Composition of Garnet from the Xianghualing Skarn Sn Deposit, South China: Its Petrogenetic Significance and Exploration Potential
Abstract
:1. Introduction
2. Geological Setting
2.1. Regional Geology
2.2. Geology of the Deposit
3. Sampling and Analytical Methods
4. Results
4.1. Major Element Geochemistry
4.2. Trace Element Geochemistry
5. Discussion
5.1. REE Patterns in Garnet and Their Significance
5.2. Substitution of Sn into Garnet
5.3. Exploration Implications
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chang, Z.; Shu, Q.; Meinert, L.D. Skarn deposits of China. Soc. Econ. Geol. Spec. Publ. 2019, 22, 189–234. [Google Scholar]
- Xu, Q.D.; Zhang, J.T. Analysis on geological background of metallization and assessment on potential ore-resources in Xianghualing orefield, Hunan. Earth Sci. 1993, 18, 602–611. (In Chinese) [Google Scholar]
- Qiu, R.Z.; Deng, J.F.; Cai, Z.Y.; Zhou, S.; Chang, H.L.; Du, S.H. Material sources of granite and ore in Xianghualing multi-metal orefield, Hunan Province. Miner. Depos. 2002, 21, 1017–1020. (In Chinese) [Google Scholar]
- Li, C.; Yang, C.M.; Zhong, J.L. Relationship between ore controlling factors and geochemical features in Xianghualing ore field. Miner. Resour. Geol. 2005, 19, 529–532. (In Chinese) [Google Scholar]
- Zhong, J.L.; Li, C.P. Geological characteristics and genesis of Xianghualing skarn type tin deposit. Miner. Resour. Geol. 2006, 20, 147–151. (In Chinese) [Google Scholar]
- Yuan, S.D.; Peng, J.T.; Li, X.Q.; Peng, Q.L.; Fu, Y.Z.; Shen, N.P.; Zhang, D.L. Carbon, oxygen and strontium isotope geochemistry of calcites from the Xianghualing tin-polymetallic deposit, Hunan Province. Acta Geol. Sin. 2008, 82, 1522–1530. (In Chinese) [Google Scholar]
- Zhou, T.; Liu, W.H.; Li, H.; Xu, W.X.; Dai, T.G. Isotope geochemistry of the Xianghualing tin-polymetallic deposit in Hunan Province. Acta Geosci. Sin. 2008, 29, 703–708. (In Chinese) [Google Scholar]
- Yu, X.G.; Rao, C.; Wang, W.M.Y.; Lin, X.Q.; Qin, L.Q. Mineralogical behavior and metallogenic process of Sn in the Xianghualing skarn, Hunan Province. Geol. J. China Univ. 2018, 24, 645–657. (In Chinese) [Google Scholar]
- Xie, L.; Wang, R.C.; Chen, J.; Zhu, J.C.; Zhang, W.L.; Wang, D.Z.; Yu, A.P. Primary Sn-rich titanite in the Qitianling granite, Hunan Province, southern China: An important type of tin-bearing mineral and its implications for tin exploration. Chin. Sci. Bull. 2008, 53, 3115–3122. (In Chinese) [Google Scholar]
- Wang, R.C.; Zhu, J.C.; Zhang, W.L.; Xie, L.; Yu, A.P.; Che, X.D. Ore forming mineralogy of W-Sn granites in the Nanling Range: Concept and case study. Geol. J. China Univ. 2008, 14, 485–495. (In Chinese) [Google Scholar]
- Wang, R.C.; Xie, L.; Chen, J.; Yu, A.P.; Wang, L.B.; Lu, J.J.; Zhu, J.C. Titanite as an indicator mineral of tin mineralizing potential of granites in the middle Nanling range. Geol. J. China Univ. 2011, 17, 368–380. (In Chinese) [Google Scholar]
