Gold Exploration in Two and Three Dimensions: Improved and Correlative Insights from Microscopy and X-Ray Computed Tomography
Abstract
:1. Introduction
2. Materials and Methods
2.1. High Resolution X-Ray Computed Tomography (XCT)
2.1.1. The XCT Thresholding Procedure for Gold in the Core Samples.
2.1.2. Calibration of the XCT Thresholding Procedure for Gold in the Core Samples
2.2. Thin and Polished Section Photo Montages
2.3. SEM Mapping
2.4. Fire Assay
3. Results
3.1. Thresholding and Quantification using XCT Data
3.1.1. Fire Assay to Calibrate XCT Threshold Values
3.2. Textural and Mineralogical Correlations between 2D and 3D Study Approaches
4. Discussion
4.1. Advantages of Correlative Approaches to Exploration: Case Study from the Manondo-Choma Mineralization (Malawi)
4.1.1. Geological Context
4.1.2. Correlated 2D and 3D Insights into Gold Mineralization at the Manondo-Choma Prospect
4.2. Recommendations for Further Development
- -
- Need for automated alignment algorithms based on optical image analysis methodologies to match 2D montages to their positioning in XYZ space. This will help as it will require minimal initial user input. The manual approach can take 4 h.
- -
- Need to develop software interfaces that allow XYZ positioned and orientated microstructural and mineralogical data (mapped in 3D space in XCT software) directly into common implicit and explicit geological modelling software.
- -
- Need to optimize voxel sizes to match fine grained gold mineralization.
- -
- Need to optimize the scanning parameters, or resolution of the sensors to better discern between different sulphide moieties using XCT technologies (and between gold and other dense minerals with high X-ray attenuation coefficients such as barite, galena, etc.).
- -
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ferguson, M. World Exploration Trends 2018; S&P Global Market Intelligence: New York, NY, USA, 2019. [Google Scholar]
- Phillips, G. Australian and global setting for gold in 2013. In Proceedings of the World Gold 2013, Brisbane, Australia, 26–29 September 2013. [Google Scholar]
- Gaboury, D. Parameters for the formation of orogenic gold deposits Parameters for the formation of orogenic gold deposits. Appl. Earth Sci. 2019, 128, 124–133. [Google Scholar] [CrossRef] [Green Version]
- Groves, D.I. Gold Deposits in Metamorphic Belts: Overview of Current Understanding, Outstanding Problems, Future Research, and Exploration Significance. Econ. Geol. 2003, 98, 1–29. [Google Scholar] [CrossRef]
- Augustin, J.; Gaboury, D. Multi-stage and multi-sourced fluid and gold in the formation of orogenic gold deposits in the world-class Mana district of Burkina Faso–Revealed by LA-ICP-MS analysis of pyrites and arsenopyrites. Ore Geol. Rev. 2019, 104, 495–521. [Google Scholar] [CrossRef]
- Goldfarb, R.; Groves, D.; Gardoll, S. Orogenic gold and geologic time: A global synthesis. Ore Geol. Rev. 2001, 18, 1–75. [Google Scholar] [CrossRef]
- Grooves, D. The crustal continuum model for late-Archaean lode-gold deposits of the Yilgarn Block, Western Australia. Miner. Depos. 1993, 374, 366–374. [Google Scholar] [CrossRef]
