Lithogeochemistry of the Mid-Ocean Ridge Basalts near the Fossil Ridge of the Southwest Sub-Basin, South China Sea
Abstract
:1. Introduction
2. Geological Setting
3. Sampling and Methods
3.1. Sampling
3.2. Analytical Methods
4. Results
4.1. Petrographic and Mineralogical Characteristics
4.2. Major Elements
4.3. Trace Elements
5. Discussion
5.1. Seawater Alteration
5.2. Fractional Crystallization
5.3. Constrain the Source Mantle
5.4. Mantle Melting
5.5. Magmatic Source
6. Conclusions
- (1)
- All Site U1433 MORBs and the bulk of Site U1434 MORBs belong to the sub-alkaline low-potassium tholeiitic basalt series. MORBs at IODP Sites U1433 and U1434 are all E-MORB type basalts, but Site U1434 is more enriched with incompatible elements than Site U1433.
- (2)
- MORBs at IODP site U1433 and U1434 are basically unaffected by seawater alteration, and the primary magma of both sites mainly undergone the fractional crystallization of olivine, accompanied by the relatively weak fractional crystallization of plagioclase and clinopyroxene. The different magma evolution between the two sites is mainly controlled by different degrees of partial melting at different spreading rates. The degree of melting of Site U1434 is lower than that of Site U1433.
- (3)
- The trace element characteristics of the MORBs at IODP Sites U1433 and U1434 show that the basaltic magmas might be mainly formed by low-pressure and high-level partial melting of spinel lherzolite, with the majority of the melting occurred shallower than the garnet stability field.
- (4)
- MORBs at Sites U1433 and U1434 may involve magma sources containing crust materials, and the magma source of the southwest sub-basin basalts may have been contaminated by lower continental crust and contributed by recycled oceanic crust components during the opening of the SCS.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ding, X.; Li, J.; Zheng, C.Q.; Huang, W.; Cui, R.Y.; Dou, Y.G.; Sun, Z.L. Chemical composition on the basalts on east pacific rise (1.5 N–1.5 S) and south mid-Atlantic ridge (13.2 S). Mar. Geol. Quat. Geol. 2014, 34, 57–66, (In Chinese with English Abstract). [Google Scholar]
- O’Hara, M.J. The bearing of phase equilibria studies in synthetic and natural systems on the origin of basic and ultrabasic rocks. Earth-Sci. Rev. 1968, 4, 69–133. [Google Scholar]
- Zhang, S.M.; Wang, F.Z. Basalts action on research geosphere deep-course and structural setting. Adv. Earth Sci. 2002, 17, 685–692, (In Chinese with English Abstract). [Google Scholar]
- Rubin, K.H.; Sinton, J.M. Inferences on mid-ocean ridge thermal and magmatic structure from MORB compositions. Earth Planet. Sci. Lett. 2007, 260, 257–276. [Google Scholar] [CrossRef]
- Zheng, J.P. Comparison of mantle-derived matierals from different spatiotemporal settings: Implications for destructive and accretional processes of the North China Craton. Chin. Sci. Bull. 2009, 54, 3397–3416. [Google Scholar] [CrossRef]
- Tu, K.; Flower, M.F.J.; Carlson, R.W.; Xie, G.H.; Chen, C.Y.; Zhang, M. Magmatism in the South China Basin 1. Isotopic and trace-element evidence for an endogenous Dupal mantle component. Chem. Geol. 1992, 97, 47–63. [Google Scholar] [CrossRef]
- Schluter, H.U.; Hinz, K.; Block, M. Tectono-stratigraphic terranes and detachment faulting of the South China Sea and Sulu Sea. Mar. Geol. 1996, 130, 39–78. [Google Scholar] [CrossRef]
- Yan, Q.S.; Shi, X.F.; Wang, K.S.; Bu, W.R.; Xiao, L. Major element, trace element, and Sr, Nd and Pb isotope studies of Cenozoic basalts from the South China Sea. Sci. China Ser. D Earth Sci. 2008, 51, 550–566. [Google Scholar] [CrossRef]
- Yan, Q.S.; Castillo, P.; Shi, X.F.; Wang, L.L.; Liao, L.; Ren, J.B. Geochemistry and petrogenesis of volcanic rocks from Daimao Seamount (South China Sea) and their tectonic implications. Lithos 2015, 2018–2019, 117–126. [Google Scholar] [CrossRef]
- Guan, D.L.; Ke, X.P.; Wang, Y. Basement structures of East and South China Seas and adjacent regions from gravity inversion. J. Asian Earth Sci. 2016, 117, 242–255. [Google Scholar] [CrossRef]
- Li, C.-F.; Lin, J.; Kulhanek, D.K.; Expedition 349 Scientists. Proceedings of the International Ocean Discovery Program. Available online: http://publications.iodp.org/proceedings/349/349.PDF (accessed on 18 April 2020).
