Comparison of Geochemical and Mineralogical Characteristics of Palaeogene Oil Shales and Coals from the Huangxian Basin, Shandong Province, East China
Abstract
:1. Introduction
2. Geological Setting
3. Sampling and Analytical Techniques
4. Results
4.1. Proximate and Ultimate Analyses
4.2. Geochemistry
4.2.1. Major-Element Oxides
4.2.2. Trace Elements
4.3. Mineralogical Composition
4.3.1. Minerals in the C1 Coals
4.3.2. Minerals in the OS2 Oil Shales
5. Discussion
5.1. Provenance
5.2. Depositional Environment
5.2.1. Palaeosalinity
5.2.2. Palaeoredox
5.3. Analcime, Albite and Boron
5.3.1. Analcime and Albite
5.3.2. Analcime and Boron
6. Mineralogical and Geochemical Characteristics of An Example “Marine Oil Shales” for Comparison with Those from the Huanxian Basin
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Yen, T.F.; Chilingarian, G.V. Oil Shale; Elsevier Scientific Publishing Company: New York, NY, USA, 1976; ISBN 044-441-408-8. [Google Scholar]
- Goodarzi, F. Comparison of the geochemistry of lacustrine oil shales of Mississippian age from Nova Scotia and New Brunswick, Canada. Int. J. Coal Geol. 2020, 220, 103398. [Google Scholar] [CrossRef]
- Cook, A.C.; Sherwood, N.R. Classification of oil shales, coals and other organic-rich rocks. Org. Geochem. 1991, 17, 211–222. [Google Scholar] [CrossRef]
- International Committee for Coal Petrology (ICCP). The new vitrinite classification (ICCP system 1994). Fuel 1998, 77, 349–358. [Google Scholar] [CrossRef]
- Hutton, A.C. Petrographic classification of oil shales. Int. J. Coal Geol. 1987, 8, 203–231. [Google Scholar] [CrossRef]
- Dai, S.; Bechtel, A.; Eble, C.F.; Flores, R.M.; French, D.; Graham, I.T.; Hood, M.M.; Hower, J.C.; Korasidish, V.A.; Moore, T.A.; et al. Recognition of peat depositional environments in coal: A review. Int. J. Coal Geol. 2020, 219, 103383. [Google Scholar] [CrossRef]
- Ward, C.R. Analysis and significance of mineral matter in coal seams. Int. J. Coal Geol. 2002, 50, 135–168. [Google Scholar] [CrossRef]
- Finkelman, R.B.; Dai, S.; French, D. The importance of minerals in coal as the hosts of chemical elements: A review. Int. J. Coal Geol. 2019, 212, 103251. [Google Scholar] [CrossRef]
- Dai, S.; Finkelman, R.B. Coal as a promising source of critical elements: Progress and future prospects. Int. J. Coal Geol. 2018, 186, 155–164. [Google Scholar] [CrossRef]
- McLennan, S.M.; Hemming, S.; McDaniel, D.K.; Hanson, G.N.; Johnsson, M.J.; Basu, A. Geochemical approaches to sedimentation, provenance, and tectonics. Processes Controlling the Composition of Clastic Sediments. Spec. Papers-Geol. Soc. Am. 1993, 284, 21–40. [Google Scholar]
- Tao, S.; Xu, Y.; Tang, D.; Xu, H.; Li, S.; Chen, S.; Liu, W.; Cui, Y.; Gou, M. Geochemistry of the Shitoumei oil shale in the Santanghu Basin, Northwest China: Implications for paleoclimate conditions, weathering, provenance and tectonic setting. Int. J. Coal Geol. 2017, 184, 42–56. [Google Scholar] [CrossRef]
- Xu, S.; Dong, Q.; Yan, L.; Yu, W.; Du, J.; Hou, G. The Characteristics and the Formation Mechanism of the Oil Shale in Huangxian Faulted Basin, Shandong Province. J. Jilin Univ. (Earth Sci. Ed.) 2006, 36, 954–958. (In Chinese) [Google Scholar]
- Lv, D.; Wang, D.; Li, Z.; Liu, H.; Li, Y. Depositional environment, sequence stratigraphy and sedimentary mineralization mechanism in the coal bed- and oil shale-bearing succession: A case from the Paleogene Huangxian Basin of China. J. Pet. Sci. Eng. 2017, 148, 32–51. [Google Scholar] [CrossRef]
- Sun, Y.-Z.; Wang, B.-S.; Lin, M.-Y. Maceral and geochemical characteristics of coal seam 1 and oil shale 1 in fault-controlled Huangxian Basin, China. Org. Geochem. 1998, 29, 583–591. [Google Scholar] [CrossRef]
- Lv, D.; Li, Z.; Wang, D.; Li, Y.; Liu, H.; Liu, Y.; Wang, P. Sedimentary Model of Coal and Shale in the Paleogene Lijiaya Formation of the Huangxian Basin: Insight from Petrological and Geochemical Characteristics of Coal and Shale. Energy Fuels 2019, 33, 10442–10456. [Google Scholar] [CrossRef]
- Cai, J.; Wang, B.; Gong, J. Tectonic characteristics of the Huangxian Basin. Coal Geol. Explor. 1982, 2, 21–25. (In Chinese) [Google Scholar]
- Li, X.-H.; Fan, H.-R.; Zhang, Y.-W.; Hu, F.-F.; Yang, K.-F.; Liu, X.; Cai, Y.-C.; Zhao, K.-D. Rapid exhumation of the northern Jiaobei Terrane, North China Craton in the Early Cretaceous: Insights from Al-in-hornblende barometry and U-Pb geochronology. J. Asian Earth Sci. 2018, 160, 365–379. [Google Scholar] [CrossRef]
