The Impact of Microstructure of Filtration Materials on Its Auto-Activation for Manganese Removal from Groundwater
Abstract
:1. Introduction
- the time needed to reach auto-activation,
- the height of the manganese removal zone in a filter bed.
2. Goal and Scope of the Research
3. Materials and Methods
3.1. General Description
3.2. Characterization of Filtration Material
- silica sand;
- chalcedonite sand;
- granulated activated carbon (GAC) (not being used for manganese removal at a technical scale; in the described research it serves as a reference material with very high internal porosity).
3.3. Pore Structure Parameters
3.4. Subcritical Gas Adsorption
3.5. Mercury Injection Capillary Pressure (MICP)
3.6. Water Supplying Filtration Columns
3.7. Filtration Experiment
4. Results and Discussion
4.1. Pore Structure Characteristics
4.2. Auto-Activation Research
- 570 h (approximately 24 days) in the case of GAC,
- 770 h (32 days) in the case of chalcedonite,
- 1200 h (50 days) in the case of silica sand.
- total pore volume (~2–150 nm)
- mesopore volume (~2–50 nm)
- fine mesopore volume (~2–5 nm)
- SSA
5. Conclusions
- GAC: 570 h, approximately 24 days
- chalcedonite sand: 770 h, 32 days
- silica sand: 1200 h, 50 days.
- GAC: 13 cm
- chalcedonite sand: 30 cm
- silica sand: 60 cm.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jeż-Walkowiak, J.; Dymaczewski, Z.; Szuster-Janiaczyk, A.; Nowicka, A.B.; Szybowicz, M. Efficiency of Mn Removal of Different Filtration Materials for Groundwater Treatment Linking Chemical and Physical Properties. Water 2017, 9, 498. [Google Scholar] [CrossRef]
- Bray, R.; Olańczuk-Neyman, K. The influence of changes in groundwater composition on the efficiency of manganese and ammonia nitrogen removal on mature quartz sand filtering beds. Water Sci. Technol. 2001, 1, 91–98. [Google Scholar] [CrossRef]
- Jeż-Walkowiak, J.; Dymaczewski, Z. Effectiveness of oxidative filter materials for manganese removal from groundwater. J. Water Supply 2012, 61, 364–371. [Google Scholar] [CrossRef]
- Postawa, A.; Jeż-Walkowiak, J.; Pruss, A.; Wątor, K. Arsenic in Groundwaters near Lublin. Geol. Bull. Pol. Geol. Inst. 2011, 445, 495–504. [Google Scholar]
- Michel, M.M. Characteristics of chalcedonite from Teofilów deposit for possible use in technology of water and wastewater treatment. Gospod. Surowcami Miner. Miner. Resour. Manag. 2011, 27, 49–67. [Google Scholar]
- Bierlein, K.A.; Knocke, W.R.; Tobiason, J.E.; Subramaniam, A.; Pham, M.; Little, J.C. Modeling Manganese Removal in a Pilot-Scale Postfiltration Contactor. J. AWWA 2015, 107, E109–E119. [Google Scholar] [CrossRef]
- Olańczuk-Neyman, K.; Bray, R. The Role of Physico-Chemical and Biological Processes in Manganese and Ammonia Nitrogen Removal from Groundwater. Pol. J. Environ. Stud. 2000, 9, 91–96. [Google Scholar]
- Jeż-Walkowiak, J.; Dymaczewski, Z.; Weber, Ł. Iron and manganese removal from groundwater by filtration through a chalcedonite bed. J. Water Supply 2015, 64, 19–34. [Google Scholar] [CrossRef]
- Vries, D.; Bertelkamp, C.; Schoonenberg Kegel, F.; Hofs, B.; Dusseldorp, J.; Bruins, J.H.; de Vet, W.; van den Akker, B. Iron and manganese removal: Recent advances in modelling treatment efficiency by rapid sand filtration. Water Res. 2017, 109, 35–45. [Google Scholar] [CrossRef]
- Learman, D.R.; Voelker, B.M.; Vazquez-Rodriguez, A.I.; Hansel, C.M. Formation of manganese oxides by bacterially generated superoxide. Nat. Geosci. 2011, 4, 95–98. [Google Scholar] [CrossRef]