- Koppers, A.A.P. On the 40Ar/39Ar Dating of low-Potassium Ocean Crust Basalt from IODP Expedition 349, South China Sea. Available online: https://ui.adsabs.harvard.edu/abs/2014AGUFM.T31E..03K/abstract (accessed on 18 April 2020).
- Zhang, L.; He, C.R.; Liu, Y.J.; Lin, J. Frictional properties of the South China Sea oceanic basalt and implications for strength of the Manila subduction seismogenic zone. Mar. Geol. 2017, 394, 16–29. [Google Scholar] [CrossRef]
- Zhang, G.L.; Luo, Q.; Zhao, J.; Jackson, M.G.; Guo, L.S.; Zhong, L.F. Geochemical nature of sub-ridge mantle and opening dynamics of the South China Sea. Earth Planet. Sci. Lett. 2018, 489, 145–155. [Google Scholar] [CrossRef]
- Zhang, G.L.; Sun, W.D.; Seward, G. Mantle Source and Magmatic Evolution of the Dying Spreading Ridge in the South China Sea. Geochem. Geophys. Geosyst. 2018, 19, 4385–4399. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Huang, X.L.; Xu, Y.G.; He, P.L. Plume-ridge interaction in the South China Sea: Thermometric evidence from Hole U1431E of IODP Expedition 349. Lithos 2019, 324, 466–478. [Google Scholar] [CrossRef]
- Xu, Y.G.; Wei, J.X.; Qiu, H.N.; Zhang, H.H.; Huang, X.L. Opening and evolution of the South China Sea constrained by studies on volcanic rocks: Preliminary results and a research design. Chin. Sci Bull. 2012, 57, 3150–3164. [Google Scholar] [CrossRef] [Green Version]
- Le, B.M.; Yang, T.; Gu, S.Y. Upper mantle and transition zone structure beneath Leizhou–Hainan region: Seismic evidence for a lower-mantle origin of the Hainan plume. J. Asian Earth Sci. 2015, 111, 580–588. [Google Scholar] [CrossRef]
- Fan, C.Y.; Xia, S.H.; Zhao, F.; Sun, J.L.; Cao, J.H.; Xu, H.L.; Wan, K.Y. New insights into the magmatism in the northern margin of the South China Sea: Spatial features and volume of intraplate seamounts. Geochem. Geophys. Geosyst. 2017, 18, 2216–2239. [Google Scholar] [CrossRef]
- Yang, S.Y.; Fang, N.Q. Geochemical variation of volcanic rocks from the South China Sea and neighboring land: Implication for magmatic process and mantle structure. Acta Oceanol. Sin. 2015, 34, 112–124. [Google Scholar] [CrossRef]
- Yan, Q.S.; Straub, S.; Shi, X.F. Hafnium isotopic constraints on the origin of late Miocene to Pliocene seamount basalts from the South China Sea and its tectonic implications. J. Asian Earth Sci. 2019, 171, 162–168. [Google Scholar] [CrossRef]
- Fan, J.K.; Zhao, D.P.; Dong, D.D. Subduction of a buoyant plateau at the Manila Trench: Tomographic evidence and geodynamic implications. Geochem. Geophys. Geosyst. 2016, 17, 571–586. [Google Scholar] [CrossRef] [Green Version]
- Ding, W.W.; Li, J.B.; Clift, P.D.; IODP Expedition 349 Scientists. Spreading dynamics and sedimentary process of the Southwest Sub-basin, South China Sea: Constraints from multi-channel seismic data and IODP Expedition 349. J. Asian Earth Sci. 2016, 115, 97–113. [Google Scholar] [CrossRef] [Green Version]
- Li, C.F.; Xu, X.; Lin, J.; Sun, Z.; Zhu, J.; Yao, Y.J.; Zhao, X.X.; Liu, Q.S.; Kulhanek, D.K.; Wang, J.; et al. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349. Geochem. Geophys. Geosyst. 2014, 15, 4958–4983. [Google Scholar] [CrossRef]
- Chen, Z.X.; Langmuir, C.H. Improving Data Precision and Accuracy with Short-Term and Long-Term Elemental Fractionation Corrections for Non-Matrix Matched Silicate Analysis by LA-ICP-MS. Available online: https://goldschmidtabstracts.info/2018/402.pdf (accessed on 18 April 2020).