- Chen, H.; Sun, S. Lithofacies and depositional environments of the Tertiary coal-bearing series in Huangxian Basin, Shandong Province. Acta Petrol. Sin. 1988, 2, 50–58. (In Chinese) [Google Scholar]
- State Administration for Market Regulation of China, Standardization Administration of China. Chinese National Standard GB/T212-2008, Proximate Analysis of Coal; Standand Press of China: Beijing, China, 2008. (In Chinese) [Google Scholar]
- Dai, S.; Wang, X.; Zhou, Y.; Hower, J.C.; Li, D.; Chen, W.; Zhu, X.; Zou, J. Chemical and mineralogical compositions of silicic, mafic, and alkali tonsteins in the late Permian coals from the Songzao Coalfield, Chongqing, Southwest China. Chem. Geol. 2011, 282, 29–44. [Google Scholar] [CrossRef]
- Dai, S.; Song, W.; Zhao, L.; Li, X.; Hower, J.C.; Ward, C.R.; Wang, P.; Li, T.; Zheng, X.; Seredin, V.V.; et al. Determination of Boron in Coal Using Closed-Vessel Microwave Digestion and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Energy Fuels 2014, 28, 4517–4522. [Google Scholar] [CrossRef]
- Taylor, J.C. Computer programs for standardless quantitative analysis of minerals using the full powder diffraction profile. Powder Diffr. 1991, 6, 2–9. [Google Scholar] [CrossRef] [Green Version]
- State Administration for Market Regulation of China, Standardization Administration of China. Chinese Standard Method GB/T 15224.1-2018. Classification for Quality of Coal-Part 1: Ash; Standand Press of China: Beijing, China, 2018. (In Chinese) [Google Scholar]
- Chou, C.-L. Sulfur in coals: A review of geochemistry and origins. Int. J. Coal Geol. 2012, 100, 1–13. [Google Scholar] [CrossRef]
- American Society for Testing and Materials (ASTM). ASTM Standard D388-18. Standard Classification of Coals by Rank; ASTM International: West Conshohocken, PA, USA, 2018. [Google Scholar]
- Dai, S.; Ren, D.; Chou, C.-L.; Finkelman, R.B.; Seredin, V.V.; Zhou, Y. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. Int. J. Coal Geol. 2012, 94, 3–21. [Google Scholar] [CrossRef]
- Ketris, M.P.; Yudovich, Y.E. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. Int. J. Coal Geol. 2009, 78, 135–148. [Google Scholar] [CrossRef]
- Dai, S.; Wang, P.; Ward, C.R.; Tang, Y.; Song, X.; Jiang, J.; Hower, J.C.; Li, T.; Seredin, V.V.; Wagner, N.J.; et al. Elemental and mineralogical anomalies in the coal-hosted Ge ore deposit of Lincang, Yunnan, southwestern China: Key role of N2–CO2-mixed hydrothermal solutions. Int. J. Coal Geol. 2015, 152, 19–46. [Google Scholar] [CrossRef]
- Dai, S.; Hower, J.C.; Finkelman, R.B.; Graham, I.T.; French, D.; Ward, C.R.; Eskenazy, G.; Wei, Q.; Zhao, L. Organic associations of non-mineral elements in coal: A review. Int. J. Coal Geol. 2020, 218, 103347. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell: Oxford, UK, 1985; p. 312. Available online: https://www.osti.gov/biblio/6582885 (accessed on 29 May 2020).
- Dai, S.; Graham, I.T.; Ward, C.R. A review of anomalous rare earth elements and yttrium in coal. Int. J. Coal Geol. 2016, 159, 82–95. [Google Scholar] [CrossRef]
- Yan, X.; Dai, S.; Graham, I.T.; He, X.; Shan, K.; Liu, X. Determination of Eu concentrations in coal, fly ash and sedimentary rocks using a cation exchange resin and inductively coupled plasma mass spectrometry (ICP-MS). Int. J. Coal Geol. 2018, 191, 152–156. [Google Scholar] [CrossRef]
- Kortenski, J.; Kostova, I. Occurrence and morphology of pyrite in Bulgarian coals. Int. J. Coal Geol. 1996, 29, 273–290. [Google Scholar] [CrossRef]
- Kizilstem, L.Y.; Minaeva, L.C. Proiskhozhdenije framboidalnikh form pyrita. Dokl. Acad. Nauk SSSR 1972, 206, 1187–1189. [Google Scholar]
- Farrand, M. Framboidal sulphides precipitated synthetically. Miner. Depos. 1970, 5, 237–247. [Google Scholar] [CrossRef]
- Ward, C.R. Analysis, origin and significance of mineral matter in coal: An updated review. Int. J. Coal Geol. 2016, 165, 1–27. [Google Scholar] [CrossRef]
- Dai, S.; Li, T.; Jiang, Y.; Ward, C.R.; Hower, J.C.; Sun, J.; Liu, J.; Song, H.; Wei, J.; Li, Q.; et al. Mineralogical and geochemical compositions of the Pennsylvanian coal in the Hailiushu mine, Daqingshan Coalfield, Inner Mongolia, China: Implications of sediment-source region and acid hydrothermal solutions. Int. J. Coal Geol. 2015, 137, 92–110. [Google Scholar] [CrossRef]
