Probing the Dehydroxylation of Kaolinite and Halloysite by In Situ High Temperature X-ray Diffraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Processing
- (i)
- Kaolin and/or halloysite powders were mixed with deionized water and 0.2 g of dolaflux B11® (2 mL of a solution at 10 mass % of dolaflux) previously and kept to the overnight homogenization with roll-mixer;
- (ii)
- The so-obtained mixture was ground in a planetary mill (Fritsch) for 6 h at 180 rpm prior to the addition of the required amount of binder and plasticizer. Milling/mixing operation was performed for 16 h at 100 rpm in the planetary mill;
- (iii)
- The relevant slurry was gently set on the roll-mixer in order to remove the residual or entrapped bubbles. Before the tape casting operation, each slurry was sieved at 125 µm to eliminate the non-solubilized binder and plasticizer.
2.3. Methods
2.4. In Situ High-Temperature XRD
3. Results and Discussion
3.1. Raw Materials
3.2. Green Tapes
3.3. Kinetic of the Non-Isothermal Dehydroxylation
3.4. Study of the Dehydroxylation by In Situ XRD
4. Conclusions
- -
- The increasing shape index and polydispersity in kaolinite or halloysite grain size tended to favor higher temperatures to initiate the dehydroxylation, 425 °C for the KRG (monodisperse) < 475 °C for KCS (bimodal) < 500 °C for the halloysite clay (trimodal).
- -
- The increase of the shape index tended to induce a wide dehydroxylation range due to the limiting diffusion of inner hydroxyl groups. Dehydroxylation occurred from 425 °C to 650 °C for KRG (shape index of 40) and from 450 °C to 625 °C for KCS (shape index of 28).
- -
- During the dehydroxylation of the kaolinite sample, the initial texture appeared unchanged regardless of the differences in particle size distribution and shape index.
- -
- The FWHM values of H100, KRG100, and KRG50H500 decrease during dehydroxylation, which means that the structure defects decrease during heat treatment.
- -
- The coefficient of the thermal of kaolinite and halloysite clay mineral were 17 × 10−6 and 14 × 10−6 °C−1 in agreement with the literature. Indeed, the change observed on the CTE during the dehydroxylation appeared to correlate with the overlapping of the delamination and the dehydroxylation stages described in the literature. These transition temperatures comfort the influence of the shape index and the polydispersity of grain size distribution for the studied kaolinite and halloysite-based specimens.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lecomte-Nana, G.; Mokrani, A.; Tessier-Doyen, N.; Boussois, K.; Goure-Doubi, H. Texturation of model clay materials using tape casting and freezing. Ceram. Int. 2013, 39, 9047–9053. [Google Scholar] [CrossRef]
- Castelein, O.; Guinebretière, R.; Bonnet, J.P.; Blanchart, P. Shape, size and composition of mullite nanocrystals from a rapidly sintered kaolin. J. Eur. Ceram. Soc. 2001, 21, 2369–2376. [Google Scholar] [CrossRef]