- Xu, N.C.; Shen, J.L.; Zhang, J. Application of X-ray Diffraction, X-ray Fluorescence Spectrometry and Electron Microprobe in the Identification of Basalt. Rock Miner. Anal. 2015, 34, 75–81, (In Chinese with English Abstract). [Google Scholar]
- Sun, S.S.; Mcdonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Yang, S.Y. Geochemical Characteristics of Basalts from the Daimao Seamount in the South China Sea (SCS) and from the SCS’s Neighboring Lands: Implications for the Regional Tectonic Evolution. Ph.D. Thesis, China University of Geosciences, Beijing, China, 17 December 2015. (In Chinese with English Abstract). [Google Scholar]
- Jochum, K.P.; Verma, S.P. Extreme enrichment of Sb, Tl and other trace elements in altered MORB. Chem. Geol. 1996, 130, 289–299. [Google Scholar] [CrossRef]
- Jenner, F.E.; O’Neill, H.S.C. Analysis of 60 elements in 616 ocean floor basaltic glasses. Geochem. Geophys. Geosyst. 2012, 13, Q02005. [Google Scholar] [CrossRef] [Green Version]
- Li, M. Petrogeochemical characteristics comparison and implications for magmatic processes of the MORBs between EPR and SWIR. Ph.D. Thesis, Ocean University of China, Qingdao, China, 21 May 2014. (In Chinese with English Abstract). [Google Scholar]
- Niu, Y.L.; O’Hara, M.J. Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations. J. Geophys. Res.-Solid Earth 2003, 108, 2209. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.Z.; Liu, H.; Li, M.; Sun, X.X.; Lai, Z.Q.; Bian, Y.; Lin, X.H. Mantle Source Featrues of the Basalts and Magma Activity Along the Equatorial Regions in the East Pacific Rise. Period. Ocean. Univ. China 2018, 48, 63–75, (In Chinese with English Abstract). [Google Scholar]
- Wang, X.C.; Li, Z.X.; Li, X.H.; Li, J.; Liu, Y.; Long, W.G.; Zhou, J.B.; Wang, F. Temperature, Pressure, and Composition of the Mantle Source Region of Late Cenozoic Basalts in Hainan Island, SE Asia: A Consequence of a Young Thermal Mantle Plume close to Subduction Zones? J. Pet. 2012, 53, 177–233. [Google Scholar] [CrossRef]
- Greenough, J.D.; Dostal, J.; Mallory-Greenough, L.M. Igneous rock associations 5. Oceanic island volcanism II: Mantle processes. Geosci. Can. 2005, 32, 77–90. [Google Scholar]
- Furman, T.; Bryce, J.G.; Karson, J.; Iotti, A. East African Rift System (EARS) plume structure: Insights from quaternary mafic lavas of Turkana, Kenya. J. Pet. 2004, 45, 1069–1088. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.Y.; Fang, N.Q.; Yang, S.X.; Yao, B.C.; Liang, D.H. A Further Discussion on Formation Background and Tectonic Constraints of Igneous Rocks in Central Sub-Basin of the South China Sea. Earth Sci. J. China Univ. Geosci. 2011, 36, 455–470, (In Chinese with English Abstract). [Google Scholar]