- Dai, S.; Hower, J.C.; Ward, C.R.; Guo, W.; Song, H.; O’Keefe, J.M.K.; Xie, P.; Hood, M.M.; Yan, X. Elements and phosphorus minerals in the middle Jurassic inertinite-rich coals of the Muli Coalfield on the Tibetan Plateau. Int. J. Coal Geol. 2015, 144, 23–47. [Google Scholar] [CrossRef]
- Hayashi, K.-I.; Fujisawa, H.; Holland, H.D.; Ohmoto, H. Geochemistry of ∼1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochim. Cosmochim. Acta 1997, 61, 4115–4137. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, Z.; Wang, L.; Xu, Y.; Liu, J. Mineralogical and Geochemical Compositions of the Lopingian Coals and Carbonaceous Rocks in the Shugentian Coalfield, Yunnan, China: With Emphasis on Fe-Bearing Minerals in a Continental-Marine Transitional Environment. Minerals 2017, 7, 170. [Google Scholar] [CrossRef] [Green Version]
- Winchester, J.A.; Floyd, P.A. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 1977, 20, 325–343. [Google Scholar] [CrossRef] [Green Version]
- Spiro, B.F.; Liu, J.; Dai, S.; Zeng, R.; Large, D.; French, D. Marine derived 87Sr/86Sr in coal, a new key to geochronology and palaeoenvironment: Elucidation of the India-Eurasia and China-Indochina collisions in Yunnan, China. Int. J. Coal Geol. 2019, 215, 103304. [Google Scholar] [CrossRef]
- Makeen, Y.M.; Abdullah, W.H.; Ayinla, H.A.; Shan, X.; Liang, Y.; Su, S.; Noor, N.M.; Hasnan, H.K.; Asiwaju, L. Organic geochemical characteristics and depositional setting of Paleogene oil shale, mudstone and sandstone from onshore Penyu Basin, Chenor, Pahang, Malaysia. Int. J. Coal Geol. 2019, 207, 52–72. [Google Scholar] [CrossRef]
- Dinur, D.; Spiro, B.; Aizenshtat, Z. The distribution and isotopic composition of sulfur in organic-rich sedimentary rocks. Chem. Geol. 1980, 31, 37–51. [Google Scholar] [CrossRef]
- Dai, S.; Hou, X.; Ren, D.; Tang, Y. Surface analysis of pyrite in the No. 9 coal seam, Wuda Coalfield, Inner Mongolia, China, using high-resolution time-of-flight secondary ion mass-spectrometry. Int. J. Coal Geol. 2003, 55, 139–150. [Google Scholar] [CrossRef]
- Chou, C.-L. Geologic factors affecting the abundance, distribution, and speciation of sulfur in coals. In Geology of Fossil Fuels, Proceedings of the 30th International Geological Congress: Part B; Yang, Q., Ed.; VSP: Utrecht, The Netherlands, 1997; Volume 18, pp. 47–57. ISBN 906764238X. [Google Scholar]
- Medunic’, G.; Radenovic’, A.; Bajramovic’, M.; Švec, M.; Tomac, M. Once grand, now forgotten: What do we know about the superhigh-organic-sulphur Raša coal? Rud.-Geološko-Naft. Zb. 2016, 31, 27–45. [Google Scholar] [CrossRef] [Green Version]
- Gayer, R.A.; Rose, M.; Dehmer, J.; Shao, L. Impact of sulphur and trace element geochemistry on the utilization of a marine-influenced coal—Case study from the South Wales Variscan foreland basin. Int. J. Coal Geol. 1999, 40, 151–174. [Google Scholar] [CrossRef]
- Spears, D.A. The geochemistry and mineralogy of high-S coals, with examples mainly from the East Pennines Coalfield in Yorkshire and Nottinghamshire, UK: An overview. Proc. Yorks. Geol. Soc. 2015, 60, 204–226. [Google Scholar] [CrossRef]
- Turner, B.R.; Richardson, D. Geological controls on the sulphur content of coal seams in the Northumberland Coalfield, Northeast England. Int. J. Coal Geol. 2004, 60, 169–196. [Google Scholar] [CrossRef]
- Dai, S.; Yang, J.; Ward, C.R.; Hower, J.C.; Liu, H.; Garrison, T.M.; French, D.; O’Keefe, J.M.K. Geochemical and mineralogical evidence for a coal-hosted uranium deposit in the Yili Basin, Xinjiang, northwestern China. Ore Geol. Rev. 2015, 70, 1–30. [Google Scholar] [CrossRef]
- Jones, B.; Manning, D.A.C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem. Geol. 1994, 111, 111–129. [Google Scholar] [CrossRef]
- Lewan, M.D. Factors controlling the proportionality of vanadium to nickel in crude oils. Geochim. Cosmochim. Acta 1984, 48, 2231–2238. [Google Scholar] [CrossRef]
- Rimmer, S.M. Geochemical paleoredox indicators in Devonian–Mississippian black shales, Central Appalachian Basin (USA). Chem. Geol. 2004, 206, 373–391. [Google Scholar] [CrossRef]
