Covalent Protein Immobilization onto Muscovite Mica Surface with a Photocrosslinker
Abstract
:1. Introduction
2. Materials and Methods
2.1. Proteins
2.2. Chemicals
2.3. Modification and Activation of AFM Substrate Surface
2.4. Covalent Immobilization of Protein
2.5. AFM Scanning
2.6. Processing of AFM Images
2.7. Preparation of the AFM Substrate for Mass Spectrometry Measurements
2.8. Mass Spectrometry Measurements
2.8.1. MALDI-TOF Measurements
2.8.2. Selected Reaction Monitoring MS (SRM-MS) Measurements
3. Results
3.1. Immobilization of HRP
3.2. Immobilization of HSA
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kasemo, B. Biological surface science. Surf. Sci. 2002, 500, 656–677. [Google Scholar] [CrossRef]
- Bilek, M.M.M. Biofunctionalization of surfaces by energetic ion implantation: Review of progress on applications in implantable biomedical devicesand antibody microarrays. Appl. Surf. Sci. 2014, 310, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Pleshakova, T.O.; Kaysheva, A.L.; Shumov, I.D.; Ziborov, V.S.; Bayzyanova, J.M.; Konev, V.A.; Uchaikin, V.F.; Archakov, A.I.; Ivanov, Y.D. Detection of hepatitis C virus core protein in serum using aptamer-functionalized AFM chips. Micromachines 2019, 10, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tikhonov, A.A.; Savvateeva, E.N.; Chernichenko, M.A.; Maslennikov, V.V.; Sidorov, D.V.; Rubina, A.Y.; Kushlinskii, N.E. Analysis of Anti-Glycan IgG and IgM antibodies in colorectal cancer. Bull. Exp. Biol. Med. 2019, 166, 489–493. [Google Scholar] [CrossRef] [PubMed]
- Jurczak, P.; Witkowska, J.; Rodziewicz-Motowidło, S.; Lach, S. Proteins, peptides and peptidomimetics as active agents in implant surface functionalization. Adv. Coll. Interface Sci. 2020, 276, 102083. [Google Scholar] [CrossRef] [PubMed]
- Bayramoglu, G.; Arıca, M.Y. Enzymatic removal of phenol and p-chlorophenol in enzyme reactor: Horseradish peroxidase immobilized on magnetic beads. J. Hazard. Mater. 2008, 156, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Karami, F.; Ghorbani, M.; Alireza Sadeghi Mahoonak, A.S.; Khodarahmi, R. Fast, inexpensive purification of β-glucosidase from Aspergillus niger and improved catalytic/physicochemical properties upon the enzyme immobilization: Possible broad prospects for industrial applications. LWT Food Sci. Technol. 2020, 118, 108770. [Google Scholar] [CrossRef]
- Mohammadi, M.; Mokarrama, R.R.; Ghorbani, M.; Hamishehkar, H. Inulinase immobilized gold-magnetic nanoparticles as a magnetically recyclable biocatalyst for facial and efficient inulin biotransformation to high fructose syrup. Int. J. Biol. Macromol. 2019, 123, 846–855. [Google Scholar] [CrossRef]
- Furuya, T.; Kuroiwa, M.; Kino, K. Biotechnological production of vanillin using immobilized enzymes. J. Biotechnol. 2017, 243, 25–28. [Google Scholar] [CrossRef]
- Wang, J.; Lia, K.; Hea, Y.; Wang, Y.; Han, X.; Yan, Y. Enhanced performance of lipase immobilized onto Co2+-chelated magnetic nanoparticles and its application in biodiesel production. Fuel 2019, 255, 115794. [Google Scholar] [CrossRef]
- Meyers, S.R.; Khoo, X.; Huang, X.; Walsh, E.B.; Grinstaff, M.W.; Kenan, D.J. The development of peptide-based interfacial biomaterials for generating biological functionality on the surface of bioinert materials. Biomaterials 2009, 30, 277–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, S.-H.; Shim, J.; Yun, S.-H.; Moon, S.-H. Enzyme-catalyzed conversion of phenol by using immobilized horseradish peroxidase (HRP) in a membraneless electrochemical reactor. Appl. Catal. A Gen. 2008, 337, 66–72. [Google Scholar] [CrossRef]