- Li, D.F.; Tan, C.Y.; Miao, F.Y.; Liu, Q.F.; Zhang, Y.; Sun, X.M. Initiation of Zn-Pb mineralization in the Pingbao Pb-Zn skarn district, South China: Constraints from U-Pb dating of grossular-rich garnet. Ore Geol. Rev. 2019, 107, 587–599. [Google Scholar] [CrossRef]
- Shu, Q.; Chang, Z.; Hammerli, J.; Lai, Y.; Huizenga, J.M. Composition and evolution of fluids forming the Baiyinnuo’er Zn-Pb skarn deposit, northeastern China: Insights from laser ablation ICP-MS study of fluid inclusions. Econ. Geol. 2017, 112, 1441–1460. [Google Scholar] [CrossRef]
- Shu, Q.; Lai, Y.; Sun, Y.; Wang, C.; Meng, S. Ore genesis and hydrothermal evolution of the Baiyinnuo’er zinc-lead skarn deposit, northeast China: Evidence from isotopes (S, Pb) and fluid inclusions. Econ. Geol. 2013, 108, 835–860. [Google Scholar] [CrossRef]
- Taylor, B.E.; Liou, J.G. The low-temperature stability of andradite in C–O–H fluids. Am. Mineral. 1978, 63, 378–393. [Google Scholar]
- Fei, X.H.; Zhang, Z.C.; Cheng, Z.G.; Santosh, M. Factors controlling the crystal morphology and chemistry of garnet in skarn deposits: A case study from the Cuihongshan polymetallic deposit, Lesser Xing’an Range, NE China. Am. Mineral. 2019, 104, 1455–1468. [Google Scholar] [CrossRef]
- Jia, R.X.; Fang, W.X. Geochemical characteristics and their significance of garnets from Gejiu Sn polymetallic deposit of Yunnan. J. Earth Sci. Environ. 2016, 38, 578–586. (In Chinese) [Google Scholar]
- Zhou, Z.H.; Liu, H.W.; Chang, G.X.; Lü, L.S.; Li, T.; Yang, Y.J.; Zhang, R.J.; Ji, X.H. Mineralogical characteristics of skarns in the Huanggang Sn-Fe deposit of Inner Mongolia and their metallogenic indicating significance. Acta Petrol. Mineral. 2011, 30, 97–112. (In Chinese) [Google Scholar]
- Peng, H.J.; Zhang, C.Q.; Mao, J.W.; Santosh, M.; Zhou, Y.M.; Hou, L. Garnets in porphyry-skarn systems: A LA-ICP-MS, fluid inclusion, and stable isotope study of garnets from the Hongniu-Hongshan copper deposit, Zhongdian area, NW Yunnan Province, China. J. Asian Earth Sci. 2015, 103, 229–251. [Google Scholar] [CrossRef]
- Newberry, P.J. The formation of subcalcic garnet in scheelite-bearing skarns. Can. Mineral. 1983, 21, 529–544. [Google Scholar]
- Peng, H.J.; Mao, J.W.; Hou, L.; Shu, Q.H.; Zhang, C.Q.; Liu, H.; Zhou, Y.M. Stable isotope and fluid inclusion constraints on the source and evolution of ore fluids in the Hongniu-Hongshan Cu skarn deposit, Yunnan Province. China. Econ. Geol. 2016, 111, 1369–1396. [Google Scholar] [CrossRef]
- Zhou, Z.H.; Mao, J.W.; Lyckberg, P. Geochronology and isotopic geochemistry of the A-type granites from the Huanggang Sn-Fe deposit, southern Great Hinggan Range, NE China: Implication for their origin and tectonic setting. J. Asian Earth Sci. 2012, 49, 272–286. [Google Scholar] [CrossRef]