- Houta, N.; Lecomte-Nana, G.-L.; Tessier-Doyen, N.; Peyratout, C. Dispersion of phyllosilicates in aqueous suspensions: Role of the nature and amount of surfactant. J. Colloid Interface Sci. 2014, 425, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Chartier, T.; Streicher, E.; Boch, P. Preparation and characterization of tape cast aluminum nitride substrates. J. Eur. Ceram. Soc. 1992, 9, 231–242. [Google Scholar] [CrossRef]
- Chartier, T.; Badev, A.; Abouliatim, Y.; Lebaudy, P.; Lecamp, L. Stereolithography process: Influence of the rheology of silica suspensions and of the medium on polymerization kinetics—Cured depth and width. J. Eur. Ceram. Soc. 2012, 32, 1625–1634. [Google Scholar] [CrossRef]
- Maqueda, C.; Partal, P.; Villaverde, J.; Perez-Rodriguez, J.L. Characterization of sepiolite-gel-based formulations for controlled release of pesticides. Appl. Clay Sci. 2009, 46, 289–295. [Google Scholar] [CrossRef]
- Bailey, S.W. Halloysite—A critical assessment. In Volume II: Surface Chemistry. Structure and Mixed Layering of Clays, Proceedings of the 9th international Clay Conference, Strasbourg, France, 28 August–2 September 1989; Institut de Géologie—Université Louis-Pasteur: Strasbourg, France, 1990; pp. 89–98. [Google Scholar]
- Johnson, S.L. Thermal Stability of Halloysite by High-Pressure Differential Thermal Analysis. Clays Clay Miner. 1990, 38, 477–484. [Google Scholar] [CrossRef]
- Mitra, G.B. Spiral Structure of 7 Å Halloysite: Mathematical Models. Clays Clay Miner. 2013, 61, 499–507. [Google Scholar] [CrossRef]
- Štubňa, I.; Trník, A.; Vozár, L. Thermomechanical and thermodilatometric analysis of green alumina porcelain. Ceram. Int. 2009, 35, 1181–1185. [Google Scholar] [CrossRef]
- Duran, C.; Kemal Tür, Y. Templated grain growth of textured mullite/zirconia composites. Mater. Lett. 2005, 59, 245–249. [Google Scholar] [CrossRef]
- Boussois, K.; Deniel, S.; Tessier-Doyen, N.; Chateigner, D.; Dublanche-Tixier, C.; Blanchart, P. Characterization of textured ceramics containing mullite from phyllosilicates. Ceram. Int. 2013, 39, 5327–5333. [Google Scholar] [CrossRef]
- Deniel, S.; Tessier-Doyen, N.; Dublanche-Tixier, C.; Chateigner, D.; Blanchart, P. Processing and characterization of textured mullite ceramics from phyllosilicates. J. Eur. Ceram. Soc. 2010, 30, 2427–2434. [Google Scholar] [CrossRef]
- Ptáček, P.; Kubátová, D.; Havlica, J.; Brandštetr, J.; Šoukal, F.; Opravil, T. Isothermal kinetic analysis of the thermal decomposition of kaolinite: The thermogravimetric study. Thermochim. Acta 2010, 501, 24–29. [Google Scholar] [CrossRef]
- Liu, Y.-F.; Liu, X.-Q.; Tao, S.-W.; Meng, G.-Y.; Sorensen, O.T. Kinetics of the reactive sintering of kaolinite-aluminum hydroxide extrudate. Ceram. Int. 2002, 28, 479–486. [Google Scholar] [CrossRef]
- Balek, V.; Murat, M. The emanation thermal analysis of kaolinite clay minerals. Thermochim. Acta 1996, 282–283, 385–397. [Google Scholar] [CrossRef]
- Castelein, O.; Soulestin, B.; Bonnet, J.P.; Blanchart, P. The infuence of heating rate on the thermal behaviour and mullite formation from a kaolin raw material. Ceram. Int. 2001, 27, 517–522. [Google Scholar] [CrossRef]