- Popov, O.; Talovina, I.; Lieberwirth, H.; Duryagina, A. Quantitative Microstructural Analysis and X-ray Computed Tomography of Ores and Rocks–Comparison of Results. Minerals 2020, 10, 129. [Google Scholar] [CrossRef] [Green Version]
- Asadi, H.H.; Voncken, J.H.L.; Kühnel, R.A.; Hale, M. Petrography, mineralogy and geochemistry of the Zarshuran Carlin-like gold deposit, northwest Iran. Miner. Deposita 2000, 35, 656–671. [Google Scholar] [CrossRef]
- Pašava, J.; Svojtka, M.; Jana, Ď.; Drábek, M.; Halodová, P.; Haluzová, E. Laser ablation ICPMS study of trace element chemistry in molybdenite coupled with scanning electron microscopy (SEM)—An important tool for identi fi cation of different types of mineralization. Ore Geol. Rev. 2016, 72, 874–895. [Google Scholar] [CrossRef]
- Stromberg, J.M.; Van Loon, L.L.; Gordon, R.; Woll, A.; Feng, R.; Schumann, D.; Banerjee, N.R. Applications of synchrotron X-ray techniques to orogenic gold studies; examples from the Timmins gold camp. Ore Geol. Rev. 2019, 104, 589–602. [Google Scholar] [CrossRef]
- Butler, I.B.Ł.; Nesbitt, R.W. Trace element distributions in the chalcopyrite wall of a black smoker chimney: Insights from laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS). Earth Planet Sci. 1999, 167, 335–345. [Google Scholar] [CrossRef]
- Godel, B. High-Resolution X-Ray Computed Tomography and Its Application to Ore Deposits: From Data Acquisition to Quantitative Three-Dimensional Measurements with Case Studies from Ni-Cu-PGE Deposits. Econ. Geol. 2013, 108, 2005–2019. [Google Scholar] [CrossRef]
- Kyle, J.R.; Ketcham, R.A. Application of high resolution X-ray computed tomography to mineral deposit origin, evaluation, and processing. Ore Geol. Rev. 2015, 65, 821–839. [Google Scholar] [CrossRef]
- Baker, D.; Mancini, L.; Polacci, M.; Higgins, M.; Gualda, G.A.R.; Hill, R.; Rivers, M. An introduction to the application of X-ray microtomography to the three-dimensional study of igneous rocks. Lithos 2012, 148, 262–276. [Google Scholar] [CrossRef]
- Fatima, A.; Venkatesh, A.S.; Mukherjee, R.; Agrawal, A.K.; Singh, B.; Sarkar, P.S.; Shripathi, T. 3D spatial distribution of ore mineral phases using high resolution synchrotron micro-computed tomography (μCT) combined with optical microscopy 3D spatial distribution of ore mineral phases using high resolution synchrotron micro-computed tomography (μCT) combined with optical microscopy. Appl. Radiat. Isot. 2019, 148, 49–59. [Google Scholar]
- Kyle, J.R.; Mote, A.S.; Ketcham, R.A. High resolution X-ray computed tomography studies of Grasberg porphyry Cu-Au ores, Papua, Indonesia. Miner. Deposita 2008, 43, 519–532. [Google Scholar] [CrossRef]
- Naudé, G.; Hoffman, J.; Theron, S.J.; Coetzer, G. The use of X-ray computed tomography in the characterisation of coal and associated char reductants. Miner. Eng. 2013, 52, 143–154. [Google Scholar] [CrossRef]
- Elangovan, P.; Hezel, D.C.; Howard, L.; Armstrong, R.; Abel, R.L. Computers & Geosciences PhaseQuant: A tool for quantifying tomographic data sets of geological specimens. Comput. Geosci. 2012, 48, 323–329. [Google Scholar]
- Díaz, D.; Hahn, D.W.; Molina, A. Quanti fi cation of gold and silver in minerals by laser-induced breakdown spectroscopy. Spectrochim. Acta Part B 2017, 136, 106–115. [Google Scholar] [CrossRef]