- Galarraga, F.; Reategui, K.; Martïnez, A.; Martínez, M.; Llamas, J.F.; Márquez, G. V/Ni ratio as a parameter in palaeoenvironmental characterisation of nonmature medium-crude oils from several Latin American basins. J. Pet. Sci. Eng. 2008, 61, 9–14. [Google Scholar] [CrossRef]
- Hatch, J.R.; Leventhal, J.S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, USA. Chem. Geol. 1992, 99, 65–82. [Google Scholar] [CrossRef]
- Finkelman, R.B.; Palmer, C.A.; Wang, P. Quantification of the modes of occurrence of 42 elements in coal. Int. J. Coal Geol. 2018, 185, 138–160. [Google Scholar] [CrossRef]
- Querol, X.; Whateley, M.K.G.; Fernández-Turiel, J.L.; Tuncali, E. Geological controls on the mineralogy and geochemistry of the Beypazari lignite, central Anatolia, Turkey. Int. J. Coal Geol. 1997, 33, 255–271. [Google Scholar] [CrossRef]
- Hay, R.L.; Sheppard, R.A. Occurrence of zeolites in sedimentary rocks: An overview. Rev. Mineral. Geochem. 2001, 45, 217–234. [Google Scholar] [CrossRef]
- Campbell, A.S.; Fyfe, W.S. Analcime-albite equilibria. Am. J. Sci. 1965, 263, 807–816. [Google Scholar] [CrossRef]
- Qiu, N.; Zuo, Y.; Zhou, X.; Li, C. Geothermal regime of the Bohai offshore area, Bohai Bay Basin, North China. Energy Explor. Exploit. 2010, 28, 327–350. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Zhu, H.; Xu, C.; Yang, X.; Du, X.; Wang, Q.; Qiao, J. Pore fluid evolution influenced by volcanic activities and related diagenetic processes in a rift basin: Evidence from the Paleogene medium-deep reservoirs of Huanghekou Sag, Bohai Bay Basin, China. Geofluids 2017, 2017, 1–16. [Google Scholar] [CrossRef]
- Ruppert, L.F.; Stanton, R.W.; Cecil, C.B.; Eble, C.F.; Dulong, F.T. Effects of detrital influx in the Pennsylvanian Upper Freeport peat swamp. Int. J. Coal Geol. 1991, 17, 95–116. [Google Scholar] [CrossRef]
- Moore, F.; Esmaeili, A. Mineralogy and geochemistry of the coals from the Karmozd and Kiasar coal mines, Mazandaran province, Iran. Int. J. Coal Geol. 2012, 96, 9–21. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Zhou, Y.; Chou, C.-L.; Wang, X.; Zhao, L.; Zhu, X. Mineralogy and geochemistry of a superhigh-organic-sulfur coal, Yanshan Coalfield, Yunnan, China: Evidence for a volcanic ash component and influence by submarine exhalation. Chem. Geol. 2008, 255, 182–194. [Google Scholar] [CrossRef]
- Zhao, L.; Ward, C.R.; French, D.; Graham, I.T. Mineralogy of the volcanic-influenced Great Northern coal seam in the Sydney Basin, Australia. Int. J. Coal Geol. 2012, 94, 94–110. [Google Scholar] [CrossRef]
- Dai, S.; Luo, Y.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Zhao, L.; Liu, S.; Zhao, C.; Tian, H.; Zou, J. Revisiting the late Permian coal from the Huayingshan, Sichuan, southwestern China: Enrichment and occurrence modes of minerals and trace elements. Int. J. Coal Geol. 2014, 122, 110–128. [Google Scholar] [CrossRef]
- Dai, S.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Xing, Y.; Zhang, W.; Song, W.; Wang, P. Enrichment of U–Se–Mo–Re–V in coals preserved within marine carbonate successions: Geochemical and mineralogical data from the Late Permian Guiding Coalfield, Guizhou, China. Miner. Depos. 2014, 50, 159–186. [Google Scholar] [CrossRef]
- Bohor, B.F.; Gluskoter, H.J. Boron in illite as an indicator of paleosalinity of Illinois coals. J. Sediment. Res. 1973, 43, 945–956. [Google Scholar] [CrossRef]
- Goodarzi, F.; Swaine, D.J. The influence of geological factors on the concentration of boron in Australian and Canadian coals. Chem. Geol. 1994, 118, 301–318. [Google Scholar] [CrossRef]
- Dai, S.; Ji, D.; Ward, C.R.; French, D.; Hower, J.C.; Yan, X.; Wei, Q. Mississippian anthracites in Guangxi Pprovince, southern China: Petrological, mineralogical, and rare earth element evidence for high-temperature solutions. Int. J. Coal Geol. 2018, 197, 84–114. [Google Scholar] [CrossRef]
- Zhao, L.; Dai, S.; Nechaev, V.P.; Nechaeva, E.V.; Graham, I.T.; French, D.; Sun, J. Enrichment of critical elements (Nb-Ta-Zr-Hf-REE) within coal and host rocks from the Datanhao mine, Daqingshan Coalfield, northern China. Ore Geol. Rev. 2019, 111, 102951. [Google Scholar] [CrossRef]
- Eskenazy, G.; Delibaltova, D.; Mincheva, E. Geochemistry of boron in Bulgarian coals. Int. J. Coal Geol. 1994, 25, 93–110. [Google Scholar] [CrossRef]