- Basso, A.; Serban, S. Industrial applications of immobilized enzymes—A review. Mol. Catal. 2019, 479, 110607. [Google Scholar] [CrossRef]
- Archakov, A.I.; Ivanov, Y.D.; Lisitsa, A.V.; Zgoda, V.G. Biospecific irreversible fishing coupled with atomic force microscopy for detection of extremely low-abundant proteins. Proteomics 2009, 9, 1326–1343. [Google Scholar] [CrossRef]
- Ivanov, Y.D.; Pleshakova, T.O.; Kozlov, A.F.; Malsagova, K.A.; Krohin, N.V.; Shumyantseva, V.V.; Shumov, I.D.; Popov, V.P.; Naumova, O.V.; Fomin, B.I.; et al. SOI nanowire for the high-sensitive detection of HBsAg and α-fetoprotein. Lab Chip 2012, 12, 5104–5111. [Google Scholar] [CrossRef]
- Ivanov, Y.D.; Kaysheva, A.L.; Frantsuzov, P.A.; Pleshakova, T.O.; Krohin, N.V.; Izotov, A.A.; Shumov, I.D.; Uchaikin, V.F.; Konev, V.A.; Ziborov, V.S.; et al. Detection of hepatitis C virus core protein in serum by atomic force microscopy combined with mass spectrometry. Int. J. Nanomed. 2015, 10, 1597–1608. [Google Scholar]
- Truong, P.L.; Kim, B.W.; Sim, S.J. Rational aspect ratio and suitable antibody coverage of gold nanorod for ultra-sensitive detection of a cancer biomarker. Lab Chip 2012, 12, 1102–1109. [Google Scholar] [CrossRef]
- Ivanov, Y.D.; Bukharina, N.S.; Pleshakova, T.O.; Frantsuzov, P.A.; Andreeva, E.Y.; Kaysheva, A.L.; Zgoda, V.G.; Izotov, A.A.; Pavlova, T.I.; Ziborov, V.S.; et al. Atomic force microscopy fishing and mass spectrometry identification of gp120 on immobilized aptamers. Int. J. Nanomed. 2014, 9, 4659–4670. [Google Scholar]
- Ivanov, A.S.; Medvedev, A.; Ershov, P.; Molnar, A.; Mezentsev, Y.; Yablokov, E.; Kaluzhsky, L.; Gnedenko, O.; Buneeva, O.; Haidukevich, I.; et al. Protein interactomics based on direct molecular fishing on paramagnetic particles: Practical realization and further SPR validation. Proteomics 2014, 14, 2261–2274. [Google Scholar] [CrossRef]
- Pleshakova, T.O.; Shumov, I.D.; Ivanov, Y.D.; Malsagova, K.A.; Kaysheva, A.L.; Archakov, A.I. AFM-based technologies as the way towards the reverse Avogadro number. Biochem. Suppl. Ser. B Biomed. Chem. 2015, 9, 244–257. [Google Scholar] [CrossRef]
- Rissin, D.M.; Kan, C.W.; Campbell, T.G.; Howes, S.C.; Fournier, D.R.; Song, L.; Piech, T.; Patel, P.P.; Chang, L.; Rivnak, A.J.; et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol. 2010, 28, 595–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanov, Y.D.; Danichev, V.V.; Pleshakova, T.O.; Shumov, I.D.; Ziborov, V.S.; Krokhin, N.V.; Zagumenniy, M.N.; Ustinov, V.S.; Smirnov, L.P.; Archakov, A.I. Irreversible chemical AFM-based fishing for the detection of low-copied proteins. Biochem. Suppl. Ser. B Biomed. Chem. 2013, 7, 46–61. [Google Scholar] [CrossRef]
- Pleshakova, T.O.; Kaysheva, A.L.; Bayzyanova, J.М.; Anashkina, А.S.; Uchaikin, V.F.; Ziborov, V.S.; Konev, V.A.; Archakov, A.I.; Ivanov, Y.D. The detection of hepatitis c virus core antigen using AFM chips with immobolized aptamers. J. Virol. Methods 2018, 251, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Braga, P.C.; Ricci, D. Atomic Force Microscopy. Biology: Biomedical Methods and Applications. In Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2003; Volume 242, p. 382. [Google Scholar]
