A Morphological and Size-Based Study of the Changes of Iron Sulfides in the Caples and Torlesse Terranes (Otago Schist, New Zealand) during Prograde Metamorphic Evolution
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wilkin, R.T.; Barnes, H.L. Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species. Geochim. Cosmochim. Acta 1996, 60, 4167–4179. [Google Scholar] [CrossRef]
- Wilkin, R.T.; Barnes, H.L. Formation processes of framboidal pyrite. Geochim. Cosmochim. Acta 1997, 61, 323–339. [Google Scholar] [CrossRef]
- Wignall, P.B.; Newton, R. Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks. Am. J. Sci. 1998, 298, 537–552. [Google Scholar] [CrossRef]
- Li, G.; Wang, Y.; Shi, G.R.; Liao, W.; Yu, L. Fluctuations of redox conditions across the Permian-Triassic boundary—New evidence from the GSSP section in Meishan of South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 448, 48–58. [Google Scholar] [CrossRef]
- Liao, W.; Bond, D.P.G.; Wang, Y.B.; He, L.; Yang, H.; Weng, Z.T.; Li, G.S. An extensive anoxic event in the Triassic of the South China Block: A pyrite framboid study from Dajiang and its implications for the cause(s) of oxygen depletion. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 486, 86–95. [Google Scholar] [CrossRef]
- Wang, L.; Shi, X.; Jiang, G. Pyrite morphology and redox fluctuations recorded in the Ediacaran Doushantuo Formation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 333, 218–227. [Google Scholar] [CrossRef]
- Zhang, Y.; Jia, D.; Yin, H.; Liu, M.; Xie, W.; Wei, G.; Li, Y. Remagnetization of lower Silurian black shale and insights into shale gas in the Sichuan Basin, south China. J. Geophys. Res. Solid Earth 2016, 121, 491–505. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.; Gao, W.; Gao, S.; Meng, L.; Zhang, Z.; Yan, Y.; Ren, Y.; Li, Y.; Liu, K.; Xing, M.; et al. Morphology Evolution of Nano-Micron Pyrite: A Review. J. Nanosci. Nanotechnol. 2017, 17, 5980–5995. [Google Scholar] [CrossRef]
- Merinero, R.; Cárdenes, V. Theoretical growth of framboidal and sunflower pyrite using the R-package frambgrowth. Mineral. Petrol. 2018, 112, 577–589. [Google Scholar] [CrossRef]
- Cnudde, V.; Boone, M.N. High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications. Earth Sci. Rev. 2013, 123, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Cardenes, V.; Cnudde, V.; Merinero, R.; Dewanckele, J.; de Boever, W.; Cnudde, J.P. Determination of the REDOX paleoconditions: A High Resolution X-ray Tomography study of micro pyrite occurrence. In Proceedings of the 2nd International Conference on Tomography of Materials and Structures, Quebec, QC, Canada, 29 June–3 July 2015; Long, B., Francus, P., Eds.; INRS: Quebec, QC, Canada, 2015. [Google Scholar]
- Cardenes, V.; Merinero, R.; De Boever, W.; Rubio-Ordóñez, Á.; Dewanckele, J.; Cnudde, J.P.; Boone, M.; Van Hoorebeke, L.; Cnudde, V. Characterization of micropyrite populations in low-grade metamorphic slate: A study using high-resolution X-ray tomography. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 441, 924–935. [Google Scholar] [CrossRef]
- Cardenes, V.; Merinero, R.; López-Munguira, A.; Rubio-Ordóñez, A.; Pitcairn, I.K.; Cnudde, V. Size evolution of micropyrite from diagenesis to low-grade metamorphism. In Metamorphic Geology: Microscale to Mountain Belts; Ferrero, S., Lanari, P., Goncalves, P., Grosch, E.G., Eds.; Geological Society of London Special Publications: London, UK, 2019; Volume 478, pp. 137–144. [Google Scholar]