- Zhou, J.; Feng, C.; Li, D. Geochemistry of the garnets in the Baiganhu W-Sn orefield, NW China. Ore Geol. Rev. 2017, 82, 70–92. [Google Scholar] [CrossRef]
- Fan, X.J.; Wang, X.D.; Lü, X.B.; Wei, W.; Chen, W. Garnet composition as an indicator of skarn formation: LA-ICP-MS and EPMA studies on oscillatory zoned garnets from the Haobugao skarn deposit, Inner Mongolia, China. Geol. J. 2018, 54, 1976–1992. [Google Scholar] [CrossRef]
- Meinert, L.D. Application of skarn deposit zonation models to mineral exploration. Explor. Min. Geol. 1997, 6, 185–208. [Google Scholar]
- Somarin, A.K. Garnet composition as an indicator of Cu mineralization: Evidence from skarn deposits of NW Iran. J. Geochem. Explor. 2004, 81, 47–57. [Google Scholar] [CrossRef]
- Wang, C.M.; Zhang, L.; Tang, H.S.; Chen, H.Y.; Li, X.L.; Zheng, Y.; Li, D.F.; Fang, J.; Dong, H.L.; Qu, X. Genesis of the Kaladawan Fe-Mo ore field in Altyn, Xinjiang, China: Constraints from mineralogy and geochemistry. Ore Geol. Rev. 2017, 81, 587–601. [Google Scholar] [CrossRef]
- Liu, J.P.; Rong, Y.N.; Zhang, S.G.; Liu, Z.F.; Chen, W.K. Indium mineralization in the Xianghualing Sn-polymetallic orefield in southern Hunan, Southern China. Minerals 2017, 7, 173. [Google Scholar] [CrossRef]
- Li, H.; Wu, J.H.; Evans, N.J.; Jiang, W.C.; Zhou, Z.K. Zircon geochronology and geochemistry of the Xianghualing A-type granitic rocks: Insights into multi-stage Sn-polymetallic mineralization in South China. Lithos 2018, 312–313, 1–20. [Google Scholar] [CrossRef]
- Wu, J.H.; Li, H.; Algeo, T.J.; Jiang, W.C.; Zhou, Z.K. Genesis of the Xianghualing Sn-Pb-Zn deposit, South China: A multi-method zircon study. Ore Geol. Rev. 2018, 102, 220–239. [Google Scholar] [CrossRef]
- Zhang, R.Q.; Lu, J.J.; Wang, R.C.; Yang, P.; Zhu, J.C.; Yao, Y.; Gao, J.F.; Li, C.; Lei, Z.H.; Zhang, W.L.; et al. Constraints of in situ zircon and cassiterite U-Pb, molybdenite Re-Os and muscovite 40Ar-39Ar ages on multiple generations of granitic magmatism and related W-Sn mineralization in the Wangxianling area, Nanling Range, South China. Ore Geol. Rev. 2015, 65, 1021–1042. [Google Scholar] [CrossRef]
- Yuan, S.D.; Mao, J.; Cook, N.J.; Wang, X.D.; Liu, X.F.; Yuan, Y.B. A Late Cretaceous tin metallogenic event in Nanling W-Sn metallogenic province: Constraints from U-Pb, Ar-Ar geochronology at the Jiepailing Sn-Be-F deposit, Hunan, China. Ore Geol. Rev. 2015, 65, 283–293. [Google Scholar] [CrossRef]
- Liang, X.Q.; Jiang, Y.; Dong, C.G.; Fu, J.G.; Wang, C.; Zhou, Y. LA-ICP-MS zircon U-Pb and molybdenite Re-Os isotopic dating of the tungsten deposits in the Dengfuxian W-Sn orefield, eastern Hunan Province, South China, and their geological implications. Acta Geol. Sin.-Engl. Ed. 2014, 2, 99–100. [Google Scholar] [CrossRef]