- Sayab, M.; Suuronen, J.-P.; Molnar, F.; Villanova, J.; Kallonen, A.; O’Brien, H.; Lahtinen, R.; Lehtonen, M. Three-dimensional textural and quantitative analyses of orogenic gold at the nanoscale. Geology 2016, 44, 739–742. [Google Scholar] [CrossRef]
- Maire, E.; Withers, P.J.; Maire, E.; Withers, P.J. Quantitative X-ray tomography. Int. Mater. Rev. 2013, 59, 1–43. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Lee, Y.; Zhang, J. A review of high-resolution X-ray computed tomography applied to petroleum geology and a case Study. Micron 2019, 124, 102702. [Google Scholar] [CrossRef] [PubMed]
- Le Roux, S.; Du Plessis, A.; Rozendaal, A. The quantitative analysis of tungsten ore using X-ray microCT: Case study. Comput. Geosci. 2015, 85, 75–80. [Google Scholar] [CrossRef]
- Godel, B.; Barnes, S.-J.; Maier, W.D. 3-D Distribution of Sulphide Minerals in the Merensky Reef (Bushveld Complex, South Africa) and the J-M Reef (Stillwater Complex, USA) and their Relationship to Microstructures Using X-Ray Computed Tomography. J. Pet. 2006, 47, 1853–1872. [Google Scholar] [CrossRef] [Green Version]
- ALS. ALS Geochemistry Service; ALS Laboratory: Johannesburg, South Africa, 2013. [Google Scholar]
- Du Plessis, A.; Le Roux, S.; Guelpa, A. The CT Scanner Facility at Stellenbosch University: An open access X-ray computed tomography laboratory. Nucl. Instrum. Methods Phys. Res. Sect. B 2016, 384, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Volume Graphics GmbH. VG Studio Max 3.1 User’s Manual; Volume Graphics GmbH: Heidelberg, Germany, 2001. [Google Scholar]
- Ketcham, R.A. Resolution-invariant measurements of small objects in polychromatic CT data. In Proceedings of the Developments in X-Ray Tomography XII. International Society for Optics and Photonics, San Diego, CA, USA, 8–12 March 2019; Volume 11113, p. 111130B. [Google Scholar] [CrossRef]
- Berger, M. XCOM: Photon Cross Sections Database. In National Bureau of Standards; Center for Radiation Research: Washington, DC, USA, 1998. [Google Scholar]
- Density of Minerals. Available online: www.webminerals.com (accessed on 23 March 2020).
- Bam, L. Developing Protocols for XCT Scanning of Dense Mineral Ore Samples with Applications to Geology and Minerals Processing. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 2019. [Google Scholar]
- Reeves, T.; Mah, P.; McDavid, W. Deriving Hounsfield units using grey levels in cone beam CT: A clinical application. Dentomaxillofacial Radiol. 2012, 41, 500–508. [Google Scholar] [CrossRef] [Green Version]
- Gazley, M.F.; Duclaux, G.; A Fisher, L.; De Beer, S.; Smith, P.; Taylor, M.; Swanson, R.; Hough, R.M.; Cleverley, J.S. 3D visualisation of portable X-ray fluorescence data to improve geological understanding and predict metallurgical performance at Plutonic Gold Mine, Western Australia. Appl. Earth Sci. 2011, 120, 88–96. [Google Scholar] [CrossRef]
- Cook, N.J.; Cook, N.J.; Courtney-Davies, L.; Slattery, A.D.; Verdugo-Ihl, M.R.; Courtney-Davies, L.; Gao, W. Advances and Opportunities in Ore Mineralogy. Minerals 2017, 7, 233. [Google Scholar] [CrossRef] [Green Version]
- Dominy, S.C.; Edgar, W.B. Approaches to reporting grade uncertainty in high nugget gold veins. Appl. Earth Sci. 2012, 121, 29–42. [Google Scholar] [CrossRef]
