxide. Mater. Trans. 2013, 54, 1809–1817. [Google Scholar] [CrossRef] [Green Version]
- Koide, R.; Tokoro, C.; Murakami, S.; Adachi, T.; Takahashi, A. A model for prediction of neutralizer usage and sludge generation in the treatment of acid mine drainage from abandoned mines: Case studies in Japan. Mine Water Environ. 2012, 31, 287–296. [Google Scholar] [CrossRef]
- Otsuka, H.; Murakami, S.; Yamatomi, J.; Koide, R.; Tokoro, C. A predictive model for the future treatment of acid mine drainage with regression analysis and geochemical modeling. J. Mmij. 2014, 130, 488–493. [Google Scholar] [CrossRef] [Green Version]
- Tabelin, C.; Sasaki, A.; Igarashi, T.; Tomiyama, S.; Tabelin, M.V.; Ito, M.; Hiroyoshi, N. Prediction of acid mine drainage formation and zinc migration in the tailings dam of a closed mine, and possible countermeasures. Matec. Web Conf. 2019, 268, 06003. [Google Scholar] [CrossRef]
- Ogbughalu, O.T.; Gerson, A.R.; Qian, G.; Smart, R.S.C.; Schumann, R.C.; Kawashima, N.; Fan, R.; Li, J.; Short, M.D. Heterotrophic microbial stimulation through biosolids addition for enhanced acid mine drainage control. Minerals 2017, 7, 105. [Google Scholar] [CrossRef] [Green Version]
- Qian, G.; Schumann, R.C.; Li, J.; Short, M.D.; Fan, R.; Li, Y.; Kawashima, N.; Zhou, Y.; Smart, R.S.C.; Gerson, A.R. Strategies for reduced acid and metalliferous drainage by pyrite surface passivation. Minerals 2017, 7, 42. [Google Scholar] [CrossRef]
- Nguyen, H.T.H.; Nguyen, B.Q.; Duong, T.T.; Bui, A.T.K.; Nguyen, H.T.A.; Cao, H.T.; Mai, N.T.; Nguyen, K.M.; Pham, T.T.; Kim, K.-W. Pilot-scale removal of arsenic and heavy metals from mining wastewater using adsorption combined with constructed wetland. Minerals 2019, 9, 379. [Google Scholar] [CrossRef] [Green Version]
- Kato, T.; Fukushima, R.; Granana, G.; Sato, K.; Yamagata, S.; Tokoro, C. Quantitative modeling incorporating surface complexation for zinc removal using leaf mold. J. Soc. Powder Technol. Jpn. 2019, 56, 136–141. [Google Scholar] [CrossRef]
- Lefticariu, L.; Behum, P.T.; Bender, K.S.; Lefticariu, M. Sulfur Isotope fractionation as an indicator of biogeochemical processes in an AMD passive bioremediation system. Minerals 2017, 7, 41. [Google Scholar] [CrossRef] [Green Version]
- Johnson, D.B. Recent developments in microbiological approaches for securing mine wastes and for recovering metals from mine waters. Minerals 2014, 4, 279–292. [Google Scholar] [CrossRef]
- Herrera, P.S.; Uchiyama, H.; Igarashi, T.; Asakura, K.; Ochi, Y.; Ishizuka, F.; Kawada, S. Acid mine drainage treatment through a two-step neutralization ferrite-formation process in northern Japan: Physical and chemical characterization of the sludge. J. Miner. Eng. 2007, 20, 1309–1314. [Google Scholar] [CrossRef]
- Igarashi, T.; Herrera, P.S.; Uchiyama, H.; Miyamae, H.; Iyatomi, N.; Hashimoto, K.; Tabelin, C.B. The two-step neutralization ferrite-formation process for sustainable acid mine drainage treatment: Removal of copper, zinc and arsenic, and the influence of coexisting ions on ferritization. Sci. Total Environ. 2020, 715, 136877. [Google Scholar] [CrossRef]
- Matsumoto, S.; Ishimatsu, H.; Shimada, H.; Sasaoka, T.; Kusuma, G.J. Characterization of mine waste and acid mine drainage prediction by simple testing methods in terms of the effects of sulfate-sulfur and carbonate minerals. Minerals 2018, 8, 403. [Google Scholar] [CrossRef] [Green Version]
- Chopard, A.; Marion, P.; Mermillod-Blondin, R.; Plante, B.; Benzaazoua, M. Environmental impact of mine exploitation: An early predictive methodology based on ore mineralogy and contaminant speciation. Minerals 2019, 9, 397. [Google Scholar] [CrossRef] [Green Version]