- Liang, X.Q.; Dong, C.G.; Jiang, Y.; Wu, S.C.; Zhou, Y.; Zhu, H.F.; Fu, J.G.; Wang, C.; Shan, Y.H. Zircon U-Pb, molybdenite Re-Os and muscovite 40Ar-39Ar isotopic dating of the Xitian W-Sn polymetallic deposit, Eastern Hunan Province, South China and its geological significance. Ore Geol. Rev. 2016, 78, 85–100. [Google Scholar] [CrossRef]
- Yuan, S.D.; Peng, J.T.; Hu, R.Z.; Li, H.M.; Shen, N.P.; Zhang, D.L. A precise U-Pb age on cassiterite from the Xianghualing tin-polymetallic deposit (Hunan, South China). Miner. Depos. 2007, 43, 375–382. [Google Scholar] [CrossRef]
- Cai, H.Y. The metallogenic geological setting and approach on ore genesis of Xianghualing tin-polymetallic ore field. Miner. Resour. Geol. 1991, 5, 272–283. (In Chinese) [Google Scholar]
- Zhu, J.C.; Wang, R.C.; Lu, J.J.; Zhang, H.; Zhang, W.L.; Xie, L.; Zhang, R.Q. Fractionation, evolution, petrogenesis and mineralization of Laiziling granite pluton, Southern Hunan Province. Geol. J. China Univ. 2011, 17, 381–392. (In Chinese) [Google Scholar]
- Yuan, S.D.; Peng, J.T.; Shen, N.P.; Hu, R.Z.; Dai, T.M. 40Ar-39Ar isotopic dating of the Xianghualing Sn-polymetallic Orefield in Southern Hunan, China and its geological implications. Acta Geol. Sin.-Engl. Ed. 2007, 81, 278–286. [Google Scholar]
- Zhang, D.Q.; Wang, L.H. Metallogenic zoning and genesis of the Xianghualing ore field. Miner. Depos. 1988, 7, 33–42. (In Chinese) [Google Scholar]
- Yang, Y.F.; Yu, H.Y.; Zhang, L.J.; Qin, M.F. REE Characteristics of the green fluorite in Xianghualing, Hunan Province. Mod. Min. 2019, 35, 64–67. (In Chinese) [Google Scholar]
- Wang, F.Y.; Ge, C.; Ning, S.Y.; Nie, L.Q.; Zhong, G.X.; White, N.C. A new approach to LA-ICP-MS mapping and application in geology. Acta Petrol. Sin. 2017, 33, 3422–3436. (In Chinese) [Google Scholar]
- Raimondo, T.; Payne, J.; Wade, B.; Lanari, P.; Clark, C.; Hand, M. Trace element mapping by LA-ICP-MS: Assessing geochemical mobility in garnet. Contrib. Mineral. Petrol. 2017, 172, 17. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Gao, S.; Günther, D.; Xu, J.; Gao, C.G.; Chen, H.H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Meinert, L.D. Skarns and skarn deposits. Geosci. Can. 1992, 19, 145–162. [Google Scholar]
- Ranjbar, S.; Tabatabaei Manesh, S.M.; Mackizadeh, M.A.; Tabatabaei, S.H.; Parfenova, O.V. Geochemistry of major and rare earth elements in garnet of the Kal-e Kafi Skarn, Anarak Area, Central Iran: Constraints on processes in a hydrothermal system. Geochem. Int. 2016, 54, 423–438. [Google Scholar] [CrossRef]
- Zhao, W.W.; Zhou, M.F.; Williams-Jones, A.E.; Zhao, Z. Constraints on the uptake of REE by scheelite in the Baoshan tungsten skarn deposit, South China. Chem. Geol. 2018, 477, 123–136. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.Y.; Yu, J.M.; Lu, J.J. Trace and rare-earth element geochemistry in tourmaline and cassiterite from the Yunlong tin deposit, Yunnan, China: Implication for migmatitic-hydrothermal fluid evolution and ore genesis. Chem. Geol. 2004, 209, 193–213. [Google Scholar] [CrossRef]