- Lyons, P.C.; Palmer, C.A.; Bostick, N.H.; Fletcher, J.D.; Dulong, F.T.; Brown, F.W.; Brown, Z.A.; Krasnow, M.R.; Romankiw, L.A. Chemistry and origin of minor and trace elements in vitrinite concentrates from a rank series from the eastern United States, England, and Australia. Int. J. Coal Geol. 1989, 13, 481–527. [Google Scholar] [CrossRef]
- Guo, W.; Dai, S.; Nechaev, V.P.; Nechaeva, E.V.; Wei, G.; Finkelman, R.B.; Spiro, B.F. Geochemistry of Palaeogene coals from the Fuqiang Mine, Hunchun Coalfield, northeastern China: Composition, provenance, and relation to the adjacent polymetallic deposits. J. Geochem. Explor. 2019, 196, 192–207. [Google Scholar] [CrossRef]
- Dai, S.; Liu, J.; Ward, C.R.; Hower, J.C.; Xie, P.; Jiang, Y.; Madison, M.H.; Jennifer, M.K.O.; Song, H. Petrological, geochemical, and mineralogical compositions of the low-Ge coals from the Shengli Coalfield, China: A comparative study with Ge-rich coals and a formation model for coal-hosted Ge ore deposit. Ore Geol. Rev. 2015, 71, 318–349. [Google Scholar] [CrossRef]
- Bouska, V.; Pesek, J. Boron in the aleuropelites of the Bohemian Massif. In Proceedings of the European Clays groups Meeting. 5, Prague, Czech Republic, 31 August 1983; pp. 147–155. [Google Scholar]
- Dai, S.; Zhang, W.; Ward, C.R.; Seredin, V.V.; Hower, J.C.; Li, X.; Song, W.; Wang, X.; Kang, H.; Zheng, L.; et al. Mineralogical and geochemical anomalies of Late Permian coals from the Fusui Coalfield, Guangxi Province, southern China: Influences of terrigenous materials and hydrothermal fluids. Int. J. Coal Geol. 2013, 105, 60–84. [Google Scholar] [CrossRef]
- Dai, S.; Zhang, W.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Song, W.; Wang, X.; Li, X.; Zhao, L.; Kang, H.; et al. Factors controlling geochemical and mineralogical compositions of coals preserved within marine carbonate successions: A case study from the Heshan Coalfield, southern China. Int. J. Coal Geol. 2013, 109, 77–100. [Google Scholar] [CrossRef]
- Spiro, B.; Dinur, D.; Aizenshtat, Z. Evaluation of source, environments of deposition and diagenesis of some israeli “oil shales”—N-alkanes, fatty acids, tetrapyrroles and kerogen. Chem. Geol. 1983, 39, 189–214. [Google Scholar] [CrossRef]
- Spiro, B. Bacterial sulphate reduction and calcite precipitation in hypersaline deposition of bituminous shales. Nature 1977, 269, 235–237. [Google Scholar] [CrossRef]
- Spiro, B.; Welte, D.H.; Rullkötter, J.; Schaefer, R.G. Asphalts, oils, and bituminous rocks from the dead sea area—A geochemical correlation study. AAPG Bull. 1983, 67, 1163–1175. [Google Scholar] [CrossRef]
Samples | Thickness | M | Ad | VMd,mmf | Ro,ran | St,d | Ndaf | Cdaf | Hdaf | GCVim,MMf |
---|---|---|---|---|---|---|---|---|---|---|
LJ1-R | 20 | 5.42 | 80.25 | nd | nd | 1.27 | nd | nd | nd | nd |
LJ1-1 | 10 | 13.60 | 19.00 | 42.88 | 0.32 | 0.53 | 2.72 | 77.94 | 6.34 | 25.625 |
LJ1-2 | 20 | 13.70 | 7.14 | 41.87 | 0.38 | 0.57 | 2.71 | 78.05 | 6.64 | 26.324 |
LJ1-3 | 20 | 13.80 | 10.60 | 43.19 | nd | 0.57 | 2.64 | 77.77 | 6.71 | 25.072 |
LJ1-4 | 20 | 14.70 | 5.52 | 39.37 | 0.37 | 0.59 | 2.55 | 77.83 | 6.68 | 24.545 |
U2-2-1 | 30 | 8.07 | 13.19 | nd | 0.35 | 0.79 | 2.54 | 78.59 | 7.46 | 31.090 |
U2-2-2 | 30 | 1.68 | 48.98 | nd | nd | 1.17 | 1.65 | 71.25 | 8.34 | 29.742 |
U2-2-3 | 30 | 3.13 | 34.87 | nd | nd | 0.73 | 1.88 | 76.13 | 8.70 | 32.332 |
U2-2-4 | 30 | 2.0 | 37.77 | nd | nd | 1.13 | 1.50 | 73.32 | 8.66 | 31.106 |
U2-2-5 | 30 | 5.44 | 55.02 | nd | nd | 1.10 | 2.11 | 67.38 | 6.99 | 22.436 |
U2-2-6 | 30 | 8.06 | 25.48 | nd | 0.33 | 0.72 | 2.70 | 76.53 | 7.23 | 29.581 |
U2-2-7 | 20 | 6.71 | 42.08 | nd | nd | 0.62 | 2.60 | 75.67 | 8.09 | 30.187 |
U2-1-1 | 30 | 4.2 | 66.50 | nd | nd | 0.99 | 1.90 | 65.36 | 9.06 | 25.031 |
U2-1-2 | 20 | 4.35 | 66.56 | nd | nd | 0.85 | 1.84 | 67.18 | 9.09 | 26.638 |
U2-1-3 | 15 | 3.83 | 69.07 | nd | nd | 1.00 | 2.00 | 63.26 | 8.09 | 23.103 |
U2-1-4 | 10 | 3.52 | 72.60 | nd | nd | 1.43 | 1.95 | 60.62 | 7.70 | 21.757 |
U2-1-5 | 30 | 4.34 | 65.98 | nd | nd | 1.12 | 2.03 | 62.82 | 7.67 | 22.668 |
U2-1-F | 20 | 4.05 | 77.06 | nd | nd | 1.19 | nd | nd | nd | nd |
Sample | LOI | SiO2 | TiO2 | Al2O3 | Fe2O3 | MnO | MgO | CaO | Na2O | K2O | P2O5 | Al2O3/TiO2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
LJ1-R | 19.75 | 54.96 | 0.67 | 13.70 | 8.71 | 0.17 | 1.98 | 15.83 | 1.74 | 2.03 | 0.22 | 20.56 |
LJ1-1 | 81.02 | 62.13 | 0.68 | 18.20 | 3.51 | 0.05 | 1.49 | 7.23 | 4.83 | 1.79 | 0.08 | 26.65 |