- Bloomfield, K.; Garson, M.S. The Geology of the Kirk Range-Lisungwe Valley Area; Ministry of Natural Resources. Geological Survey Department. Bulletin No.17; Government Printer: Zomba, Malawi, 1965. [Google Scholar]
- Chisambi, J.; von der Heyden, B. Primary gold mineralization at Manondo–Choma area, Kirk range, Southern Malawi. S. Afr. J. Geol. 2019, 122, 505–518. [Google Scholar] [CrossRef]
- De Waele, B.; Fitzsimons, I.; Wingate, M.T.D.; Tembo, F.; Mapani, B.; Belousova, E. The geochronological framework of the Irumide Belt: A prolonged crustal history along the margin of the Bangweulu Craton. Am. J. Sci. 2009, 309, 132–187. [Google Scholar] [CrossRef]
- De Waele, B.; Kampunzu, A.; Mapani, B.; Tembo, F. The Mesoproterozoic Irumide belt of Zambia. J. Afr. Earth Sci. 2006, 46, 36–70. [Google Scholar] [CrossRef]
- Boyd, R.; Nordgulen, O.; Thomas, R.J.; Bingen, B.; Bjerkgård, T.; Grenne, T.; Henderson, I.H.C.; Melezhik, V.; Often, M.; Sandstad, J.S.; et al. The Geology And Geochemistry Of The East African Orogen In Northeastern Mozambique. S. Afr. J. Geol. 2010, 113, 87–129. [Google Scholar] [CrossRef] [Green Version]
- Bingen, B.; Jacobs, J.; Viola, G.; Henderson, I.H.C.; Skår, Ø.; Boyd, R.; Thomas, R.J.; Solli, A.; Key, R.; Daudi, E. Geochronology of the Precambrian crust in the Mozambique belt in NE Mozambique, and implications for Gondwana assembly. Precambrian Res. 2009, 170, 231–255. [Google Scholar] [CrossRef]
- Czerewko, M.A.; Cripps, J.C.; Reid, J.M.; Duffell, C.G. Sulfur species in geological materials–sources and quantification. Cem. Concr. Compos. 2002, 25, 657–671. [Google Scholar] [CrossRef]
- Leißner, T.; Diener, A.; Löwer, E.; Ditscherlein, R.; Krüger, K.; Kwade, A.; Peuker, U.A. 3D ex-situ and in-situ X-ray CT process studies in particle technology–A perspective. Adv. Powder Technol. 2020, 31, 78–86. [Google Scholar] [CrossRef]
- De Samber, B.; Silversmit, G.; Evens, R.; De Schamphelaere, K.; Janssen, C.; Masschaele, B.; Van Hoorebeke, L.; Balcaen, L.; Vanhaecke, F.; Falkenberg, G.; et al. Three-dimensional elemental imaging by means of synchrotron radiation micro-XRF: Developments and applications in environmental chemistry. Anal. Bioanal. Chem. 2007, 390, 267–271. [Google Scholar] [CrossRef] [Green Version]
- Meneses, C.T.; Macedo, M.A.; Vicentin, F.C. LixMn2O4 thin films characterization by X-ray, electrical conductivity and XANES. Microelectron. J. 2003, 34, 561–563. [Google Scholar] [CrossRef]
Mineral | Density g/cm3 | X−Ray Attenuation Coefficient |
---|---|---|
Gold | 19.3 | 3.20 E00 |
Pyrite | 5.01 | 8.32 E−01 |
Pyrrhotite | 4.65 | 7.72 E−01 |
Chalcopyrite | 4.19 | 6.96 E−01 |
Sphalerite | 4.1 | 6.81 E−01 |
Garnet | 3.93 | 6.52 E−01 |
Amphibole | 3 | 4.98 E−01 |
Biotite | 2.8 | 4.65 E−01 |
Quartz | 2.65 | 4.40 E−01 |
Plagioclase | 2.61 | 4.33 E−01 |
Sample | Weight of Core (g) | Gold Volume (mm3) | Density (g/cm3) | Mass of Gold(g) | Gold Grade XCT (ppm) |
JJ 01 | 136.17 | 4.93 | 19.30 | 0.10 | 0.07 |
JJ 02 | 384.70 | 7.18 | 19.30 | 0.14 | 0.04 |
JJ 04 | 89.56 | 6.70 | 19.30 | 0.12 | 0.14 |
JJ 05 | 919.05 | 13.32 | 19.30 | 0.26 | 0.03 |
Sample | Weight of Core (g) | Sulphide Volume (cm3) | Avg. Density g/cm3 | Mass of Sulphides (g) | Concentration of Sulphides % |
JJ 01 | 136.17 | 0.26 | 4.48 | 1.15 | 0.84 |