- Williams-Jones, A.E.; Migdisov, A.A.; Samson, I.M. Hydrothermal mobilisation of the rare earth elements—A tale of “Ceria” and “Yttria”. Elements 2012, 8, 355–360. [Google Scholar] [CrossRef]
- Xu, J.; Ciobanu, C.L.; Cook, N.J.; Zheng, Y.Y.; Li, X.F.; Wade, B.P.; Verdugo-Ihl, M.R.; Gao, W.Y.; Zhu, Q.Q. Numerical modelling of rare earth element fractionation trends in garnet: A tool to monitor skarn evolution. Contrib. Mineral. Petrol. 2020, 175, 17. [Google Scholar] [CrossRef]
- Pourmand, A.; Dauphas, N.; Ireland, T.J. A novel extraction chromatography and MC-ICP-MS technique for rapid analysis of REE, Sc and Y: Revising CI-chondrite and Post-Archean Australian Shale (PAAS) abundances. Chem. Geol. 2012, 291, 38–54. [Google Scholar] [CrossRef]
- Chen, J.; Halls, C.; Stanley, C.J. Rare earth element contents and patterns in major skarn minerals from Shizhuyuan W, Sn, Bi and Mo deposit, South China. Geochem. J. 1992, 26, 147–158. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Halls, C.; Stanley, C.J. Tin-bearing skarns of South China: Geological setting and mineralogy. Ore Geol. Rev. 1992, 7, 225–248. [Google Scholar] [CrossRef]
- Liu, X.F.; Yuan, S.D.; Shuang, Y.; Yuan, Y.B.; Mi, J.R.; Xuan, Y.S. In situ LA-ICP-MS REE analyses of the skarn garnets from the Jinchuantang tin-bismuth deposit in Hunan Province, and their significance. Acta Petrol. Sin. 2014, 30, 163–177. (In Chinese) [Google Scholar]
- Han, S.; Huang, Z.X.; Jia, X.Q.; Dong, J.Q. The geochemical characteristics of rare earth elements in skarn and their garnets from Damoshan area, Gejiu district, Yunnan Province. Acta Petrol. Sin. 1993, 9, 192–198. (In Chinese) [Google Scholar]
- Wang, L.J.; Wang, J.B.; Wang, Y.W.; Hidehiko, S. REE geochemistry of the Huangguangliang skarn Fe-Sn deposit, Inner Mongolia. Acta Petrol. Sin. 2002, 18, 575–584. (In Chinese) [Google Scholar]
- Pride, C.; Muecke, G.K. Rare earth element distributions among coexisting granulite facies minerals, Scourian complex, NW Scotland. Contrib. Mineral. Petrol. 1981, 76, 463–471. [Google Scholar] [CrossRef]
- Yao, Y.; Chen, J.; Lu, J.J.; Zhang, R.Q.; Zhao, L.H. Composition, trace element and infrared spectrum of garnet from three types of W-Sn bearing skarns in the South of China. Acta Mineral. Sin. 2013, 33, 315–328. (In Chinese) [Google Scholar]
- Gaspar, M.; Knaack, C.; Meinert, L.D.; Moretti, R. REE in skarn systems: A LA-ICP-MS study of garnets from the Crown Jewel gold deposit. Geochim. Cosmochim. Acta 2008, 72, 185–205. [Google Scholar] [CrossRef]
- Mcintire, W.L. Trace element partition coefficients-a review of theory and applications to geology. Geochim. Cosmochim. Acta 1963, 27, 1209–1264. [Google Scholar] [CrossRef]
- Meinert, L.D.; Dipple, G.M.; Nicolescu, S. World skarn deposits. Soc. Econ. Geol. 2005, 100th Anniversary Volume, 299–336. [Google Scholar]