LJ-1-2 | 92.86 | 62.34 | 0.53 | 17.64 | 3.80 | 0.20 | 1.01 | 2.44 | 11.26 | 0.74 | 0.04 | 33.24 |
LJ1-3 | 89.41 | 39.48 | 0.31 | 9.76 | 4.08 | 0.17 | 0.90 | 39.36 | 5.59 | 0.32 | 0.04 | 31.47 |
LJ-1-4 * | 94.48 | 45.57 | 0.27 | 17.64 | 5.38 | 0.24 | 0.88 | 15.81 | 13.64 | 0.52 | 0.04 | 64.93 |
U2-2-1 | 86.81 | 77.55 | 0.40 | 10.31 | 3.35 | 0.02 | 1.02 | 2.08 | 4.14 | 1.01 | 0.12 | 25.63 |
U2-2-2 | 51.02 | 49.78 | 0.19 | 3.95 | 15.03 | 0.48 | 1.60 | 26.70 | 1.30 | 0.55 | 0.42 | 20.77 |
U2-2-3 | 65.13 | 54.84 | 0.29 | 5.73 | 8.40 | 0.26 | 1.40 | 26.35 | 1.70 | 0.61 | 0.42 | 19.89 |
U2-2-4 | 62.23 | 33.81 | 0.20 | 6.35 | 5.40 | 0.48 | 1.25 | 49.33 | 1.85 | 0.54 | 0.79 | 32.49 |
U2-2-5 | 44.98 | 50.25 | 0.36 | 6.59 | 11.90 | 0.40 | 1.12 | 26.50 | 1.57 | 0.93 | 0.38 | 18.08 |
U2-2-6 | 74.52 | 79.82 | 0.36 | 11.09 | 2.27 | 0.21 | 0.90 | 1.19 | 2.58 | 1.41 | 0.17 | 30.72 |
U2-2-7 | 57.92 | 79.19 | 0.41 | 11.83 | 2.94 | 0.22 | 1.12 | 0.67 | 2.21 | 1.30 | 0.12 | 28.85 |
U2-1-1 | 33.50 | 61.27 | 0.56 | 11.85 | 6.84 | 0.15 | 1.99 | 13.74 | 1.76 | 1.48 | 0.36 | 21.17 |
U2-1-2 | 33.44 | 65.61 | 0.42 | 9.25 | 7.58 | 0.27 | 1.30 | 12.45 | 1.82 | 1.06 | 0.25 | 21.97 |
U2-1-3 | 30.93 | 58.82 | 0.51 | 10.91 | 8.45 | 0.21 | 2.08 | 15.55 | 1.73 | 1.35 | 0.41 | 21.53 |
U2-1-4 | 27.40 | 60.61 | 0.50 | 10.55 | 7.65 | 0.19 | 1.78 | 15.24 | 1.82 | 1.36 | 0.30 | 21.02 |
U2-1-5 | 34.02 | 61.11 | 0.53 | 10.55 | 8.53 | 0.21 | 1.87 | 13.70 | 1.71 | 1.48 | 0.33 | 19.75 |
U2-1-F | 22.94 | 58.64 | 0.55 | 12.44 | 7.04 | 0.17 | 2.03 | 15.56 | 1.83 | 1.39 | 0.35 | 22.66 |
Ave-C | 51.87 | 0.47 | 15.07 | 5.27 | 0.18 | 1.23 | 17.12 | 7.70 | 1.00 | 0.09 | 31.99 | |
Ave-OS | 60.34 | 0.39 | 9.02 | 7.40 | 0.26 | 1.45 | 17.68 | 2.03 | 1.07 | 0.35 | 23.07 |
Sample | Li | Be | B | Sc | V | Cr | Co | Ni | Cu | Zn | Ga | Ge | Rb | Sr | Zr | Nb | Mo | Cd | In | Sn | Cs | Ba | Ba/Eu | La |
LJ1-R | 26.3 | 1.31 | 48.8 | 8.17 | 60.2 | 55.1 | 11.5 | 30.7 | 20.6 | 43.7 | 13.9 | 1.05 | 73.0 | 642 | 176 | 9.35 | 2.38 | 0.34 | 0.04 | 1.26 | 3.18 | 727 | 587 | 36.3 |
LJ1-1 | 8.41 | 0.88 | 403 | 1.95 | 13.0 | 11.9 | 2.84 | 5.17 | 5.74 | 12.7 | 4.21 | 0.33 | 13.8 | 113 | 22.5 | 1.85 | 0.31 | 0.03 | 0.010 | 0.30 | 0.93 | 255 | 1049 | 6.11 |
LJ1-2 | 2.31 | 0.40 | 463 | 0.99 | 8.19 | 6.41 | 2.34 | 2.11 | 3.88 | 2.89 | 1.16 | 0.07 | 1.37 | 52.6 | 5.35 | 0.42 | 0.23 | bdl | 0.002 | 0.10 | 0.27 | 162 | 951 | 2.71 |
LJ1-3 | 1.91 | 0.42 | 476 | 1.01 | 10.3 | 5.99 | 2.48 | 2.90 | 3.87 | 8.49 | 1.39 | 1.31 | 0.90 | 101 | 6.26 | 0.90 | 0.24 | bdl | bdl | 0.06 | 0.22 | 150 | 1101 | 1.91 |
LJ1-4 | 1.18 | 0.34 | 624 | 0.98 | 5.59 | 2.63 | 1.57 | 1.32 | 1.48 | 3.30 | 1.00 | 0.05 | 0.32 | 55.0 | 2.26 | 0.26 | 0.29 | bdl | bdl | 0.03 | 0.17 | 134 | 1165 | 1.79 |
U2-2-1 | 4.94 | 0.65 | 256 | 1.23 | 14.7 | 12.1 | 5.57 | 9.82 | 7.53 | 19.2 | 1.84 | 0.14 | 6.48 | 66.8 | 10.0 | 0.68 | 0.38 | 0.07 | 0.002 | 0.10 | 0.76 | 216 | 1312 | 2.60 |
U2-2-2 | 14.8 | 0.65 | 25.5 | 2.02 | 15.7 | 18.2 | 6.23 | 17.3 | 11.5 | 31.0 | 3.38 | 0.33 | 16.7 | 433 | 16.4 | 1.72 | 0.42 | 0.09 | 0.010 | 0.28 | 1.61 | 592 | 1066 | 9.65 |
U2-2-3 | 9.43 | 0.62 | 77.5 | 1.54 | 20.3 | 20.6 | 6.27 | 16.7 | 11.8 | 31.5 | 3.12 | 0.38 | 13.8 | 322 | 19.2 | 2.09 | 0.54 | 0.13 | 0.010 | 0.22 | 1.31 | 462 | 929 | 8.48 |
U2-2-4 | 53.0 | 2.35 | 33.0 | 2.08 | 20.0 | 17.6 | 7.39 | 19.5 | 12.6 | 32.0 | 12.9 | 0.35 | 11.1 | 90.8 | 17.9 | 1.78 | 0.78 | 0.11 | 0.061 | 0.23 | 0.82 | 81.4 | 134 | 10.8 |
U2-2-5 | 10.8 | 0.92 | 78.5 | 2.83 | 22.5 | 25.4 | 10.8 | 20.2 | 13.5 | 44.6 | 5.56 | 0.52 | 27.6 | 429 | 41.2 | 2.92 | 0.58 | 0.22 | 0.016 | 0.45 | 2.55 | 403 | 477 | 19.0 |
U2-2-6 | 6.97 | 1.08 | 205 | 1.79 | 28.8 | 15.1 | 4.30 | 9.24 | 13.0 | 43.7 | 3.37 | 0.40 | 18.5 | 68.1 | 22.5 | 1.68 | 0.59 | 0.14 | 0.008 | 0.35 | 1.76 | 159 | 513 | 6.95 |
U2-2-7 | 12.2 | 1.38 | 144 | 3.46 | 41.8 | 31.3 | 7.07 | 17.3 | 17.1 | 40.4 | 6.39 | 1.86 | 30.3 | 83.3 | 45.0 | 4.70 | 0.59 | 0.17 | 0.020 | 0.59 | 2.50 | 200 | 410 | 12.0 |
U2-1-1 | 19.4 | 1.66 | 31.3 | 7.42 | 56.2 | 54.2 | 12.8 | 38.3 | 28.9 | 65.8 | 11.6 | 1.13 | 53.0 | 470 | 78.8 | 10.3 | 2.89 | 0.27 | 0.012 | 1.22 | 2.70 | 594 | 572 | 30.7 |
U2-1-2 | 19.2 | 1.55 | 25.5 | 6.90 | 44.2 | 43.0 | 13.0 | 38.1 | 27.9 | 54.3 | 9.63 | 0.43 | 41.7 | 289 | 57.5 | 5.20 | 0.61 | 0.24 | 0.008 | 0.80 | 2.54 | 444 | 452 | 29.4 |