- Merinero, R.; Cardenes, V.; Lunar, R.; Boone, M.N.; Cnudde, V. Representative size distributions of framboidal, euhedral, and sunflower pyrite from high-resolution X-ray tomography and scanning electron microscopy analyses. Am. Mineral. 2017, 102, 620–631. [Google Scholar] [CrossRef]
- Wilkin, R.T.; Barnes, H.L.; Brantley, S.L. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions. Geochim. Cosmochim. Acta 1996, 60, 3897–3912. [Google Scholar] [CrossRef]
- Craig, J.R.; Vokes, F.M.; Solberg, T.N. Pyrite: Physical and chemical textures. Miner. Depos. 1998, 34, 82–101. [Google Scholar] [CrossRef]
- England, B.M.; Ostwald, J. Framboid-derived structures in some Tasman fold belt base-metal sulphide deposits, New South Wales, Australia. Ore Geol. Rev. 1993, 7, 381–412. [Google Scholar] [CrossRef]
- Sawlowicz, Z. Pyrite framboids and their development: A new conceptual mechanism. Int. J. Earth Sci. 1993, 82, 148–156. [Google Scholar] [CrossRef]
- Sawlowicz, Z. Framboids: From their origin to application. Prace Mineral. 2000, 88, 1–58. [Google Scholar]
- Wacey, D.; Kilburn, M.R.; Saunders, M.; Cliff, J.B.; Kong, C.; Liu, A.G.; Matthews, J.J.; Brasier, M.D. Uncovering framboidal pyrite biogenicity using nano-scale CNorg mapping. Geology 2015, 43, 27–30. [Google Scholar] [CrossRef] [Green Version]
- Scott, R.J.; Meffre, S.; Woodhead, J.; Gilbert, S.E.; Berry, R.F.; Emsbo, P. Development of framboidal pyrite during diagenesis, low-grade regional metamorphism, and hydrothermal alteration. Econ. Geol. 2009, 104, 1143–1168. [Google Scholar] [CrossRef]
- Pitcairn, I.K.; Olivo, G.R.; Teagle, D.A.H.; Craw, D. Sulfide Evolution during Prograde Metamorphism of the Otago and Alpine Schists, New Zealand. Can. Mineral. 2010, 48, 1267–1295. [Google Scholar] [CrossRef]
- Bishop, D.G. Progressive Metamorphism from Prehnite-Pumpellyite to Greenschist Facies in the Dansey Pass Area, Otago, New Zealand. Geol. Soc. Am. Bull. 1972, 83, 3177–3197. [Google Scholar] [CrossRef]
- Mortimer, N.; Roser, B.P. Gechemical evidence for the postion of the Caples Torlesse boundary in the Otago Schist, New Zealand. J. Geol. Soc. 1992, 149, 967–977. [Google Scholar] [CrossRef]
- Large, R.; Thomas, H.; Craw, D.; Henne, A.; Henderson, S. Diagenetic pyrite as a source for metals in orogenic gold deposits, Otago Schist, New Zealand. N. Z. J. Geol. Geophys. 2012, 55, 137–149. [Google Scholar] [CrossRef] [Green Version]
- Large, R.R.; Danyushevsky, L.; Hollit, C.; Maslennikov, V.; Meffre, S.; Gilbert, S.; Bull, S.; Scott, R.; Emsbo, P.; Thomas, H.; et al. Gold and Trace Element Zonation in Pyrite Using a Laser Imaging Technique: Implications for the Timing of Gold in Orogenic and Carlin-Style Sediment-Hosted Deposits. Econ. Geol. 2009, 104, 635–668. [Google Scholar] [CrossRef]
- Rozenbaum, O.; du Roscoat, S.R. Representative elementary volume assessment of three-dimensional x-ray microtomography images of heterogeneous materials: Application to limestones. Phys. Rev. E 2014, 89, 053304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eberl, D.D.; Drits, V.A.; Srodon, J. Deducing growth mechanisms for minerals from the shapes of crystal size distributions. Am. J. Sci. 1998, 298, 499–533. [Google Scholar] [CrossRef]