- Eugster, H.P. Granites and hydrothermal ore deposits: A geochemical framework. Mineral. Mag. 1985, 49, 7–23. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, Q.Q.; Shao, Y.J.; Li, H.B. Fingerprinting the hydrothermal fluid characteristics from LA-ICP-MS trace element geochemistry of garnet in the Yongping Cu deposit, SE China. Minerals 2017, 7, 199. [Google Scholar] [CrossRef]
- Menzer, G. Die Kristallstruktur der granate. Z. Krist.-Cryst. Mater. 1929, 69, 300–396. [Google Scholar] [CrossRef]
- Xu, J.; Ciobanu, C.L.; Cook, N.J.; Zheng, Y.Y.; Sun, X.; Wade, B.P. Skarn formation and trace elements in garnet and associated minerals from Zhibula copper deposit, Gangdese Belt, southern Tibet. Lithos 2016, 262, 213–231. [Google Scholar] [CrossRef]
- Zhao, P.L.; Yuan, S.D.; Yuan, Y.B. Geochemical characteristics of garnet in the Huangshaping polymetallic deposit, Southern Hunan: Implications for the genesis of Cu and W-Sn mineralization. Acta Petrol. Sin. 2018, 34, 2581–2597. (In Chinese) [Google Scholar]
- Nekrasov, I.Y. Features of tin mineralization in carbonate deposits, as in Eastern Siberia. Int. Geol. Rev. 1971, 13, 1532–1542. [Google Scholar] [CrossRef]
- Mclver, J.R.; Mihalik, P. Stannian andradite from “Davib Ost”, South West Africa. Can. Mineral. 1975, 13, 217–221. [Google Scholar]
- Amthauer, G.; Mciver, J.R.; Viljoen, E.A. 57Fe and 119Sn Mossbauer studies of natural tin-bearing garnets. Phys. Chem. Miner. 1979, 4, 235–244. [Google Scholar] [CrossRef]
- Plimer, I.R. Malayaite and tin-bearing silicates from a skarn at Doradilla via Bourke, New South Wales. Aust. J. Earth Sci. 1984, 31, 147–153. [Google Scholar] [CrossRef]
- Kwak, T.A.P. W-Sn skarn deposits and related metamorphic skarns and granitoids. Dev. Econ. Geol. 1987, 24, 1–451. [Google Scholar]
- Guo, S.; Chen, Y.; Liu, C.Z.; Wang, J.G.; Su, B.; Gao, Y.J.; Wu, F.Y.; Sein, K.; Yang, Y.H.; Mao, Q. Scheelite and coexisting F-rich zoned garnet, vesuvianite, fluorite, and apatite in calc-silicate rocks from the Mogok metamorphic belt, Myanmar: Implications for metasomatism in marble and the role of halogens in W mobilization and mineralization. J. Asian Earth Sci. 2016, 117, 82–106. [Google Scholar] [CrossRef]
- Kwak, T.A.P.; White, A.J.R. Contrasting W-Mo-Cu and W-Sn-F skarn types and related granitoids. Min. Geol. 1982, 32, 339–351. [Google Scholar]
- Liao, S.L.; Chen, S.Y.; Deng, X.H.; Li, P.; Zhao, J.N.; Liao, R.Y. Fluid inclusion characteristics and geological significance of the Xi’ao copper-tin polymetallic deposit in Gejiu, Yunnan Province. J. Asian Earth Sci. 2014, 79, 455–467. [Google Scholar] [CrossRef]
- Mei, W.; Lü, X.B.; Cao, X.F.; Liu, Z.; Zhao, Y.; Ai, Z.L.; Tang, R.K.; Abfaua, M.M. Ore genesis and hydrothermal evolution of the Huanggang skarn iron-tin polymetallic deposit, southern Great Xing’an Range: Evidence from fluid inclusions and isotope analyses. Ore Geol. Rev. 2015, 64, 239–252. [Google Scholar] [CrossRef]