- Crampton, N.; Bonass, W.A.; Kirkham, J.; Thomson, N.H. Formation of aminosilane-functionalized mica for atomic force microscopy imaging of DNA. Langmuir 2005, 21, 7884–7891. [Google Scholar] [CrossRef] [PubMed]
- El Kirat, K.; Burton, I.; Dupres, V.; Dufrene, Y.F. Sample preparation procedures for biological atomic force microscopy. J. Microsc. 2005, 218, 199–207. [Google Scholar] [CrossRef]
- Shinohara, K.; Makida, Y. Direct observation of dynamic interaction between a functional group in a single SBR chain and an inorganic matter surface. Sci. Rep. 2018, 8, 13982. [Google Scholar] [CrossRef] [Green Version]
- Kolb, D.; Kolb, K.E. The chemistry of glass. J. Chem. Educ. 1979, 56, 604–608. [Google Scholar] [CrossRef]
- Limanskaya, L.A.; Limanskii, A.P. Compaction of single supercoiled DNA molecules adsorbed onto amino mica. Russ. J. Bioorganic Chem. 2006, 32, 444–459. [Google Scholar] [CrossRef]
- Lyubchenko, Y.L.; Gall, A.A.; Shlyakhtenko, L.S.; Harrington, R.E.; Jacobs, B.L.; Oden, P.I.; Lindsay, S.M. Atomic force microscopy imaging of double stranded DNA and RNA. J. Biomol. Struct. Dyn. 1992, 10, 589–606. [Google Scholar] [CrossRef]
- Lyubchenko, Y.L.; Shlyakhtenko, L.S.; Harrington, R.E.; Oden, P.I.; SMLindsay, S.M. Atomic force microscopy of long DNA: Imaging in air and under water. Proc. Natl. Acad. Sci. USA 1993, 90, 2137–2140. [Google Scholar] [CrossRef] [Green Version]
- Shlyakhtenko, L.S.; Gall, A.A.; Weimer, J.J.; Hawn, D.D.; Lyubchenko, Y.L. Atomic force microscopy imaging of dna covalently immobilized on a functionalized mica substrate. Biophys. J. 1999, 77, 568–576. [Google Scholar] [CrossRef] [Green Version]
- Shlyakhtenko, L.S.; Gall, A.A.; Lyubchenko, Y.L. Mica functionalization for imaging of DNA and protein-DNA complexes with atomic force microscopy. Methods Mol. Biol. 2013, 931. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Bash, R.; Yodh, J.G.; Hager, G.L.; Lohr, D.; Lindsay, S.M. Glutaraldehyde modified mica: A new surface for atomic force microscopy of chromatin. Biophys. J. 2002, 83, 3619–3625. [Google Scholar] [CrossRef] [Green Version]
- Ierardi, V.; Ferrera, F.; Millo, E.; Damonte, G.; Filaci, G.; Valbusa, U. Bioactive surfaces for antibody-antigen complex detection by Atomic Force Microscopy. J. Phys. Conf. Ser. 2013, 439, 012001. [Google Scholar] [CrossRef]
- Mattson, G.; Conklin, E.; Desai, S.; Nielander, G.; Savage, M.D.; Morgensen, S. A practical approach to crosslinking. Mol. Biol. Rep. 1993, 17, 167–183. [Google Scholar] [CrossRef]
- Stanković, V.; Đurđić, S.; Ognjanović, M.; Antić, B.; Kalcher, K.; Mutić, J.; Stanković, D.M. Anti-human albumin monoclonal antibody immobilized on EDC-NHS functionalized carboxylic graphene/AuNPs composite as promising electrochemical HSA immunosensor. J. Electroanal. Chem. 2020, 860, 113928. [Google Scholar] [CrossRef]
- Sam, S.; Touahir, L.; Andresa, J.S.; Allongue, P.; Chazalviel, J.-N.; Gouget-Laemmel, A.C.; de Villeneuve, C.H.; Moraillon, A.; Ozanam, F.; Gobouze, N.; et al. Semiquantitative Study of the EDC/NHS Activation of Acid Terminal Groups at Modified Porous Silicon Surfaces. Langmuir 2010, 26, 809–814. [Google Scholar] [CrossRef]
- Shikha, S.; Thakur, K.G.; Bhattacharyya, M.S. Facile fabrication of lipase to amine functionalized gold nanoparticles to enhance stability andactivity. RSC Adv. 2017, 7, 42845–42855. [Google Scholar] [CrossRef] [Green Version]
