An Improved Evaluation Strategy for Ash Analysis Using Scanning Electron Microscope Automated Mineralogy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. Insights Gathered by Generic Labelling
3.1.1. CaSO4
3.1.2. Quartz and Other Silicates
3.1.3. Ca-Dominant Material
3.1.4. High P-Material (>14 wt% P)
3.1.5. Fe- and Al-Rich Material
3.1.6. HCl Digestion of Thermochemically Pre-Treated SSA
3.2. Insights Gathered by Target Grouping of EDX-Spectra
3.2.1. Quartz and Silicates
3.2.2. P-Containing Material
3.2.3. Fe-Rich Material
3.2.4. Residues of Pre-Treated Digestions (Target Grouping)
3.2.5. HCl Digestion
3.2.6. Generic Labelling
3.3. Target Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions on the Review of the List of Critical Raw Materials for the EU and the Implementation of the Raw Materials Initiative. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52014DC0297 (accessed on 25 May 2020).
- Werther, J.; Ogada, T. Sewage sludge combustion. Prog. Energy Combust. Sci. 1999, 25, 55–116. [Google Scholar] [CrossRef]
- Fowlie, P.J.; Stepko, W.E. Sludge Incineration and Precipitant Recovery; Technical Report No 72-3-4; Pollution Control Branch, Ontario Ministry of the Environment: Toronto, ON, Canada, 1978.
- Liu, Y.; Kumar, S.; Ra, C.; Kwag, J.-H. Magnesium ammonium phosphate formation, recovery and its application as valuable resources: A review. J. Chem. Technol. Biotechnol. 2012, 88, 181–189. [Google Scholar] [CrossRef]
- Montag, D. Phosphorrückgewinnung bei der Abwasserreinigung—Entwicklung eines Verfahrens zur Integration in Kommunalen Kläranlagen. Ph.D. Thesis, RWTH Aaachen University, Aachen, Germany, 2008. [Google Scholar]
- Oliver, B.; Carey, J. Acid solubilization of sewage sludge and ash constituents for possible recovery. Water Res. 1976, 10, 1077–1081. [Google Scholar] [CrossRef]
- Scheidig, K.; Lehrmann, F.; Mallon, J.; Schaaf, M. Klärschlamm-Monoverbrennung mit integriertem Phosphor-Recycling. In Energie aus Abfall, 1st ed.; Thome-Kozmiensky, K.J., Beckmann, M., Eds.; TK Verlag: Neuruppin, Germany, 2013; pp. 1039–1046. [Google Scholar]
- Ottosen, L.; Jensen, P.E.; Kirkelund, G.M. Phosphorous recovery from sewage sludge ash suspended in water in a two-compartment electrodialytic cell. Waste Manag. 2016, 51, 142–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greb, V.G.; Guhl, A.; Weigand, H.; Schulz, B.; Bertau, M. Understanding phosphorus phases in sewage sludge ashes: A wet-process investigation coupled with automated mineralogy analysis. Miner. Eng. 2016, 99, 30–39. [Google Scholar] [CrossRef]
- Greb, V.-G.; Fröhlich, P.; Weigand, H.; Schulz, B.; Bertau, M. Phosphatrecycling aus Klärschlammaschen—Warum Phosphorsäure der Königsweg ist. In Rohstoffwirtschaft Und Gesellschaftliche Entwicklung—Die Nächsten 50 Jahre, 1st ed.; Kausch, P., Matschullat, J., Bertau, M., Mischo, H., Eds.; Springer: Heidelberg, Germany, 2016; pp. 154–196. [Google Scholar]
- Greb, V. Rückgewinnung Von Phosphor Aus Klärschlammaschen Durch Sauren Aufschluss Unter Berücksichtigung Einer Thermischen Vorbehandlung. Ph.D. Thesis, TU Bergakademie Freiberg, Freiberg, Germany, 2018. [Google Scholar]
- Fandrich, R.; Gu, Y.; Burrows, D.; Moeller, K. Modern SEM-based mineral liberation analysis. Int. J. Miner. Process. 2007, 84, 310–320. [Google Scholar] [CrossRef]
- Smith, D.G.W.; De St. Jorre, L. The MinIdent Data Base—Examples of applications to the Thor Lake rare metal deposits. In Proceedings of the Abstracts with Program, 14th General Meeting of International Mineralogical Association, Stanford, CA, USA, 13–18 July 1986; p. 234. [Google Scholar]