- Lu, H.Z.; Liu, Y.M.; Wang, C.L.; Xu, Y.Z.; Li, H.Q. Mineralization and fluid inclusion study of the Shizhuyuan W-Sn-Bi-Mo-F skarn deposit, Hunan Province, China. Econ. Geol. 2003, 98, 955–974. [Google Scholar] [CrossRef]
- Liu, X.F. Geology, Geochemistry and Genesis of the Jinchuantang Tin-Bismuth Deposit, Hunan Province. Master’s Thesis, China University of Geosciences (Beijing), Beijing, China, 2014. [Google Scholar]
- Saksela, M. Zur Mineralogie und Entstehung der Pitkäranta-Erze. Bull. Comm. Géol. Finl. 1951, 154, 182–230. [Google Scholar]
- Park, C.; Song, Y.; Kang, I.M.; Shim, J.; Chung, D.; Park, C.S. Metasomatic changes during periodic fluid flux recorded in grandite garnet from the Weondong W-skarn deposit, South Korea. Chem. Geol. 2017, 451, 135–153. [Google Scholar] [CrossRef]
Sample | XHL-1 (n = 7) | XHL-2 (n = 10) | XHL-3 (n = 11) | ||||||
---|---|---|---|---|---|---|---|---|---|
Maximum | Minimum | Average | Maximum | Minimum | Average | Maximum | Minimum | Average | |
MgO | 0.12 | 0.09 | 0.11 | 0.12 | 0.09 | 0.11 | 0.18 | 0.09 | 0.14 |
Al2O3 | 15.73 | 14.77 | 15.23 | 16.85 | 15.11 | 16.17 | 16.06 | 14.04 | 14.79 |
SiO2 | 39.34 | 37.89 | 38.58 | 38.25 | 37.19 | 37.80 | 39.11 | 37.96 | 38.61 |
CaO | 32.22 | 31.71 | 31.93 | 31.77 | 30.73 | 31.32 | 32.98 | 31.30 | 32.21 |
TiO2 | 0.55 | 0.36 | 0.49 | 0.27 | 0.09 | 0.20 | 0.64 | 0.12 | 0.27 |
MnO | 1.44 | 1.28 | 1.37 | 1.66 | 1.40 | 1.52 | 1.64 | 1.26 | 1.39 |
FeO | 11.93 | 10.68 | 11.45 | 13.30 | 10.94 | 11.88 | 12.90 | 9.43 | 11.70 |
Total | 99.35 | 98.98 | 99.14 | 99.16 | 98.91 | 98.99 | 99.37 | 98.95 | 99.1 |
Mg | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 | 0.02 |
Al | 1.46 | 1.36 | 1.41 | 1.56 | 1.40 | 1.50 | 1.47 | 1.30 | 1.37 |
Si | 3.07 | 2.97 | 3.03 | 3.00 | 2.92 | 2.97 | 3.08 | 2.99 | 3.03 |
Ca | 2.71 | 2.67 | 2.68 | 2.67 | 2.58 | 2.63 | 2.77 | 2.64 | 2.71 |
Ti | 0.03 | 0.02 | 0.03 | 0.02 | 0.01 | 0.01 | 0.04 | 0.01 | 0.02 |
Mn | 0.10 | 0.09 | 0.09 | 0.11 | 0.09 | 0.10 | 0.11 | 0.08 | 0.09 |
Fe2+ | 0.30 | 0.21 | 0.27 | 0.27 | 0.18 | 0.23 | 0.33 | 0.16 | 0.23 |
Fe3+ | 0.56 | 0.39 | 0.48 | 0.65 | 0.48 | 0.55 | 0.65 | 0.4 | 0.54 |
Ad | 34.75 | 31.47 | 33.2 | 36.63 | 30.28 | 32.64 | 37.66 | 28.08 | 34.2 |
Gr | 63.96 | 60.71 | 62.23 | 65.13 | 58.68 | 62.6 | 67.42 | 57.78 | 60.99 |
Sp + Py + Al | 4.68 | 4.37 | 4.56 | 5.11 | 4.48 | 4.75 | 5.29 | 4.43 | 4.81 |
Sample | XHL-1 (n = 7) | XHL-2 (n = 10) | XHL-3 (n = 11) | ||||||
---|---|---|---|---|---|---|---|---|---|
Maximum | Minimum | Average | Maximum | Minimum | Average | Maximum | Minimum | Average | |
Cu | 0.31 | 0 | 0.12 | 0.14 | 0 | 0.06 | 0.23 | 0 | 0.07 |
Zn | 12.47 | 7.95 | 10.38 | 12.56 | 9.99 | 11 | 12.24 | 9.15 | 10.76 |
Mo | 0.25 | 0 | 0.15 | 0.46 | 0.01 | 0.20 | 0.28 | 0.08 | 0.19 |