- Migneault, I.; Dartiguenave, C.; Bertrand, M.J.; Waldron, K.C. Glutaraldehyde: Behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. BioTechniques 2004, 37, 790–802. [Google Scholar] [CrossRef]
- Carvalho, F.; Paradiso, P.; Saramago, B.; Ferraria, A.M.; do Rego, A.M.B.; Fernandes, P. An integrated approach for the detailed characterization of an immobilized enzyme. J. Mol. Catal. B Enzym. 2016, 125, 64–74. [Google Scholar] [CrossRef]
- Hermanson, G.T. Bioconjugate Techniques, 3rd ed.; Academic Press: Cambridge MA, USA; Elsevier: Amsterdam, The Netherlands, 2013; p. 1200. [Google Scholar]
- Orrego, A.H.; Romero-Fernández, M.; del Carmen Millán-Linares, M.; del Mar Yust, M.; Guisán, J.M.; Rocha-Martin, J. Stabilization of Enzymes by Multipoint Covalent Attachment on Aldehyde-Supports: 2-Picoline Borane as an Alternative Reducing Agent. Catalysts 2018, 8, 333. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, D.S.; Mendes, A.A.; Adriano, W.S.; Goncalves, L.R.B.; Giordano, R.L.C. Multipoint covalent immobilization of microbial lipase on chitosan and agarose activated by different methods. J. Mol. Catal. B Enzym. 2008, 51, 100–109. [Google Scholar] [CrossRef]
- Karrasch, S.; Dolder, M.; Schabert, F.; Ramsden, J.; Engel, A. Covalent binding of biological samples to solid supports for scanning probe microscopy in buffer solution. Biophys. J. 1993, 65, 2437–2446. [Google Scholar] [CrossRef] [Green Version]
- Voskresenska, V.; Wilson, R.M.; Panov, M.; Tarnovsky, A.N.; Krause, J.A.; Vyas, S.; Winter, A.H.; Hadad, C.M. Photoaffinity labeling via nitrenium ion chemistry: Protonation of the nitrene derived from 4-amino-3-nitrophenyl azide to afford reactive nitrenium ion pairs. J. Am. Chem. Soc. 2009, 131, 11535–11547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surmanjit, J.; Chung, S.J. Recent advances in target characterization and identification by photoaffinity probes. Molecules 2013, 18, 10425–10451. [Google Scholar] [CrossRef] [Green Version]
- Dorman, G.; Prestwich, G.D. Benzophenone photophores in biochemistry. Perspect. Biochem. 1994, 33, 5661–5673. [Google Scholar] [CrossRef]
- Kim, D.; Herr, A.E. Protein immobilization techniques for microfluidic assays. Biomicrofluidics 2013, 7, 041501. [Google Scholar] [CrossRef] [Green Version]
- Chin, J.W.; Martin, A.B.; King, D.S.; Wang, L.; Schultz, P.G. Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli. Proc. Natl. Acad. Sci. USA 2002, 99, 11020–11024. [Google Scholar] [CrossRef] [Green Version]
- Williams, N.; Ackerman, S.H.; Coleman, P.S. Benzophenone-ATP: A photoaffinity label for the active site of ATPases. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1986; Volume 126, pp. 667–682. [Google Scholar]
- Prestwich, G.D.; Dorman, G.; Elliott, J.T.; Marecak, D.M.; Chaudhary, A. Benzophenone photoprobes for phosphoinositides, peptides and drugs. Photochem. Photobiol. 1997, 65, 222–234. [Google Scholar] [CrossRef]
- Tsai, H.; Doong, R.; Lin, C. A strategy for multi-protein-immobilization using N-succinimidyl 4-Benzoylbenzoic acid as the photolabile ligand. Anal. Sci./Suppl. 2001, 17, i269–i272. [Google Scholar] [CrossRef]
- Wu, X.; Tang Qi Liu, C.; Li, Q.; Guo, Y.; Yang, Y.; Lv, X.; Geng, L.; Deng, Y. Protein photoimmobilizations on the surface of quartz glass simply mediated by benzophenone. Appl. Surf. Sci. 2011, 257, 7415–7421. [Google Scholar] [CrossRef]