- Kitamura, A.; Kurikami, H.; Sakuma, K.; Malins, A.; Okumura, M.; Machida, M.; Mori, K.; Tada, K.; Tawara, Y.; Kobayashi, T.; et al. Redistribution and export of contaminated sediment within eastern Fukushima Prefecture due to typhoon flooding. Earth Surf. Process Landf. 2016, 41, 1708–1726. [Google Scholar] [CrossRef]
- Sakuma, K.; Kitamura, A.; Malins, A.; Kurikami, H.; Machida, M.; Mori, K.; Tada, K.; Kobayashi, T.; Tawara, Y.; Tosaka, H. Characteristics of radio-cesium transport and discharge between different basins near to the Fukushima Dai-ichi Nuclear Power Plant after heavy rainfall events. J. Environ. Radioact. 2017, 169–170, 137–150. [Google Scholar] [CrossRef]
- Sakuma, K.; Malins, A.; Funaki, H.; Kurikami, H.; Niizato, T.; Nakanishi, T.; Mori, K.; Tada, K.; Kobayashi, T.; Kitamura, A.; et al. Evaluation of sediment and 137Cs redistribution in the Oginosawa River catchment near the Fukushima Dai-ichi Nuclear Power Plant using integrated watershed modeling. J. Environ. Radioact. 2018, 182, 44–51. [Google Scholar] [CrossRef]
- Tomiyama, S.; Igarashi, T.; Tabelin, C.B.; Tangviroon, P.; Ii, H. Modeling of the groundwater flow system in excavated areas of an abandoned mine. J. Contam. Hydrol. 2020, 230, 103617. [Google Scholar] [CrossRef]
- Tomiyama, S.; Igarashi, T.; Tabelin, C.B.; Tangviroon, P.; Ii, H. Acid mine drainage sources and hydrogeochemistry at the Yatani mine, Yamagata, Japan: A geochemical and isotopic study. J. Contam. Hydrol. 2020, 225, 103502. [Google Scholar] [CrossRef]
- Kato, T.; Kawasaki, Y.; Kadokura, M.; Suzuki, K.; Tawara, Y.; Ohara, Y.; Tokoro, C. Quantitative modeling of arsenic removal by ferrihydrite coprecipitation in an artificial wetland and pond for chemical reactions coupled GETFLOWS. Minerals 2020. under second review. [Google Scholar]
- Ahmad, S.W. Tank Model Application for runoff and infiltration analysis on sub-watersheds in Lalindu River in South East Sulawesi Indonesia. J. Phys. Conf. Ser. 2017, 846, 012019. [Google Scholar] [CrossRef] [Green Version]
- Aqili, S.W.; Hong, N.; Hama, T.; Suenaga, Y.; Kawagoshi, Y. Application of modified tank model to simulate groundwater level fluctuations in Kabul Basin, Afghanistan. J. Water Enrivon. Technol. 2016, 14, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Tokoro, C.; Sakakibara, T.; Suzuki, S. Mechanism investigation and surface complexation modeling of zinc sorption on aluminum hydroxide in adsorption/coprecipitation processes. Chem. Eng. J. 2015, 279, 86–92. [Google Scholar] [CrossRef]
- Tokoro, C.; Yatsugi, Y.; Sasaki, H.; Owada, S. A quantitative modeling of co-precipitation phenomena in wastewater containing dilute anions with ferrihydrite using a surface complexation model. Resour. Process. 2008, 55, 3–8. [Google Scholar] [CrossRef]
- Tokoro, C.; Maruyama, Y.; Badulis, G.C.; Sasaki, H. Application of surface complexation model for dilute As removal in wastewater by Fe (III) or Al (III) salts—A fundamental study for efficient treatment of wastewater containing dilute arsenic (Part 2). J. Mmij. 2005, 121, 532–537. [Google Scholar] [CrossRef]
- Giorgetta, M.A.; Jungclaus, J.; Reick, C.H.; Legutke, S.; Bader, J.; Böttinger, M.; Brovkin, V.; Crueger, T.; Esch, M.; Fieg, K.; et al. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst. 2013, 5, 572–597. [Google Scholar] [CrossRef]
- Tada, T. Parameter optimization of hydrological model using the PSO algorithm. J. Jpn. Soc. Hydrol. Water Resour. 2007, 20, 450–461. [Google Scholar] [CrossRef] [Green Version]
- Japan Meteorological Agency. Previous Meteorological Data and Download. Available online: https://www.data.jma.go.jp/gmd/risk/obsdl/index.php (accessed on 22 March 2020).