- Ptáček, P.; Kubátová, D.; Havlica, J.; Brandštetr, J.; Šoukal, F.; Opravil, T. The non-isothermal kinetic analysis of the thermal decomposition of kaolinite by thermogravimetric analysis. Powder Technol. 2010, 204, 222–227. [Google Scholar] [CrossRef]
- Gasparini, E.; Tarantino, S.C.; Ghigna, P.; Riccardi, M.P.; Cedillo-González, E.I.; Siligardi, C.; Zema, M. Thermal dehydroxylation of kaolinite under isothermal conditions. Appl. Clay Sci. 2013, 80–81, 417–425. [Google Scholar] [CrossRef]
- Ptáček, P.; Frajkorová, F.; Šoukal, F.; Opravil, T. Kinetics and mechanism of three stages of thermal transformation of kaolinite to metakaolinite. Powder Technol. 2014, 264, 439–445. [Google Scholar] [CrossRef]
- Chen, Y.-F.; Wang, M.-C.; Hon, M.-H. Phase transformation and growth of mullite in kaolin ceramics. J. Eur. Ceram. Soc. 2004, 24, 2389–2397. [Google Scholar] [CrossRef]
- Brindley, G.W.; Nakahira, M. The Kaolinite-Mullite Reaction Series: II, Metakaolin. J. Am. Ceram. Soc. 1959, 42, 314–318. [Google Scholar] [CrossRef]
- Frost, R.L.; Makó, É.; Kristóf, J.; Horváth, E.; Kloprogge, J.T. Mechanochemical Treatment of Kaolinite. J. Colloid Interface Sci. 2001, 239, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Kristóf, É. The Effect of Mechanical Treatment on the Crystal Structure and Thermal Behavior of Kaolinite. Clays Clay Miner. 1993, 41, 608–612. [Google Scholar] [CrossRef]
- Ding, S.; Zhang, L.; Ren, X.; Xu, B.; Zhang, H.; Ma, F. The Characteristics of Mechanical Grinding on Kaolinite Structure and Thermal Behavior. Energy Proc. 2012, 16, 1237–1240. [Google Scholar] [CrossRef] [Green Version]
- Frost, R.L.; Horváth, E.; Makó, É.; Kristóf, J.; Rédey, Á. Slow transformation of mechanically dehydroxylated kaolinite to kaolinite—An aged mechanochemically activated formamide-intercalated kaolinite study. Thermochim. Acta 2003, 408, 103–113. [Google Scholar] [CrossRef] [Green Version]
- White, C.E.; Provis, J.L.; Proffen, T.; Riley, D.P.; van Deventer, J.S.J. Combining density functional theory (DFT) and pair distribution function (PDF) analysis to solve the structure of metastable materials: The case of metakaolin. Phys. Chem. Chem. Phys. 2010, 12, 3239. [Google Scholar] [CrossRef] [PubMed]
- Andrini, L.; Moreira Toja, R.; Conconi, M.S.; Requejo, F.G.; Rendtorff, N.M. Halloysite nanotube and its firing products: Structural characterization of halloysite, metahalloysite, spinel type silicoaluminate and mullite. J. Electron Spectrosc. Relat. Phenom. 2019, 234, 19–26. [Google Scholar] [CrossRef]
- Prodanović, D.; Živković, Ž.B.; Radosavljević, S. Kinetics of the dehydroxylation and mullitization processes of the halloysite from the Farbani Potok locality, Serbia. Appl. Clay Sci. 1997, 12, 267–274. [Google Scholar] [CrossRef]
- Chahine, G.A.; Blanc, N.; Arnaud, S.; De Geuser, F.; Guinebretière, R.; Boudet, N. Advanced Non-Destructive in Situ Characterization of Metals with the French Collaborating Research Group D2AM/BM02 Beamline at the European Synchrotron Radiation Facility. Metals 2019, 9, 352. [Google Scholar] [CrossRef] [Green Version]
- Aparicio, P. Mineralogical Interference on Kaolinite Crystallinity Index Measurements. Clays Clay Miner. 1999, 47, 12–27. [Google Scholar] [CrossRef]