- Davies, P.F.; Rennke, H.G.; Cotran, R.S. Influence of molecular charge upon the endocytosis and intracellular fate of peroxidase activity in cultured arterial endothelium. J. Cell Sci. 1981, 49, 69–86. [Google Scholar] [PubMed]
- Welinder, K.G. Amino acid sequence studies of horseradish peroxidase. amino and carboxyl termini, cyanogen bromide and tryptic fragments, the complete sequence, and some structural characteristics of horseradish peroxidase C. Eur. J. Biochem. 1979, 96, 483–502. [Google Scholar] [CrossRef] [PubMed]
- Shannon, L.M.; Kay, E.; Lew, J.Y. Peroxidase isozymes from horseradish roots I. Isolation and physical properties. J. Biol. Chem. 1966, 241, 2166–2172. [Google Scholar]
- Tams, J.W.; Welinder, K.G. Mild chemical deglycosylation of horseradish peroxidase yields a fully active, homogeneous enzyme. Anal. Biochem. 1995, 228, 48–55. [Google Scholar] [CrossRef]
- Aibara, S.; Yamashua, H.; Mori, E.; Kato, M.; Morita, Y. Isolation and characterization of five neutral isoenzymes of horseradish peroxidase. J. Biochem. 1982, 92, 531–539. [Google Scholar] [CrossRef]
- Artimo, P.; Jonnalagedda, M.; Arnold, K.; Baratin, D.; Csardi, G.; de Castro, E.; Duvaud, S.; Flegel, V.; Fortier, A.; Gasteiger, E.; et al. ExPASy: SIB bioinformatics resource portal. Nucl. Acids Res. 2012, 40, W597–W603. [Google Scholar] [CrossRef]
- Carter, D.C.; Ho, J.X. Structure of serum albumin. Adv. Protein Chem. 1994, 45, 153–203. [Google Scholar]
- Yamada, K.; Yoshii, S.; Kumagai, S.; Fujiwara, I.; Nishio, K.; Okuda, M.; Matsukawa, N.; Yamashita, I. High-density and highly surface selective adsorption of protein–nanoparticle complexes by controlling electrostatic interaction. Jpn. J. Appl. Phys. 2006, 45, 4259–4264. [Google Scholar] [CrossRef]
- Huff, J.; Lynch, M.P.; Nettikadan, S.; Johnson, J.C.; Vengasandra, S.; Henderson, E. Label-free protein and pathogen detection using the atomic force microscope. J. Biomol. Screen. 2004, 9, 491–497. [Google Scholar] [CrossRef] [Green Version]
- Kaysheva, A.L.; Pleshakova, T.O.; Stepanov, A.A.; Ziborov, V.S.; Saravanabhavan, S.S.; Natesan, B.; Archakov, A.I.; Ivanov, Y.D. Immuno-MALDI MS dataset for improved detection of HCVcoreAg in sera. Data Brief. 2019, 25, 104240. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, Y.D.; Pleshakova, T.; Malsagova, K.; Kozlov, A.; Kaysheva, A.; Kopylov, A.; Izotov, A.; Andreeva, E.; Kanashenko, S.; Usanov, S.; et al. Highly sensitive protein detection by combination of atomic force microscopy fishing with charge generation and mass spectrometry analysis. FEBS J. 2014, 281, 4705–4717. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, Y.D.; Pleshakova, T.O.; Krohin, N.V.; Kaysheva, A.L.; Usanov, S.A.; Archakov, A.I. Registration of the protein with compact disk. Biosens. Bioelectron. 2013, 43, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Ignatenko, O.V.; Sjölander, A.; Hushpulian, D.M.; Kazakov, S.V.; Ouporov, I.V.; Chubar, T.A.; Poloznikov, A.A.; Ruzgas, T.; Tishkov, V.I.; Gorton, L.; et al. Electrochemistry of chemically trapped dimeric and monomeric recombinant horseradish peroxidase. Adv. Biosens. Bioelectron. 2013, 2, 25–34. [Google Scholar]
- UniProt, K.B. Available online: http://www.uniprot.org/ (accessed on 19 May 2020).