Sn | 5228 | 2314 | 3924 | 5766 | 3790 | 5037 | 5706 | 2404 | 3856 |
W | 28.2 | 0.45 | 10.9 | 29.99 | 1.15 | 18.89 | 23.09 | 0.22 | 4.89 |
Pb | 2.11 | 0 | 0.42 | 0.78 | 0 | 0.11 | 5.50 | 0.17 | 1.68 |
La | 0.08 | 0.02 | 0.04 | 0.04 | 0.01 | 0.02 | 0.04 | 0 | 0.01 |
Ce | 0.45 | 0.34 | 0.40 | 0.55 | 0.30 | 0.42 | 0.41 | 0 | 0.14 |
Pr | 0.25 | 0.18 | 0.20 | 0.30 | 0.15 | 0.20 | 0.26 | 0 | 0.08 |
Nd | 3.46 | 1.96 | 2.69 | 3.16 | 1.80 | 2.61 | 3.12 | 0 | 1.02 |
Sm | 3.00 | 2.04 | 2.47 | 3.70 | 1.60 | 2.66 | 2.85 | 0 | 1.11 |
Eu | 0.62 | 0.26 | 0.39 | 0.74 | 0.34 | 0.52 | 0.59 | 0.02 | 0.22 |
Gd | 3.88 | 2.00 | 2.59 | 5.76 | 1.24 | 3.21 | 3.93 | 0.08 | 1.40 |
Tb | 0.50 | 0.32 | 0.42 | 1.14 | 0.13 | 0.57 | 0.62 | 0.07 | 0.29 |
Dy | 2.93 | 1.78 | 2.35 | 6.79 | 0.46 | 3.03 | 3.32 | 1.02 | 1.96 |
Ho | 0.59 | 0.35 | 0.47 | 1.37 | 0.06 | 0.58 | 0.75 | 0.33 | 0.50 |
Er | 1.80 | 0.98 | 1.37 | 3.63 | 0.03 | 1.48 | 2.08 | 0.82 | 1.61 |
Tm | 0.34 | 0.13 | 0.22 | 0.50 | 0.01 | 0.19 | 0.41 | 0.13 | 0.30 |
Yb | 2.17 | 1.14 | 1.78 | 3.10 | 0 | 1.24 | 3.68 | 0.67 | 2.42 |
Lu | 0.32 | 0.19 | 0.27 | 0.30 | 0 | 0.13 | 0.62 | 0.06 | 0.41 |
Y | 15.66 | 10.50 | 13.33 | 37.24 | 1.33 | 15.35 | 17.96 | 9.23 | 13.39 |
ΣREE | 17.24 | 13.73 | 15.66 | 30.19 | 7.12 | 16.84 | 19.28 | 6.97 | 11.46 |
ΣLREE | 7.75 | 4.94 | 6.19 | 8.08 | 4.27 | 6.42 | 7.21 | 0.06 | 2.57 |
ΣHREE | 10.29 | 8.26 | 12.53 | 22.58 | 1.93 | 10.42 | 12.07 | 6.87 | 8.89 |
ΣLREE/ΣHREE | 0.75 | 0.6 | 0.49 | 0.36 | 2.22 | 0.62 | 0.6 | 0.01 | 0.29 |
δEu | 0.56 | 0.34 | 0.46 | 0.79 | 0.35 | 0.58 | 2.37 | 0.15 | 0.61 |
δCe | 0.69 | 0.43 | 0.57 | 0.72 | 0.51 | 0.61 | 2.48 | 0 | 0.56 |
LaN/YbN | 0.03 | 0.01 | 0.02 | 0.04 | 0 | 0.01 | 0.03 | 0 | 0.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, F.; Shu, Q.; Niu, X.; Xing, K.; Li, L.; Lentz, D.R.; Zeng, Q.; Yang, W. Composition of Garnet from the Xianghualing Skarn Sn Deposit, South China: Its Petrogenetic Significance and Exploration Potential. Minerals 2020, 10, 456. https://doi.org/10.3390/min10050456
Yu F, Shu Q, Niu X, Xing K, Li L, Lentz DR, Zeng Q, Yang W. Composition of Garnet from the Xianghualing Skarn Sn Deposit, South China: Its Petrogenetic Significance and Exploration Potential. Minerals. 2020; 10(5):456. https://doi.org/10.3390/min10050456
Chicago/Turabian StyleYu, Fan, Qihai Shu, Xudong Niu, Kai Xing, Linlong Li, David R. Lentz, Qingwen Zeng, and Wenjie Yang. 2020. "Composition of Garnet from the Xianghualing Skarn Sn Deposit, South China: Its Petrogenetic Significance and Exploration Potential" Minerals 10, no. 5: 456. https://doi.org/10.3390/min10050456
APA StyleYu, F., Shu, Q., Niu, X., Xing, K., Li, L., Lentz, D. R., Zeng, Q., & Yang, W. (2020). Composition of Garnet from the Xianghualing Skarn Sn Deposit, South China: Its Petrogenetic Significance and Exploration Potential. Minerals, 10(5), 456. https://doi.org/10.3390/min10050456