- Joussein, E.; Petit, S.; Decarreau, A. Une nouvelle méthode de dosage des minéraux argileux en mélange par spectroscopie IR. C. R. L’académie Sci. Ser. Iia Earth Planet. Sci. 2001, 332, 83–89. [Google Scholar] [CrossRef]
- Soro, N.S. Influence des Ions fer sur les Transformations Thermiques de la Kaolinite; Université de Limoges: Limoges, France, 2003. [Google Scholar]
- Chateigner, D. Combined Analysis; ISTE; Wiley: London, UK; Hoboken, NJ, USA, 2010; ISBN 978-1-84821-198-8. [Google Scholar]
- Колмогоров, А.Н. K Статистическoй Теoрии Кристаллизации Металлoв. Известия Рoссийскoй академии наук. Серия математическая 1937, 1, 355–359. [Google Scholar]
- Avrami, M. Kinetics of Phase Change. I General Theory. J. Chem. Phys. 1939, 7, 1103–1112. [Google Scholar] [CrossRef]
- Avrami, M. Kinetics of Phase Change. II Transformation-Time Relations for Random Distribution of Nuclei. J. Chem. Phys. 1940, 8, 212–224. [Google Scholar] [CrossRef]
- Avrami, M. Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III. J. Chem. Phys. 1941, 9, 177–184. [Google Scholar] [CrossRef]
- Johnson, W.A.; Mell, R.F. Reaction Kinetics in Processes of Nucleation and Growth. Trans. Am. Inst. Min. Metall. Pet. Eng. 1939, 135, 416–442. [Google Scholar]
- Ligero, R.A.; Vazquez, J.; Villares, P.; Jimenez-Garay, R. A study of the crystallization kinetics of some Cu-As-Te glasses. J. Mater. Sci. 1991, 26, 211–215. [Google Scholar] [CrossRef]
- Kissinger, H.E. Reaction Kinetics in Differential Thermal Analysis. Anal. Chem. 1957, 29, 1702–1706. [Google Scholar] [CrossRef]
- Killingley, J.S.; Day, S.J. Dehydroxylation kinetics of kaolinite and montmorillonite from Queensland Tertiary oil shale deposits. Fuel 1990, 69, 1145–1149. [Google Scholar] [CrossRef]
- Augis, J.A.; Bennett, J.E. Calculation of the Avrami parameters for heterogeneous solid-state reactions using a modification of the Kissinger method. J. Therm. Anal. 1978, 13, 283–292. [Google Scholar] [CrossRef]
- Ray, C.S.; Huang, W.; Day, D.E. Crystallization Kinetics of a Lithia-Silica Glass: Effect of Sample Characteristics and Thermal Analysis Measurement Techniques. J. Am. Ceram. Soc. 1991, 74, 60–66. [Google Scholar] [CrossRef]
- Lecomte-Nana, G.-L. Transformations Thermiques, Organisation Structurale et Frittage des Composés Kaolinite-Muscovite; Université de Limoges: Limoges, France, 2004. [Google Scholar]
- Saikia, N.; Sengupta, P.; Gogoi, P.K.; Borthakur, P.C. Kinetics of dehydroxylation of kaolin in presence of oil field effluent treatment plant sludge. Appl. Clay Sci. 2002, 22, 93–102. [Google Scholar] [CrossRef]
- McKinstry, H.A. Thermal expansion of clay minerals. Am. Mineral. 1965, 50, 212–222. [Google Scholar]
- Brindley, G.W.; Nakahira, M. The KaoIinite-Mullite Reaction Series: I, A Survey of Outstanding Problems. J. Am. Ceram. Soc. 1959, 42, 311–314. [Google Scholar] [CrossRef]
- Johns, W.D. High-Temperature phase changes in Kaolinites. Miner. Mag. 1953, 30, 1860198. [Google Scholar]
- Masson, O. Peakoc Profile Fitting Program. Available online: http://www.esrf.eu/computing/scientific/PEAKOC/MAIN.htm (accessed on 7 November 2018).