- Breda, I.L.; Ramsay, L.; Roslev, P. Manganese oxidation and bacterial diversity on different filter media coatings during the start-up of drinking water biofilters. J. Water Supply 2017, 66, 641–650. [Google Scholar] [CrossRef]
- Anovitz, L.M.; Cole, D.R. Characterization and Analysis of Porosity and Pore Structures. Rev. Mineral. Geochem. 2015, 80, 61–164. [Google Scholar] [CrossRef] [Green Version]
- Choma, J.; Zdenkowski, J.A. Surface and structural properties of mineral adsorbents. Environ. Prot. 2001, 4, 5–8. [Google Scholar]
- Choma, J.; Jedynak, K.; Jamioła, D.; Jaroniec, M. Influence of carbonization temperature on the adsorption and structural properties of mesoporous carbons obtained by soft templating. Environ. Prot. 2012, 34, 3–8. [Google Scholar]
- Sozański, M.; Huck, P.M. Badania Doświadczalne w Rozwoju Technologii Uzdatniania Wody (Experimental Research in Development of Water Treatment Technology); Komitet Inżynierii Środowiska PAN: Lublin, Poland, 2007; pp. 21–42. [Google Scholar]
- Bruins, J.H.; Petrusevski, B.; Slokar, Y.M.; Huysman, K.; Joris, K.; Kruithof, J.C.; Kennedy, M.D. Factors controlling the ripening of manganese removal filters in conventional aeration-filtration groundwater treatment. Desalin. Water Treat. 2017, 72, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Bruins, J.H.; Petrusevski, B.; Slokar, Y.M.; Kruithof, J.C.; Kennedy, M.D. Manganese removal from groundwater: Characterization of filter media coating. Desalin. Water Treat. 2014, 1854–1863. [Google Scholar] [CrossRef]
- Mouchet, P. From Conventional to Biological Removal of Iron and Manganese in France. J. AWWA 1992, 84, 158–167. [Google Scholar] [CrossRef]
- Papciak, D.; Domoń, A.; Puszkarewicz, A.; Kaleta, J. The Use of Chalcedonite as a Biosorption Bed in the Treatment of Groundwater. Appl. Sci. 2019, 9, 751. [Google Scholar] [CrossRef] [Green Version]
- Dudek, L. Novel method of pore space interpretation based on joint Mercury Intrusion Porosimetry and Nitrogen Adsorption of the selected Menilite Shales. Nafta-Gaz 2020, 5, 291–298. [Google Scholar] [CrossRef]
- Rouquerol, J.; Llewellyn, P.; Rouquerol, F. Is the bet equation applicable to microporous adsorbents? Stud. Surf. Sci. Catal. 2007, 160, 49–56. [Google Scholar] [CrossRef]
- Kuila, U.; Prasad, M. Specific surface area and pore-size distribution in clays and shales. Geophys. Prospect. 2013, 61, 341–362. [Google Scholar] [CrossRef]
- Brown, A.A. Interpreting Permeability from Mercury Injection Capillary Pressure Data. In Proceedings of the AAPG Annual Convention and Exhibition, Denver, CO, USA, 31 May–3 June 2015; Volume 41660, pp. 3–5. [Google Scholar]
- Comisky, J.T.; Newsham, K.; Rushing, J.A.; Blasingame, T.A. A Comparative Study of Capillary- Pressure-Based Empirical Models for Estimating Absolute Permeability in Tight Gas Sands. In Proceedings of the SPE Annual Technical Conference and Exhibition, Anaheim, CA, USA, 11–14 November 2007. [Google Scholar] [CrossRef]
- Lan, Y.; Davudov, D.; Moghanloo, R.G. Interplay between permeability and compressibility in shale samples. J. Pet. Sci. Eng. 2017, 159, 644–653. [Google Scholar] [CrossRef]
- Washburn, E.W. Note on a Method of Determining the Distribution of Pore Sizes in a Porous Material. Proc. Natl. Acad. Sci. USA 1921, 7, 115–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rouquerol, J.; Rouquerol, F.; Sing, K.S.W. Absorption by Powders and Porous Solids, Methodology and Applications, 1st ed.; Academic Press: Cambridge MA, USA, 1998; ISBN 0080526012. [Google Scholar]