JJ 02 | 384.7 | 1.17 | 4.48 | 5.26 | 1.37 |
JJ 04 | 89.56 | 0.72 | 4.48 | 3.24 | 3.62 |
JJ 05 | 919.05 | 0.34 | 4.48 | 1.52 | 0.17 |
Sample | Weight of Core (g) | Gold Volume (cm3) | Mass Gold (g) | Gold Grade XCT (ppm) | Gold Grade Fire Assay (ppm) |
JJ 01 | 50.56 | 0.0013 | 0.025 | 0.050 | 0.03 |
JJ 02 | 50.085 | 0.0008 | 0.015 | 0.031 | 0.02 |
JJ 04 | 60.175 | 0.00025 | 0.005 | 0.008 | 0.01 |
JJ 05 | 55.205 | 0.0006 | 0.012 | 0.021 | 0 |
JJ 01 | 50.56 | 0.0008 | 0.015 | 0.031 | 0.03 |
JJ 02 | 50.085 | 0.00054 | 0.010 | 0.021 | 0.02 |
JJ 04 | 60.175 | 0.0003 | 0.006 | 0.010 | 0.01 |
Sample | Gold Grade before Calibration (Quarter Core) XCT (ppm) | Gold Grade after Calibration (Quarter Core) XCT (ppm) | Gold Grade Fire Assay (Quarter Core) (ppm) | Gold Grade Whole Core after Calibration XCT (ppm) | % Difference between Calibrated Whole Core Gold XCT Data and Fire Assay |
JJ 01 | 0.05 | 0.031 | 0.03 | 0.02 | −0.04 |
JJ 02 | 0.031 | 0.021 | 0.02 | 0.004 | −0.04 |
JJ 04 | 0.008 | 0.01 | 0.01 | 0.043 | 0.03 |
JJ 05 | 0.021 | 0.01 | 0 | 0.01 | 0.01 |
2D Petrography | 3D Computed Tomography | Combined and 2D and 3D Correlative Approach |
---|---|---|
Apparent size | True size and orientation | True size |
Relative sense of motion (e.g., sinistral vs. dextral) associated with structural features | Absolute 3D orientation of major structures | Deeper understanding of orientation of major structures |
Resolution determined by lenses on microscope | 35 µm voxel resolution | Enables that 2 µm resolution can be spatially constrained within a 35 µm voxel size theoretical XCT model |
Observation of microstructural features e.g., mica fish, rotated porphyroblasts, mineral stretching, etc. | Only major structures observed, possible identification of mineral stretching in dense gold samples | Microstructural details can be positioned in 3D space given x, y, z coordinates |
Identification of individual mineral phases | Broad categorization of mineral phases based on X-ray attenuation coefficients | A better and more comprehensive understanding of mineral phases. Identified mineral phases can be quantified and positioned in 3D space |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chisambi, J.; von der Heyden, B.; Tshibalanganda, M.; Le Roux, S. Gold Exploration in Two and Three Dimensions: Improved and Correlative Insights from Microscopy and X-Ray Computed Tomography. Minerals 2020, 10, 476. https://doi.org/10.3390/min10050476
Chisambi J, von der Heyden B, Tshibalanganda M, Le Roux S. Gold Exploration in Two and Three Dimensions: Improved and Correlative Insights from Microscopy and X-Ray Computed Tomography. Minerals. 2020; 10(5):476. https://doi.org/10.3390/min10050476
Chicago/Turabian StyleChisambi, Joshua, Bjorn von der Heyden, Muofhe Tshibalanganda, and Stephan Le Roux. 2020. "Gold Exploration in Two and Three Dimensions: Improved and Correlative Insights from Microscopy and X-Ray Computed Tomography" Minerals 10, no. 5: 476. https://doi.org/10.3390/min10050476
APA StyleChisambi, J., von der Heyden, B., Tshibalanganda, M., & Le Roux, S. (2020). Gold Exploration in Two and Three Dimensions: Improved and Correlative Insights from Microscopy and X-Ray Computed Tomography. Minerals, 10(5), 476. https://doi.org/10.3390/min10050476