- Niu, Y.L.; Batiza, R. An empirical method for calculating melt compositions produced beneath mid-ocean ridges: Application for axis and off-axis (seamounts) melting. J. Geophys. Res.-Solid Earth. 1991, 96, 21753–21777. [Google Scholar] [CrossRef] [Green Version]
- Niu, Y.L.; Waggoner, D.G.; Sinton, J.M.; Mahoney, J.J. Mantle source heterogeneity and melting processes beneath seafloor spreading centers: The East Pacific Rise, 18 degrees-19S. J. Geophys. Res. Solid Earth. 1996, 101, 27711–27733. [Google Scholar] [CrossRef] [Green Version]
- Choe, W.H.; Lee, J.I.; Lee, M.J.; Hur, S.D.; Jin, Y.K. Origin of E-MORB in a fossil spreading center: The Antarctic-Phoenix Ridge. Geosci. J. 2007, 11, 185–199. [Google Scholar] [CrossRef]
- Tian, L.Y.; Castillo, P.R.; Lonsdale, P.; Hahm, D. Petrology and Sr-Nd-Pb-He isotope geochemistry of postspreading lavas on fossil spreading axes off Baja California Sur, Mexico. Geochem. Geophys. Geosyst. 2011, 12. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, A.W. Chemical differentiation of the Earth: The relationships between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett. 1988, 90, 297–314. [Google Scholar] [CrossRef] [Green Version]
- Niu, Y.L.; Collerson, K.D.; Batiza, R.; Wendt, J.I.; Regelous, M. Origin of enriched-type mid-ocean ridge basalt at ridges far from mantle plumes: The East Pacific Rise at 11°20′N. J. Geophys. Res. Solid Earth 1999, 104, 7067–7087. [Google Scholar] [CrossRef] [Green Version]
- Rudnick, R.L.; Fountain, D.M. Nature and composition of the continental crust: A lower crustal perspective. Rev. Geophys. 1995, 33, 267–309. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, A.W.; Jochum, K.P.; Seufert, M.; White, W.M. Nb and Pb in oceanic basalts: New constraints on mantle evolution. Earth Planet. Sci. Lett. 1986, 79, 33–45. [Google Scholar] [CrossRef]
- Niu, Y.L.; Batiza, R. Trace element evidence from seamounts for recycled oceanic crust in the eastern Pacific mantle. Earth Planet. Sci. Lett. 1997, 148, 471–483. [Google Scholar] [CrossRef] [Green Version]
- McLennan, S.M. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem. Geophys. Geosyst. 2001, 2. [Google Scholar] [CrossRef]
Site | U1433 | U1434 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample No. | 349-U1433B-65R-2-W,96.0/98.0 | 349-U1433B-65R-3-W,72/74 | 349-U1433B-66R-1-W,117/119.6 | 349-U1433B-68R-3-W,74/76 | 349-U1433B-69R-2-W,60/62 | 349-U1433B-70R-2-W,29/32 | 349-U1433B-71R-1-W,74/77 | 349-U1433B-72R-1-W,81/84 | 349-U1433B-73R-2-W,104/107 | 349-U1433B-74R-1-W,66.5/68.5 | 349-U1433B-75R-3-W,28.5/30.5 | 349-U1434A-10R-CC-W,20/22 | 349-U1434A-11R-1-W,93.5/95.5 | 349-U1434A-12R-1-W,10/15 | 349-U1434A-13R-1-W,58.5/64.5 | 349-U1434A-14R-1-W,47/49 | 349-U1434A-15R-1-W,36.5/40.5 |