- Zhu, X.; Zhu, Z.; Lei, X.; Yan, C. Defects in structure as the sources of the surface charges of kaolinite. Appl. Clay Sci. 2016, 124–125, 127–136. [Google Scholar] [CrossRef]
- Joussein, E.; Petit, S.; Churchman, J.; Theng, B.; Righi, D.; Delvaux, B. Halloysite clay minerals—A review. Clay Miner. 2005, 40, 383–426. [Google Scholar] [CrossRef]
- Benazzouz, B.K.; Zaoui, A. Thermal behaviour and superheating temperature of Kaolinite from molecular dynamics. Appl. Clay Sci. 2012, 58, 44–51. [Google Scholar] [CrossRef]
Oxides | KCS | KRG | H | |||
---|---|---|---|---|---|---|
Technical Data Sheet (mass %) | XRF Data (±0.01 mass %) | Technical Data Sheet (mass %) | XRF Data (±0.01 mass %) | Technical Data Sheet (mass %) | XRF Data (±0.01 mass %) | |
Al2O3 | 38.8 | 39.5 | 40.0 | 35.5 | 37.2 | |
SiO2 | 45.8 | 44.1 | 44.8 | 49.5 | 47.5 | |
P2O5 | 0.05 | 0.03 | 0.15 | |||
Fe2O3 | 0.57 | 0.63 | 0.62 | 0.39 | 0.39 | |
ZrO2 | 0.02 | 0.03 | 0.02 | |||
K2O | Tr. | 0.04 | 0.05 | 0.01 | - | |
TiO2 | 0.55 | 0.58 | 0.41 | 0.09 | - | |
MgO | Tr. | 0.29 | ||||
Na2O | Tr. | 0.18 | - | 0.04 | ||
CaO | Tr. | 0.02 | ||||
Loss on Ignition at 1050 °C (%) | 14.8 | 14 | 13.8 | 14.8 | ||
Shape index | 28 | 40 | ||||
KCS | KRG | H | ||||
BET specific area (m2/g) | 9.3 | 6.6 | 26.3 | |||
ρ (g/cm3) | 2.61 | 2.59 | 2.54 | |||
Grain size (µm) | ||||||
d10 | 2 | 6 | 0.3 | |||
d50 | 5 | 9 | 2 | |||
d90 | 8 | 13 | 12 | |||
Particle size distribution | Polydisperse Modes (0.4 and 5 µm) | Monodisperse (10 µm) | Polydisperse Modes (0.5, 5 and 10 µm) | |||
Natural pH value | 6.9 | 5.7 | 4.5 |
Transformations Mechanisms | N | |
---|---|---|
Two-Dimensional (Plates) | One-Dimensional (Needles) | |
Bulk nucleation with varying number of nuclei Interface reaction Diffusion | 4 2.5 | 2 1.5 |
Bulk nucleation with constant number of nuclei Interface reaction Diffusion | 3 1.5 | 1 0.5 |
Surface nucleation Interface reaction Diffusion | 1 0.5 | 1 0.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daou, I.; Lecomte-Nana, G.L.; Tessier-Doyen, N.; Peyratout, C.; Gonon, M.F.; Guinebretiere, R. Probing the Dehydroxylation of Kaolinite and Halloysite by In Situ High Temperature X-ray Diffraction. Minerals 2020, 10, 480. https://doi.org/10.3390/min10050480
Daou I, Lecomte-Nana GL, Tessier-Doyen N, Peyratout C, Gonon MF, Guinebretiere R. Probing the Dehydroxylation of Kaolinite and Halloysite by In Situ High Temperature X-ray Diffraction. Minerals. 2020; 10(5):480. https://doi.org/10.3390/min10050480
Chicago/Turabian StyleDaou, Imane, Gisèle Laure Lecomte-Nana, Nicolas Tessier-Doyen, Claire Peyratout, Maurice François Gonon, and René Guinebretiere. 2020. "Probing the Dehydroxylation of Kaolinite and Halloysite by In Situ High Temperature X-ray Diffraction" Minerals 10, no. 5: 480. https://doi.org/10.3390/min10050480
APA StyleDaou, I., Lecomte-Nana, G. L., Tessier-Doyen, N., Peyratout, C., Gonon, M. F., & Guinebretiere, R. (2020). Probing the Dehydroxylation of Kaolinite and Halloysite by In Situ High Temperature X-ray Diffraction. Minerals, 10(5), 480. https://doi.org/10.3390/min10050480