- Merinero, R.; Lunar, R.; Somoza, L.; Díaz-Del-Río, V.; Martínez-Frías, J. Nucleation, growth and oxidation of framboidal pyrite associated with hydrocarbon-derived submarine chimneys: Lessons learned from the Gulf of Cadiz. Eur. J. Mineral. 2009, 21, 947–961. [Google Scholar] [CrossRef]
Sample | A6 | A4 | A5 | C46 | A1 | A3 | C56 | C72 |
---|---|---|---|---|---|---|---|---|
Terrane | Caples | Caples | Caples | Torlesse | Torlesse | Torlesse | Torlesse | Torlesse |
Lithology | GW un-mt | Pel sb-GS | Pel sb-GS | GW un-mt | Psa sb-GS | Pel sb-GS | QFS GS | QFS GS |
Population Analysis | ||||||||
P1(mean,SD) | 9.6(1.7) | 9.7(1.8) | 9.8(1.8) | 11.5(3.2) | 10.2(2.1) | 12.5(3.6) | 9.9(1.9) | 7.7(0.5) |
(%n,V) | 31.6,2.5 | 22.3,0.5 | 20.2,0.5 | 43.9,96.7 | 24.1,0.6 | 36.3,5.1 | 33.4,1.8 | 12.5,0.7 |
P2(mean,SD) | 15.3(4.6) | 13.7(2.8) | 13.9(2.2) | 25.4(14.3) | 18.7(6.3) | 23.3(6.6) | 15.2(4.6) | 9.8(0.6) |
(%n,V) | 45.1,15.4 | 22.7,1.4 | 20.0,1.2 | 56.1,97.7 | 34.4,5.7 | 52.1,40.1 | 34.4,7.0 | 20.7,1.8 |
P3(mean,SD) | 27.7(14.7) | 23.8(6.2) | 19.5(2.9) | -- | 40.3(21.5) | 44.7(12.7) | 30.2(16.6) | 11.7(1.1) |
(%n,V) | 23.4,82.1 | 25.4,6.4 | 17.2,2.7 | -- | 41.5,93.7 | 11.7,54.7 | 32.2,91.3 | 14.5,1.9 |
P4(mean,SD) | -- | 33.5(24.8) | 27.7(6.4) | -- | -- | -- | -- | 13.3(1.7) |
(%n,V) | -- | 29.6,91.6 | 18.2,8.3 | -- | -- | -- | -- | 14.1,2.8 |
P5(mean,SD) | -- | -- | 25.7(14.4) | -- | -- | -- | -- | 20.0(6.8) |
(%n,V) | -- | -- | 24.4,87.3 | -- | -- | -- | -- | 25.9,22.3 |
P6(mean,SD) | -- | -- | -- | -- | -- | -- | -- | 32.0(18.1) |
(%n,V) | -- | -- | -- | -- | -- | -- | -- | 12.2,70.5 |
Tot.(mean,SD) | 27.7(14.7) | 21.9(0.6) | 24.3(18.9) | 19.5(14.5) | 21.9(12.0) | 18.3(13.5) | 15.7(10.1) | |
(%n,V) | (100,100) | (100,100) | (100,100) | (100,100) | (100,100) | (100,100) | (100,100) | (100,100) |
Vol. (mm3) | 43.1 | 152.8 | 204.0 | 114.2 | 190.2 | 41.1 | 45.8 | 194.1 |
Objects | 4358 | 4219 | 5036 | 5623 | 4871 | 2568 | 2744 | 12611 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardenes, V.; Merinero, R.; Rubio-Ordoñez, Á.; Cnudde, V.; García-Guinea, J.; Pitcairn, I.K. A Morphological and Size-Based Study of the Changes of Iron Sulfides in the Caples and Torlesse Terranes (Otago Schist, New Zealand) during Prograde Metamorphic Evolution. Minerals 2020, 10, 459. https://doi.org/10.3390/min10050459
Cardenes V, Merinero R, Rubio-Ordoñez Á, Cnudde V, García-Guinea J, Pitcairn IK. A Morphological and Size-Based Study of the Changes of Iron Sulfides in the Caples and Torlesse Terranes (Otago Schist, New Zealand) during Prograde Metamorphic Evolution. Minerals. 2020; 10(5):459. https://doi.org/10.3390/min10050459
Chicago/Turabian StyleCardenes, Victor, Raúl Merinero, Álvaro Rubio-Ordoñez, Veerle Cnudde, Javier García-Guinea, and Iain K. Pitcairn. 2020. "A Morphological and Size-Based Study of the Changes of Iron Sulfides in the Caples and Torlesse Terranes (Otago Schist, New Zealand) during Prograde Metamorphic Evolution" Minerals 10, no. 5: 459. https://doi.org/10.3390/min10050459
APA StyleCardenes, V., Merinero, R., Rubio-Ordoñez, Á., Cnudde, V., García-Guinea, J., & Pitcairn, I. K. (2020). A Morphological and Size-Based Study of the Changes of Iron Sulfides in the Caples and Torlesse Terranes (Otago Schist, New Zealand) during Prograde Metamorphic Evolution. Minerals, 10(5), 459. https://doi.org/10.3390/min10050459