U2-1-3 | 19.7 | 1.68 | 26.7 | 7.05 | 51.1 | 50.5 | 12.5 | 35.3 | 26.9 | 57.2 | 11.0 | 0.95 | 48.4 | 513 | 80.5 | 8.48 | 2.18 | 0.26 | 0.014 | 1.04 | 2.62 | 643 | 666 | 29.5 |
U2-1-4 | 20.1 | 1.66 | 31.7 | 6.60 | 46.9 | 46.5 | 12.9 | 37.2 | 25.5 | 59.3 | 10.9 | 0.82 | 58.0 | 457 | 81.4 | 6.05 | 0.87 | 0.28 | 0.184 | 0.84 | 3.02 | 665 | 717 | 27.4 |
U2-1-5 | 21.4 | 1.69 | 30.9 | 6.64 | 54.5 | 50.8 | 13.3 | 39.2 | 28.7 | 62.9 | 11.8 | 1.10 | 52.0 | 452 | 73.5 | 5.82 | 0.62 | 0.26 | 0.026 | 0.90 | 3.18 | 665 | 714 | 28.5 |
U2-1-F | 22.2 | 1.58 | 29.6 | 7.34 | 50.7 | 52.2 | 12.7 | 37.1 | 25.4 | 54.1 | 12.0 | 0.93 | 55.3 | 466 | 99.4 | 6.75 | 0.48 | 0.30 | 0.018 | 0.96 | 2.99 | 739 | 641 | 32.1 |
Ave-C1 | 2.7 | 0.5 | 504 | 1.1 | 8.7 | 6.0 | 2.2 | 2.5 | 3.5 | 6.0 | 1.6 | 0.5 | 2.7 | 75.6 | 7.2 | 0.7 | 0.3 | 0.0 | 0.0 | 0.1 | 0.3 | 164 | 1069 | 2.7 |
Ave-OS2 | 17.5 | 1.3 | 86.1 | 3.8 | 32.6 | 29.9 | 8.9 | 23.3 | 17.7 | 43.5 | 7.2 | 0.7 | 28.6 | 294 | 40.8 | 3.9 | 0.9 | 0.2 | 0.0 | 0.5 | 2.0 | 408 | 675 | 16.5 |
R | 0.57 | 0.70 | -0.86 | 0.92 | 0.90 | 0.95 | 0.95 | 0.95 | 0.92 | 0.90 | 0.87 | 0.47 | 0.94 | 0.89 | 0.85 | 0.87 | 0.60 | 0.93 | 0.35 | 0.91 | 0.94 | 0.88 | nd | 0.96 |
Ave-C | 10 | 1.2 | 56 | 4.1 | 22 | 15 | 4.2 | 9 | 15 | 18 | 5.5 | 2 | 10 | 120 | 35 | 3.3 | 2.2 | 0.24 | 0.021 | 0.79 | 0.98 | 150 | nd | 10 |
CC-C1 | 0.27 | 0.38 | 9.0 | 0.28 | 0.40 | 0.40 | 0.53 | 0.28 | 0.23 | 0.33 | 0.29 | 0.23 | 0.27 | 0.63 | 0.21 | 0.22 | 0.12 | 0.02 | 0.10 | 0.12 | 0.33 | 1.1 | nd | 0.27 |
Ave-S | 44 | 2.4 | 81 | 14 | 200 | 100 | 17 | 84 | 100 | 140 | 20 | 2.8 | 93 | 200 | 150 | 12 | 18 | 5.3 | 4.6 | 6.6 | 5.9 | 560 | nd | 31 |
CC-OS2 | 0.40 | 0.53 | 1.06 | 0.27 | 0.16 | 0.30 | 0.52 | 0.28 | 0.18 | 0.31 | 0.36 | 0.23 | 0.31 | 1.47 | 0.27 | 0.33 | 0.05 | 0.03 | 0.00 | 0.08 | 0.34 | 0.73 | nd | 0.53 |
Sample | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Y | Ho | Er | Tm | Yb | Lu | Hf | Ta | W | Hg(ppb) | Tl | Pb | Bi | Th | U | ∑REY |
LJ1-R | 75.7 | 7.12 | 26.8 | 4.87 | 1.24 | 5.14 | 0.68 | 3.47 | 19.4 | 0.68 | 1.97 | 0.29 | 1.89 | 0.29 | 4.41 | 0.64 | 0.89 | bdl | 0.57 | 43.7 | 0.14 | 6.52 | 1.52 | 186 |
LJ1-1 | 12.5 | 1.37 | 5.18 | 0.85 | 0.24 | 1.00 | 0.10 | 0.59 | 2.93 | 0.10 | 0.32 | 0.04 | 0.33 | 0.04 | 0.64 | 0.24 | 0.45 | 5.53 | 0.03 | 2.88 | 0.04 | 1.93 | 0.39 | 31.7 |
LJ1-2 | 7.26 | 0.76 | 3.10 | 0.61 | 0.17 | 0.61 | 0.06 | 0.39 | 1.94 | 0.06 | 0.22 | 0.02 | 0.21 | 0.02 | 0.14 | 0.03 | 0.05 | 1.57 | bdl | 1.71 | 0.01 | 1.09 | 0.27 | 18.2 |
LJ1-3 | 5.20 | 0.55 | 2.34 | 0.51 | 0.14 | 0.51 | 0.06 | 0.39 | 1.99 | 0.06 | 0.22 | 0.02 | 0.21 | 0.02 | 0.14 | 0.03 | 0.22 | 2.56 | bdl | 1.38 | 0.002 | 0.83 | 0.27 | 14.1 |
LJ1-4 | 3.61 | 0.49 | 2.07 | 0.40 | 0.12 | 0.42 | 0.05 | 0.39 | 1.84 | 0.07 | 0.23 | 0.03 | 0.23 | 0.03 | 0.06 | 0.00 | 0.34 | 0.58 | bdl | 0.70 | 0.59 | 0.22 | 11.8 | |
U2-2-1 | 6.09 | 0.69 | 2.79 | 0.56 | 0.16 | 0.57 | 0.06 | 0.45 | 2.30 | 0.08 | 0.30 | 0.04 | 0.33 | 0.06 | 0.24 | 0.04 | bdl | 7.84 | 0.01 | 1.77 | 0.04 | 1.81 | 0.49 | 17.1 |
U2-2-2 | 20.0 | 2.40 | 9.28 | 1.65 | 0.56 | 1.81 | 0.19 | 1.07 | 5.22 | 0.19 | 0.59 | 0.07 | 0.59 | 0.09 | 0.42 | 0.28 | bdl | 50.3 | 0.24 | 5.11 | 0.07 | 2.72 | 0.53 | 53.4 |
U2-2-3 | 19.2 | 2.18 | 8.69 | 1.58 | 0.50 | 1.75 | 0.19 | 0.95 | 4.40 | 0.18 | 0.54 | 0.07 | 0.48 | 0.08 | 0.51 | 0.15 | bdl | 20.8 | 0.10 | 3.76 | 0.05 | 2.66 | 0.60 | 49.3 |
U2-2-4 | 24.6 | 2.70 | 11.2 | 2.12 | 0.61 | 2.19 | 0.25 | 1.30 | 5.99 | 0.23 | 0.71 | 0.09 | 0.71 | 0.10 | 0.46 | 0.13 | bdl | 40.2 | 0.13 | 5.42 | 0.42 | 2.96 | 0.63 | 63.5 |
U2-2-5 | 43.4 | 4.84 | 18.3 | 3.20 | 0.84 | 3.51 | 0.39 | 1.90 | 8.40 | 0.34 | 1.01 | 0.13 | 0.96 | 0.15 | 1.20 | 0.30 | bdl | 105 | 0.50 | 11.2 | 0.12 | 5.59 | 0.98 | 106 |
U2-2-6 | 15.0 | 1.93 | 7.47 | 1.43 | 0.31 | 1.41 | 0.17 | 0.97 | 4.08 | 0.17 | 0.54 | 0.06 | 0.61 | 0.08 | 0.62 | 0.12 | 0.51 | 5.10 | 0.07 | 3.32 | 0.07 | 3.44 | 1.73 | 41.2 |
U2-2-7 | 25.9 | 3.10 | 12.0 | 2.05 | 0.49 | 2.26 | 0.26 | 1.35 | 5.71 | 0.25 | 0.76 | 0.10 | 0.73 | 0.11 | 1.18 | 0.24 | 0.13 | 9.33 | 0.12 | 6.25 | 0.10 | 4.44 | 1.36 | 67.1 |
U2-1-1 | 60.4 | 6.03 | 23.0 | 3.93 | 1.04 | 4.44 | 0.50 | 2.59 | 19.9 | 0.47 | 1.36 | 0.13 | 1.27 | 0.15 | 2.61 | 3.87 | 6.62 | 49.3 | 0.05 | 9.34 | 0.07 | 6.82 | 1.73 | 156 |
U2-1-2 | 57.5 | 6.07 | 22.9 | 4.04 | 0.98 | 4.88 | 0.53 | 2.90 | 22.1 | 0.51 | 1.58 | 0.17 | 1.40 | 0.17 | 1.83 | 0.81 | 1.04 | 34.6 | 0.02 | 9.01 | 0.04 | 5.79 | 0.98 | 155 |