- Kowalczyk, D.; Marsault, J.-P.; Slomkowski, S. Atomic force microscopy of human serum albumin (HSA) on poly(styrene/acrolein) microspheres. Colloid Polym. Sci. 1996, 274, 513–519. [Google Scholar] [CrossRef]
- Chen, S.L.; Chen, C.T.; Kao, C.H. Acidification of deionized water by roots of intact rice seedings. Plant. Cell Physiol. 1990, 31, 569–573. [Google Scholar]
- Carré, A.; Lacarrière, V.; Birch, W. Molecular interactions between DNA and an aminated glass substrate. J. Coll. Interface Sci. 2003, 260, 49–55. [Google Scholar] [CrossRef]
- Mori, O.; Imae, T. AFM investigation of the adsorption process of bovine serum albumin on mica. Coll. Surf. B Biointerfaces 1997, 9, 31–36. [Google Scholar] [CrossRef]
- Lim, C.Y.; Owens, N.A.; Wampler, R.D.; Ying, Y.; Granger, J.H.; Porter, M.D.; Takahashi, M.; Shimazu, K. Succinimidyl ester surface chemistry: Implications of the competition between aminolysis and hydrolysis on covalent protein immobilization. Langmuir 2014, 30, 12868–12878. [Google Scholar] [CrossRef]
- Preston, G.W.; Wilson, A.J. Photo-induced covalent cross-linking for the analysis of biomolecular interactions. Chem. Soc. Rev. 2013, 42, 3289–3301. [Google Scholar] [CrossRef] [Green Version]
- Toh, C.R.; Fraterman, T.A.; Walker, D.A.; Bailey, R.C. A direct biophotolithographic method for generating substrates with multiple overlapping biomolecular patterns and gradients. Langmuir 2009, 25, 8894–8898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turgeon, A.J.; Harley, B.A.; Bailey, R.C. Benzophenone-based photochemical micropatterning of biomolecules to create model substrates and instructive biomaterials. In Methods in Cell Biology; Elsevier: Amsterdam, The Netherlands, 2014; Volume 121, pp. 231–242. [Google Scholar] [PubMed]
Experiment | Peptide Sequence | Parent Ion (m/z) | Fragment Ion (m/z) | RT* | Height | Width | Area | CE* |
---|---|---|---|---|---|---|---|---|
working | YYVNLEEQK | 593.293 | 760.384 | 8.97 | 570 | 0.07 | 2601 | 23.3 |
TPTIFDNK | 468.245 | 737.383 | 8.60 | 776 | 0.073 | 3833 | 19 | |
DTIVNELR | 480.261 | 630.357 | 9.57 | 7212 | 0.068 | 32205 | 16.5 | |
DAFGNANSAR | 511.736 | 689.333 | 4.93 | 2159 | 0.061 | 8683 | 22.1 | |
control | YYVNLEEQK | 593.293 | 859.452 | 0 | 0 | 0 | 0 | 23.3 |
TPTIFDNK | 468.245 | 737.383 | 0 | 0 | 0 | 0 | 19 | |
DTIVNELR | 480.261 | 630.357 | 0 | 0 | 0 | 0 | 16.5 | |
DAFGNANSAR | 511.736 | 689.333 | 0 | 0 | 0 | 0 | 22.1 |
Experiment | Peptide Sequence | Parent Ion (m/z) | Fragment Ion (m/z) | RT* | Width | Area | CE* |
---|---|---|---|---|---|---|---|
working | YYVNLEEQK | 593.293 | 760.384 | 8.69 | 0.071 | 140 | 23.3 |
TPTIFDNK | 468.245 | 737.383 | 8.339 | 0.071 | 230 | 19 | |
DTIVNELR | 480.261 | 630.357 | 9.364 | 0.079 | 3652 | 16.5 | |
DAFGNANSAR | 511.736 | 689.333 | 4.704 | 0.072 | 2308 | 22.1 | |
control | YYVNLEEQK | 593.293 | 859.452 | 0 | 0 | 0 | 23.3 |
TPTIFDNK | 468.245 | 737.383 | 8.355 | 0.011 | 3 | 19 | |
DTIVNELR | 480.261 | 630.357 | 9.34 | 0.088 | 17 | 16.5 | |
DAFGNANSAR | 511.736 | 689.333 | 0 | 0 | 0 | 22.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valueva, A.A.; Shumov, I.D.; Kaysheva, A.L.; Ivanova, I.A.; Ziborov, V.S.; Ivanov, Y.D.; Pleshakova, T.O. Covalent Protein Immobilization onto Muscovite Mica Surface with a Photocrosslinker. Minerals 2020, 10, 464. https://doi.org/10.3390/min10050464
Valueva AA, Shumov ID, Kaysheva AL, Ivanova IA, Ziborov VS, Ivanov YD, Pleshakova TO. Covalent Protein Immobilization onto Muscovite Mica Surface with a Photocrosslinker. Minerals. 2020; 10(5):464. https://doi.org/10.3390/min10050464
Chicago/Turabian StyleValueva, Anastasia A., Ivan D. Shumov, Anna L. Kaysheva, Irina A. Ivanova, Vadim S. Ziborov, Yuri D. Ivanov, and Tatyana O. Pleshakova. 2020. "Covalent Protein Immobilization onto Muscovite Mica Surface with a Photocrosslinker" Minerals 10, no. 5: 464. https://doi.org/10.3390/min10050464
APA StyleValueva, A. A., Shumov, I. D., Kaysheva, A. L., Ivanova, I. A., Ziborov, V. S., Ivanov, Y. D., & Pleshakova, T. O. (2020). Covalent Protein Immobilization onto Muscovite Mica Surface with a Photocrosslinker. Minerals, 10(5), 464. https://doi.org/10.3390/min10050464