- Gu, Y. Automated scanning electron microscopy based mineral liberation analysis an introduction to JKMRC/FEI mineral liberation analyser. J. Miner. Mater. Charact. Eng. 2003, 2, 33–41. [Google Scholar]
- Lastra, R. Seven practical application cases of liberation analysis. Int. J. Miner. Process. 2007, 84, 337–347. [Google Scholar] [CrossRef]
- Schulz, B.; Merker, G.; Gutzmer, J. Automated SEM Mineral Liberation Analysis (MLA) with Generically Labelled EDX Spectra in the Mineral Processing of Rare Earth Element Ores. Minerals 2019, 9, 527. [Google Scholar] [CrossRef] [Green Version]
- Ayling, B.; Rose, P.; Zemach, E.; Drakos, P.; Petty, S. QEMSCAN (Quantitative Evaluation of Minerals by Scanning Electron Microscopy): Capability and application to fracture characterization in geothermal systems. AGU Fall Meet. Abstr. 2012, 1158. [Google Scholar] [CrossRef]
- Ma, Y.; Stopic, S.; Gronen, L.; Friedrich, B. Recovery of Zr, Hf, Nb from eudialyte residue by sulfuric acid dry digestion and water leaching with H2O2 as a promoter. Hydrometallurgy 2018, 181, 206–214. [Google Scholar] [CrossRef]
- DüMV, Verordnung über das Inverkehrbringen von Düngemitteln, Bodenhilfsstoffen, Kultursubstraten und Pflanzenhilfsmitteln (Düngemittelverordnung–DüMV), 5 December 2012, BGBl. I, 2482 last amendment by article 1 of the ordinance of 27 May 2015, BGBl. I, 886. Available online: https://www.gesetze-im-internet.de/d_mv_2012/D%C3%BCMV.pdf (accessed on 25 May 2020).
- Pavón, S.; Guhl, A.C.; Pätzold, C.; Bertau, M. Verfahren zur Behandlung von Flugasche und Ascherückstand zur Phosphorsäuregewinnung. In Proceedings of the 1st Annual abonocare® Conference, Leipzig, Germany, 18 March 2020. [Google Scholar]
- Fang, L.; Li, J.-S.; Donatello, S.; Cheeseman, C.; Wang, Q.; Poon, C.S.; Tsang, D.C. Recovery of phosphorus from incinerated sewage sludge ash by combined two-step extraction and selective precipitation. Chem. Eng. J. 2018, 348, 74–83. [Google Scholar] [CrossRef]
- Leigh, G.; Sutherland, D.; Gottlieb, P. Confidence limits for liberation measurements. Miner. Eng. 1993, 6, 155–161. [Google Scholar] [CrossRef]
- Tolosana-Delgado, R.; Mueller, U.; Boogaart, K.G.V.D. Geostatistics for Compositional Data: An Overview. Math. Geol. 2018, 51, 485–526. [Google Scholar] [CrossRef]
Group | Number of Spectra | Comment |
---|---|---|
<1% P | 13 | often mixed spectra |
1–5% P | 9 | On average, composed of 9.66 distinct elements |
5–10% P | 4 | On average, composed of 9.75 distinct elements |
10–15% P | 4 | On average, composed of 7 distinct elements |
>15% P | 2 | On average, composed of 6 distinct elements |
3 key | 3 | completely removed by acid digestion, not present in residues; on average, 7.33 distinct elements |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guhl, A.C.; Greb, V.-G.; Schulz, B.; Bertau, M. An Improved Evaluation Strategy for Ash Analysis Using Scanning Electron Microscope Automated Mineralogy. Minerals 2020, 10, 484. https://doi.org/10.3390/min10050484
Guhl AC, Greb V-G, Schulz B, Bertau M. An Improved Evaluation Strategy for Ash Analysis Using Scanning Electron Microscope Automated Mineralogy. Minerals. 2020; 10(5):484. https://doi.org/10.3390/min10050484
Chicago/Turabian StyleGuhl, Andrea C., Valentin-G. Greb, Bernhard Schulz, and Martin Bertau. 2020. "An Improved Evaluation Strategy for Ash Analysis Using Scanning Electron Microscope Automated Mineralogy" Minerals 10, no. 5: 484. https://doi.org/10.3390/min10050484
APA StyleGuhl, A. C., Greb, V. -G., Schulz, B., & Bertau, M. (2020). An Improved Evaluation Strategy for Ash Analysis Using Scanning Electron Microscope Automated Mineralogy. Minerals, 10(5), 484. https://doi.org/10.3390/min10050484