- Kondo, J.; Motoya, K.; Matsushima, D. A study on annual variations of the soil water content and water equivalent of snow in a watershed, runoff and the river water temperature by use of the new bucket-model. Meteorol. Soc. Jpn. 1995, 42, 821–831. [Google Scholar]
- Kurihara, J.; Yamakoshi, T.; Irasawa, M.; Sasahara, K.; Takahashi, M.; Yoshida, M. Study on the applicability of the simplified snowmelt prediction method to the Imokawa river basin, Niigata prefecture, Japan. Int. J. Eros. Control Eng. 2007, 59, 47–54. [Google Scholar]
- Kondo, J.; Xu, J.; Haginoya, S. Empirical formula for estimating the solar radiation at an upland from the sunshine duration data. J. Jpn. Soc. Hydrol Water Resour. 1996, 9, 468–472. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, T.; Kondo, J.; Taguchi, B. Estimation of the heat balance in small snowcovered forested catchment basin. Tenki 1994, 41, 71–77. [Google Scholar]
- Hiramatsu, S.; Irasawa, M.; Hongo, K. Study on occurrence of hillside landsides caused by snowmelt. Int. J. Eros. Control Eng. 1998, 51, 27–34. [Google Scholar]
- Hashimoto, T.; Ohta, T.; Ishibashi, H. Estimation of the effects of deciduous forest to the surface snowmelt by a heat balance analysis. J. Jpn. Soc. Snow Ice 1992, 54, 131–143. [Google Scholar] [CrossRef] [Green Version]
- Suizu, S. A snowmelt and water equivalent snow model applicable to an extensive area. J. Jpn. Soc. Snow Ice 2002, 64, 617–630. [Google Scholar] [CrossRef]
- Shinohara, Y.; Komatsu, H.; Otsuki, K. A method for estimating global solar radiation from daily maximum and minimum temperatures: Its applicability to Japan. J. Jpn. Soc. Hydrol Water Resour. 2007, 20, 462–469. [Google Scholar] [CrossRef]
- Fujii, N. On the wastewater processing plant at the closed Matsuo Mine. J. Clay Sci. Soc. Jpn. 1994, 34, 184–186. [Google Scholar]
- Asami, Y.; Nishida, Y.; Kimura, H.; Iwasawa, M. Nurukawa Kozan no tankokaihatsu oyobi sonogo no sogyo jokyo. J. Mininig Metall. Inst. Jpn. 1988, 104, 185–190. (In Japanese) [Google Scholar]
Items | Mine A | Mine B | Effluent | ||
---|---|---|---|---|---|
April 1982 | March 2017 | April 1972 | March 2017 | Standard | |
pH | 2.0 | 2.3 | 3.2 | 4.7 | 5.8–8.6 |
Fe | 547 mg L−1 | 178 mg L−1 | N.D. | N.D. | 10 mg L−1 |
As | 3.3 mg L−1 | 0.93 mg L−1 | N.D. | N.D. | 0.01 mg L−1 |
Cd | N.D. | N.D. | 0.360 mg L−1 | 0.024 mg L−1 | 0.03 mg L−1 |
Zn | N.D. | N.D. | 90.4 mg L−1 | 14.9 mg L−1 | 2.0 mg L−1 |
Pb | N.D. | N.D. | 0.700 mg L−1 | 0.117 mg L−1 | 0.1 mg L−1 |
Q | 17.6 m3/min | 14.8 m3 min−1 | 2.50 m3 min−1 | 0.77 m3 min−1 |
Mine | Fitting Period | Correlation Coefficient in the Fitting Period | Correlation Coefficient in the Validation Period 7 |
---|---|---|---|
A | Half-year 1 | 0.89 | 0.65 |
One year 2 | 0.81 | 0.69 | |
Two years 3 | 0.80 | 0.67 | |
B | Half-year 4 | 0.86 | 0.77 |
One year 5 | 0.86 | 0.83 | |
Two years 6 | 0.87 | 0.85 |
Mine | Tank Stage | Outflow Coefficient ao (day−1) | Seepage Coefficient as (day−1) | Outflow Height b (mm) |
---|---|---|---|---|
A | First stage | 0.768 | 0.568 | 0.00484 |
Second stage | 0.936 | 0.352 | 0.00140 | |
Third stage | 0.00282 | |||
B | First stage | 0.738 | 0.863 | 0.0358 |
Second stage | 0.292 | 0.607 | 0.0205 | |
Third stage | 0.0500 |
Mine Name | Present | Future |
---|---|---|
Mine A | 0.083 | RCP2.6: 0.092 RCP8.5: 0.090 |
Mine B | 0.56 | RCP2.6: 0.49 RCP8.5: 0.54 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tokoro, C.; Fukaki, K.; Kadokura, M.; Fuchida, S. Forecast of AMD Quantity by a Series Tank Model in Three Stages: Case Studies in Two Closed Japanese Mines. Minerals 2020, 10, 430. https://doi.org/10.3390/min10050430
Tokoro C, Fukaki K, Kadokura M, Fuchida S. Forecast of AMD Quantity by a Series Tank Model in Three Stages: Case Studies in Two Closed Japanese Mines. Minerals. 2020; 10(5):430. https://doi.org/10.3390/min10050430
Chicago/Turabian StyleTokoro, Chiharu, Kenichiro Fukaki, Masakazu Kadokura, and Shigeshi Fuchida. 2020. "Forecast of AMD Quantity by a Series Tank Model in Three Stages: Case Studies in Two Closed Japanese Mines" Minerals 10, no. 5: 430. https://doi.org/10.3390/min10050430
APA StyleTokoro, C., Fukaki, K., Kadokura, M., & Fuchida, S. (2020). Forecast of AMD Quantity by a Series Tank Model in Three Stages: Case Studies in Two Closed Japanese Mines. Minerals, 10(5), 430. https://doi.org/10.3390/min10050430