U2-1-3 | 57.0 | 5.56 | 20.6 | 3.70 | 0.97 | 4.21 | 0.44 | 2.51 | 20.3 | 0.45 | 1.40 | 0.14 | 1.36 | 0.16 | 2.53 | 2.53 | 4.56 | 31.4 | 0.09 | 11.0 | 0.03 | 5.74 | 1.11 | 148 |
U2-1-4 | 53.7 | 4.98 | 18.7 | 3.42 | 0.93 | 3.85 | 0.48 | 2.35 | 18.8 | 0.46 | 1.34 | 0.18 | 1.17 | 0.18 | 2.49 | 0.72 | 0.72 | 49.9 | 0.41 | 10.3 | 0.45 | 5.63 | 1.23 | 138 |
U2-1-5 | 55.6 | 5.43 | 20.0 | 3.52 | 0.93 | 3.96 | 0.45 | 2.40 | 18.6 | 0.43 | 1.30 | 0.14 | 1.19 | 0.16 | 2.26 | 0.50 | bdl | 69.3 | 0.14 | 11.0 | 0.07 | 6.35 | 1.30 | 143 |
U2-1-F | 62.5 | 6.25 | 23.2 | 4.24 | 1.15 | 4.75 | 0.53 | 2.89 | 21.8 | 0.50 | 1.61 | 0.18 | 1.42 | 0.19 | 3.13 | 0.70 | 0.30 | 57.6 | 0.30 | 11.9 | 0.08 | 7.13 | 1.46 | 163 |
Ave-C1 | 6.4 | 0.7 | 2.9 | 0.6 | 0.2 | 0.6 | 0.1 | 0.4 | 2.1 | 0.1 | 0.2 | 0.0 | 0.2 | 0.0 | 0.2 | 0.0 | 0.2 | 2.1 | 0.0 | 1.5 | 0.0 | 1.0 | 0.3 | 17.1 |
Ave-OS2 | 34.1 | 3.6 | 13.8 | 2.5 | 0.7 | 2.7 | 0.3 | 1.6 | 10.2 | 0.3 | 0.9 | 0.1 | 0.8 | 0.1 | 1.2 | 0.7 | 1.0 | 40.3 | 0.1 | 6.9 | 0.1 | 4.3 | 1.0 | 88.3 |
R | 0.97 | 0.97 | 0.97 | 0.97 | 0.98 | 0.97 | 0.97 | 0.96 | 0.92 | 0.96 | 0.96 | 0.92 | 0.95 | 0.93 | 0.89 | 0.53 | 0.43 | 0.74 | 0.55 | 0.68 | 0.30 | 0.95 | 0.73 | 0.97 |
Ave-C | 22 | 3.5 | 11 | 1.9 | 0.5 | 2.6 | 0.32 | 2 | 8.6 | 0.5 | 0.85 | 0.31 | 1 | 0.19 | 1.2 | 0.26 | 1.2 | 100 | 0.68 | 6.6 | 0.84 | 3.3 | 2.9 | 65.3 |
CC-C1 | 0.29 | 0.20 | 0.26 | 0.29 | 0.31 | 0.22 | 0.20 | 0.21 | 0.24 | 0.14 | 0.28 | 0.08 | 0.23 | 0.14 | 0.16 | 0.19 | 0.20 | 0.02 | 0.01 | 0.23 | 0.01 | 0.30 | 0.09 | 0.26 |
Ave-S | 61 | 4.1 | 25 | 4.5 | 1.1 | 5.5 | 0.6 | 3.9 | 29 | 0.57 | 2 | 0.3 | 2.9 | 0.4 | 3.8 | 0.83 | 2.4 | 220 | 2.6 | 29 | 1.1 | 7.4 | 14 | 172 |
CC-OS2 | 0.56 | 0.88 | 0.55 | 0.55 | 0.60 | 0.50 | 0.51 | 0.42 | 0.35 | 0.51 | 0.45 | 0.34 | 0.29 | 0.30 | 0.32 | 0.90 | 0.43 | 0.18 | 0.06 | 0.24 | 0.10 | 0.58 | 0.07 | 0.51 |
Samples | LTA | Quartz | Kaolinite | I/S | Illite | Muscovite | Anorthite | Albite | Analcime | Bassanite | High-Mg Calcite | Calcite | Siderite | Pyrite | Apatite |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LJ1-R | 25 | 4.7 | 21.6 | 9.1 | 11.4 | 18.3 | 2.9 | 1.9 | |||||||
LJ1-1 | 22.86 | 31.6 | 11.5 | 22.7 | 13 | 12.8 | 8.4 | ||||||||
LJ1-2 | 7.14 | 30.5 | 8.4 | 17.3 | 3.5 | 35.4 | |||||||||
LJ1-3 | 13.18 | 16.5 | 2.9 | 3.2 | 17.2 | 10.3 | 40.7 | ||||||||
LJ1-4 | 6.17 | 9.4 | 28.3 | 5.7 | 46.2 | 5.2 | 1.5 | ||||||||
U2-2-1 | 15.42 | 45.6 | 23 | 5.6 | 11.7 | 0.7 | |||||||||
U2-2-2 | 64.48 | 29.8 | 10.3 | 3.1 | 8.1 | 28.8 | 16 | 3.8 | |||||||
U2-2-3 | 44.84 | 27.5 | 17.4 | 9.5 | 7.5 | 2.7 | 26.4 | 6.4 | 2.6 | ||||||
U2-2-4 | 51.75 | 15.8 | 3.1 | 15.5 | 9.2 | 7.3 | 42.7 | 6.4 | |||||||
U2-2-5 | 25.5 | 25.2 | 7.4 | 7.9 | 5.4 | 27.3 | 9.9 | 3 | |||||||
U2-2-6 | 25.78 | 57.9 | 10.8 | 15.6 | 5.7 | 10 | |||||||||
U2-2-7 | 44.50 | 49 | 5.7 | 37.9 | 2.9 | 4.6 | |||||||||
U2-1-1 | 79.16 | 24.6 | 7.9 | 11.7 | 22.7 | 12 | 4.8 | 16.2 | |||||||
U2-1-2 | 30.7 | 3.3 | 27.9 | 5.2 | 1.8 | 21.4 | 5.5 | 3 | 1.2 | ||||||
U2-1-3 | 25 | 3.5 | 32.3 | 4.9 | 8.7 | 8.8 | 15 | 1.8 | |||||||
U2-1-4 | 31.9 | 4.9 | 20.9 | 7.5 | 14.4 | 2.2 | 3.8 | 10.4 | 2.9 | 0.5 | |||||
U2-1-5 | 25.5 | 7.4 | 26.3 | 10.8 | 6.5 | 1.8 | 4.8 | 15 | 1.9 | ||||||
U2-1-F | 30.4 | 3.9 | 23.9 | 15 | 11.4 | 1.1 | 6.5 | 7.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, X.; Spiro, B.; Han, Z. Comparison of Geochemical and Mineralogical Characteristics of Palaeogene Oil Shales and Coals from the Huangxian Basin, Shandong Province, East China. Minerals 2020, 10, 496. https://doi.org/10.3390/min10060496
Zheng X, Spiro B, Han Z. Comparison of Geochemical and Mineralogical Characteristics of Palaeogene Oil Shales and Coals from the Huangxian Basin, Shandong Province, East China. Minerals. 2020; 10(6):496. https://doi.org/10.3390/min10060496
Chicago/Turabian StyleZheng, Xue, Baruch Spiro, and Zuozhen Han. 2020. "Comparison of Geochemical and Mineralogical Characteristics of Palaeogene Oil Shales and Coals from the Huangxian Basin, Shandong Province, East China" Minerals 10, no. 6: 496. https://doi.org/10.3390/min10060496
APA StyleZheng, X., Spiro, B., & Han, Z. (2020). Comparison of Geochemical and Mineralogical Characteristics of Palaeogene Oil Shales and Coals from the Huangxian Basin, Shandong Province, East China. Minerals, 10(6), 496. https://doi.org/10.3390/min10060496