Top (Dep/m) | 797.96 | 799.72 | 807.17 | 823.74 | 827.60 | 831.29 | 835.74 | 840.81 | 846.04 | 850.67 | 856.29 | 278.20 | 284.94 | 294.10 | 298.59 | 303.47 | 308.37 |
Bottom (Dep/m) | 797.98 | 799.74 | 807.20 | 823.76 | 827.62 | 831.32 | 835.77 | 840.84 | 846.07 | 850.69 | 856.31 | 278.22 | 284.96 | 294.15 | 298.65 | 303.49 | 308.41 |
SiO2 | 50.13 | 49.68 | 49.10 | 50.32 | 50.43 | 51.46 | 50.12 | 50.53 | 50.46 | 50.45 | 50.08 | 50.98 | 51.27 | 50.42 | 49.46 | 50.74 | 51.26 |
TiO2 | 1.479 | 1.493 | 1.489 | 1.379 | 1.386 | 1.541 | 1.317 | 1.281 | 1.675 | 1.160 | 1.516 | 1.632 | 1.636 | 1.754 | 1.779 | 1.711 | 1.643 |
Al2O3 | 17.07 | 17.43 | 17.39 | 17.07 | 16.73 | 15.19 | 17.25 | 17.98 | 14.12 | 18.80 | 17.44 | 15.35 | 15.15 | 16.30 | 16.58 | 15.65 | 15.03 |
TFeO | 9.37 | 9.82 | 9.33 | 9.07 | 9.29 | 9.25 | 9.53 | 7.86 | 10.43 | 7.98 | 8.68 | 10.42 | 9.99 | 10.09 | 10.78 | 10.21 | 10.04 |
MnO | 0.171 | 0.203 | 0.143 | 0.160 | 0.189 | 0.165 | 0.176 | 0.183 | 0.161 | 0.140 | 0.135 | 0.175 | 0.162 | 0.151 | 0.152 | 0.172 | 0.160 |
MgO | 6.48 | 5.98 | 7.61 | 6.01 | 6.71 | 6.64 | 5.63 | 5.73 | 7.65 | 5.77 | 6.38 | 6.98 | 7.20 | 5.86 | 5.14 | 6.63 | 7.02 |
CaO | 11.21 | 11.54 | 11.15 | 12.11 | 11.40 | 11.68 | 11.97 | 12.46 | 11.95 | 11.81 | 12.09 | 10.68 | 10.55 | 11.48 | 11.71 | 10.97 | 10.77 |
Na2O | 3.06 | 2.92 | 3.00 | 2.95 | 2.85 | 3.02 | 3.13 | 3.04 | 2.63 | 3.04 | 2.78 | 2.71 | 2.80 | 2.84 | 3.10 | 2.79 | 2.76 |
K2O | 0.38 | 0.24 | 0.18 | 0.27 | 0.34 | 0.36 | 0.25 | 0.32 | 0.23 | 0.18 | 0.23 | 0.38 | 0.54 | 0.38 | 0.43 | 0.39 | 0.62 |
P2O5 | 0.17 | 0.18 | 0.13 | 0.15 | 0.15 | 0.17 | 0.14 | 0.13 | 0.16 | 0.12 | 0.14 | 0.22 | 0.19 | 0.22 | 0.36 | 0.21 | 0.19 |
Sum | 99.52 | 99.49 | 99.52 | 99.49 | 99.47 | 99.47 | 99.50 | 99.50 | 99.47 | 99.46 | 99.48 | 99.52 | 99.50 | 99.49 | 99.50 | 99.48 | 99.49 |
La | 5.507 | 5.284 | 4.390 | 4.429 | 4.647 | 5.333 | 5.073 | 4.701 | 5.351 | 5.392 | 5.374 | 6.957 | 6.883 | 7.656 | 8.412 | 7.345 | 6.844 |
Ce | 13.918 | 13.778 | 11.215 | 10.797 | 11.324 | 12.974 | 12.866 | 11.868 | 13.145 | 13.559 | 13.368 | 16.167 | 16.509 | 17.589 | 19.775 | 17.379 | 16.169 |
Pr | 2.267 | 2.243 | 1.864 | 1.779 | 1.866 | 2.067 | 2.028 | 1.881 | 2.059 | 2.148 | 2.135 | 2.538 | 2.569 | 2.783 | 2.962 | 2.647 | 2.528 |
Nd | 11.437 | 11.471 | 9.461 | 9.201 | 9.651 | 10.233 | 10.354 | 9.335 | 10.285 | 10.791 | 10.513 | 12.711 | 12.692 | 13.817 | 14.628 | 13.097 | 12.619 |
Sm | 3.565 | 3.574 | 2.981 | 3.029 | 3.166 | 3.266 | 3.411 | 2.959 | 3.214 | 3.312 | 3.281 | 3.904 | 3.941 | 4.278 | 4.483 | 4.078 | 3.860 |