- Groen, J.C.; Peffer, L.A.A.; Perez-Ramirez, J. Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Micropor. Mesopor. Mater. 2003, 60. [Google Scholar] [CrossRef]
- Mason, G. The effect of pore space connectivity on the hysteresis of capillary condensation in adsorption-desorption isotherms. J. Colloid Interface Sci. 1982, 88, 36–46. [Google Scholar] [CrossRef]
- Mahajan, O.P.; Walker, P.L. Porosity of Coals and Coal Products. Analytical Methods for Coal and Coal Products, 1st ed.; Karr, J.R., Ed.; Academic Press Inc.: New York, NY, USA, 1978; pp. 125–162. [Google Scholar]
- Michel, M.; Reczek, L.; Papciak, D.; Włodarczyk-Makuła, M.; Siwiec, T.; Trach, Y. Mineral Materials Coated with and Consisting of MnOx—Characteristics and Application of Filter Media for Groundwater Treatment: A Review. Materials 2020, 13, 2232. [Google Scholar] [CrossRef]
- Sharma, S.K.; Greetham, M.R.; Schippers, J.C. Adsorption of iron(II) onto filter media. J. Water Supply 1999, 48, 84–91. [Google Scholar] [CrossRef]
- Stenkamp, V.S.; Benjamin, M.M. Effect of iron oxide coatings on sand filtration. J. AWWA 1994, 86, 37–50. [Google Scholar] [CrossRef]
Granulometric Parameter | Silica Sand | Chalcedonite Sand | GAC |
---|---|---|---|
(mm) | |||
dmin | 0.50 | 0.50 | 0.50 |
dmax | 2.00 | 2.00 | 2.00 |
d10 | 1.05 | 1.03 | 0.95 |
d60 | 1.50 | 1.50 | 1.63 |
d90 | 1.80 | 1.88 | 1.92 |
Water Quality Parameters | Unit | Value |
---|---|---|
manganese | mg Mn/L | 0.31–0.79 |
total iron | mg Fe/L | 0.045 |
pH | - | 7.14–7.89 |
alkalinity | mval/L | 3.75–3.9 |
acidity | mval/L | 0.05–0.125 |
conductivity | µS/cm | 497–532 |
COD-Mn* | mg O2/L | 2.90–4.2 |
Total hardness | mval/L | 5.75–8.57 |
chloride | mg Cl/L | 56–62 |
turbidity | NTU | 0.17–0.74 |
color | mg Pt/L | 10–15 |
ammonium | mg/L | 0.018–0.021 |
nitrate | mg NO3/L | 0.085 |
nitrite | mg NO2/L | 0.0095 |
Sample | Total Pore Volume (cm3/g) | Mesopore Volume 2–50 nm (cm3/g) | Fine Mesopore volume <2–5 nm (cm3/g) | t-Plot Micropore Volume <2 nm(cm3/g) | SSA (m2/g) |
---|---|---|---|---|---|
Silica sand | 0.0005 | 0.00024 | 0.00013 | 0 | 0.54 |
Chalcedonite sand | 0.0277 | 0.01875 | 0.00342 | 0 | 7.69 |
GAC | 0.4359 | 0.02604 | 0.01995 | 0.4058 | 1051.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dymaczewski, Z.; Falkowska, J.; Frąckowiak, A.; Jeż-Walkowiak, J.; Nawrot, J.; Dudek, L.; Topór, T. The Impact of Microstructure of Filtration Materials on Its Auto-Activation for Manganese Removal from Groundwater. Minerals 2020, 10, 502. https://doi.org/10.3390/min10060502
Dymaczewski Z, Falkowska J, Frąckowiak A, Jeż-Walkowiak J, Nawrot J, Dudek L, Topór T. The Impact of Microstructure of Filtration Materials on Its Auto-Activation for Manganese Removal from Groundwater. Minerals. 2020; 10(6):502. https://doi.org/10.3390/min10060502
Chicago/Turabian StyleDymaczewski, Zbysław, Joanna Falkowska, Angelika Frąckowiak, Joanna Jeż-Walkowiak, Justyna Nawrot, Lidia Dudek, and Tomasz Topór. 2020. "The Impact of Microstructure of Filtration Materials on Its Auto-Activation for Manganese Removal from Groundwater" Minerals 10, no. 6: 502. https://doi.org/10.3390/min10060502
APA StyleDymaczewski, Z., Falkowska, J., Frąckowiak, A., Jeż-Walkowiak, J., Nawrot, J., Dudek, L., & Topór, T. (2020). The Impact of Microstructure of Filtration Materials on Its Auto-Activation for Manganese Removal from Groundwater. Minerals, 10(6), 502. https://doi.org/10.3390/min10060502