Eu | 1.251 | 1.235 | 1.096 | 1.116 | 1.142 | 1.123 | 1.187 | 1.098 | 1.128 | 1.141 | 1.148 | 1.338 | 1.369 | 1.464 | 1.530 | 1.387 | 1.325 |
Gd | 4.750 | 4.631 | 3.956 | 4.054 | 4.168 | 4.402 | 4.528 | 3.947 | 4.183 | 4.372 | 4.258 | 5.011 | 5.074 | 5.586 | 5.814 | 5.183 | 4.974 |
Tb | 0.803 | 0.782 | 0.685 | 0.706 | 0.712 | 0.761 | 0.759 | 0.667 | 0.720 | 0.726 | 0.699 | 0.822 | 0.814 | 0.922 | 0.953 | 0.857 | 0.829 |
Dy | 5.344 | 5.197 | 4.451 | 4.527 | 4.763 | 5.053 | 5.074 | 4.567 | 4.647 | 4.934 | 4.762 | 5.509 | 5.479 | 6.138 | 6.306 | 5.681 | 5.495 |
Ho | 1.133 | 1.085 | 0.933 | 0.937 | 0.987 | 1.054 | 1.052 | 0.951 | 0.969 | 1.031 | 0.990 | 1.131 | 1.128 | 1.242 | 1.287 | 1.159 | 1.139 |
Er | 3.109 | 3.001 | 2.691 | 2.645 | 2.673 | 2.985 | 2.883 | 2.599 | 2.757 | 2.825 | 2.719 | 3.051 | 3.024 | 3.356 | 3.552 | 3.179 | 3.016 |
Yb | 3.022 | 2.919 | 2.654 | 2.517 | 2.551 | 2.803 | 2.790 | 2.558 | 2.751 | 2.746 | 2.612 | 2.844 | 2.833 | 3.154 | 3.255 | 2.968 | 2.850 |
Lu | 0.464 | 0.459 | 0.397 | 0.377 | 0.389 | 0.436 | 0.421 | 0.407 | 0.409 | 0.426 | 0.417 | 0.454 | 0.447 | 0.454 | 0.504 | 0.460 | 0.449 |
Y | 33.017 | 31.668 | 27.834 | 27.660 | 28.462 | 31.138 | 30.451 | 27.829 | 28.644 | 29.951 | 29.095 | 32.682 | 32.286 | 35.930 | 37.716 | 34.069 | 32.779 |
Zr | 117.226 | 111.758 | 96.892 | 88.110 | 91.743 | 105.145 | 105.145 | 102.612 | 102.135 | 107.664 | 105.006 | 115.902 | 116.203 | 117.994 | 125.045 | 118.944 | 114.376 |
Hf | 2.727 | 2.679 | 2.286 | 2.296 | 2.312 | 2.673 | 2.612 | 2.213 | 2.479 | 2.475 | 2.472 | 2.923 | 2.871 | 3.038 | 3.176 | 2.960 | 2.824 |
Nb | 6.353 | 5.920 | 4.339 | 5.264 | 5.517 | 6.408 | 6.354 | 5.752 | 6.512 | 6.742 | 6.669 | 9.309 | 9.725 | 9.456 | 9.807 | 9.697 | 9.012 |
Ta | 0.368 | 0.351 | 0.273 | 0.325 | 0.332 | 0.370 | 0.378 | 0.357 | 0.377 | 0.389 | 0.392 | 0.545 | 0.567 | 0.576 | 0.597 | 0.571 | 0.537 |
Ba | 34.851 | 32.642 | 36.935 | 32.166 | 45.156 | 50.968 | 42.726 | 46.982 | 52.253 | 46.036 | 48.574 | 69.331 | 81.401 | 51.942 | 45.105 | 68.240 | 84.401 |
Cu | 69.785 | 66.938 | 71.366 | 69.617 | 68.731 | 36.047 | 49.701 | 34.971 | 70.201 | 67.064 | 66.732 | 69.251 | 73.472 | 73.123 | 66.154 | 68.353 | 65.050 |
Sr | 183.171 | 190.519 | 171.815 | 170.398 | 161.476 | 153.807 | 160.727 | 197.300 | 192.404 | 180.088 | 182.659 | 171.646 | 173.741 | 175.531 | 180.829 | 174.347 | 226.310 |
V | 227.182 | 222.186 | 184.532 | 205.979 | 206.998 | 225.843 | 248.687 | 209.871 | 209.149 | 212.311 | 208.182 | 264.171 | 262.410 | 288.806 | 295.666 | 272.737 | 259.730 |
Zn | 80.197 | 79.998 | 68.116 | 74.794 | 81.469 | 76.372 | 89.479 | 85.085 | 73.523 | 73.606 | 72.240 | 91.722 | 91.459 | 95.738 | 92.152 | 96.144 | 88.858 |
Li | 25.931 | 14.096 | 7.222 | 20.769 | 9.844 | 30.919 | 11.026 | 22.772 | 6.738 | 6.128 | 8.063 | 13.794 | 21.665 | 9.033 | 12.614 | 13.959 | 14.642 |
Cr | 334.617 | 334.778 | 366.862 | 369.181 | 410.376 | 257.930 | 300.436 | 321.989 | 274.818 | 246.368 | 266.221 | 249.856 | 268.095 | 308.841 | 287.675 | 317.388 | 295.509 |
Ni | 151.460 | 149.100 | 181.292 | 121.733 | 143.017 | 139.380 | 92.436 | 80.518 | 78.832 | 76.186 | 86.010 | 111.288 | 127.348 | 139.329 | 111.571 | 131.808 | 119.342 |
Ga | 16.539 | 16.455 | 15.773 | 16.254 | 16.390 | 16.325 | 17.319 | 16.499 | 16.274 | 16.665 | 16.509 | 17.430 | 17.131 | 18.282 | 19.207 | 17.691 | 17.359 |
Rb | 7.197 | 2.769 | 3.049 | 5.253 | 3.851 | 6.023 | 4.050 | 5.464 | 3.744 | 1.657 | 3.312 | 6.382 | 8.156 | 4.906 | 6.931 | 6.060 | 12.823 |
Th | 0.472 | 0.435 | 0.317 | 0.381 | 0.392 | 0.572 | 0.554 | 0.417 | 0.523 | 0.504 | 0.506 | 0.758 | 0.774 | 0.808 | 0.823 | 0.804 | 0.719 |
U | 0.145 | 0.112 | 0.081 | 0.139 | 0.183 | 0.142 | 0.211 | 0.132 | 0.123 | 0.135 | 0.130 | 0.175 | 0.189 | 0.266 | 0.500 | 0.192 | 0.231 |
Pb | 0.761 | 0.752 | 0.659 | 0.617 | 0.573 | 0.766 | 0.801 | 0.582 | 0.597 | 1.027 | 0.703 | 0.757 | 0.812 | 0.842 | 0.755 | 0.791 | 0.733 |
Oxides | m1 | m2 | m3 | m4 |
---|---|---|---|---|
SiO2 | −9.5261 | 1.2242 | −0.0532 | 0 |
TiO2 | 6.9928 | −1.5294 | 0.1305 | −0.0039 |
Al2O3 | −3.7912 | 0.6477 | −0.0297 | 1.5876 × 10−5 |
FeO | 14.8703 | −2.9130 | 0.2100 | −0.0049 |
CaO | 0.7951 | 0.1405 | −0.0127 | 0 |
K2O | −0.1817 | 0.0091 | 0 | 0 |
Na2O | −0.8958 | 0.0796 | −0.0029 | 0 |
P2O5 | −0.094 | 0.005 | 0 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, K.; Wu, T.; Liu, X.; Chen, X.-G.; Li, C.-F. Lithogeochemistry of the Mid-Ocean Ridge Basalts near the Fossil Ridge of the Southwest Sub-Basin, South China Sea. Minerals 2020, 10, 465. https://doi.org/10.3390/min10050465
Sun K, Wu T, Liu X, Chen X-G, Li C-F. Lithogeochemistry of the Mid-Ocean Ridge Basalts near the Fossil Ridge of the Southwest Sub-Basin, South China Sea. Minerals. 2020; 10(5):465. https://doi.org/10.3390/min10050465
Chicago/Turabian StyleSun, Kai, Tao Wu, Xuesong Liu, Xue-Gang Chen, and Chun-Feng Li. 2020. "Lithogeochemistry of the Mid-Ocean Ridge Basalts near the Fossil Ridge of the Southwest Sub-Basin, South China Sea" Minerals 10, no. 5: 465. https://doi.org/10.3390/min10050465
APA StyleSun, K., Wu, T., Liu, X., Chen, X. -G., & Li, C. -F. (2020). Lithogeochemistry of the Mid-Ocean Ridge Basalts near the Fossil Ridge of the Southwest Sub-Basin, South China Sea. Minerals, 10(5), 465. https://doi.org/10.3390/min10050465