Petrological and Geochemical Properties of Greek Carbonate Stones, Associated with Their Physico-Mechanical and Aesthetic Characteristics
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Petrography–Mineralogy
3.2. Geochemistry
3.3. Physico-Mechanical Tests
4. Discussion
4.1. Chemical Variations
4.2. Aesthetic and Physico-Mechanical Characteristics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Newman, H.R. The Mineral industry of Greece. In 2008 Minerals Yearbook Greece; USGS: Reston, VA, USA, 2008. [Google Scholar]
- Charalampides, G.; Arvanitidis, N.; Vatalis, K.I.; Platias, S. Sustainability Perspectives in Greece as Reflected by Mineral Deposits Exploitation. Procedia Econ. Financ. 2013, 5, 143–151. [Google Scholar] [CrossRef] [Green Version]
- Charalampides, G.; Vatalis, K.I.; Platias, S.; Karayannis, V. The Contribution of Industrial Minerals to Sustainable Recovery of Greek Economy. Procedia Econ. Financ. 2014, 14, 128–136. [Google Scholar]
- Dolley, T.P. U.S Geological Survey Minerals Yearbook; Stone, Dimension; USGS: Reston, VA, USA, 2017; pp. 72.1–72.13, Advance Release.
- Hastorun, S. The Mineral Industry of Greece. In 2014 Minerals Yearbook; USGS: Reston, VA, USA, 2017; pp. 19.1–19.10. [Google Scholar]
- IOBE (Foundation for Economic & Industrial Research). The contribution of the mining industry to the Greek economy. In Executive Summary; IOBE: Athina, Greece, 2016. [Google Scholar]
- Eurostat, StoneNews.eu, First Half 2018–2019. Finished Marble Products Export Growth: The cases of Italy, Spain, Greece and Portugal. Available online: https://stonenews.eu/first-half-2018-2019-finished-marble-products-export-growth-cases-italy-spain-greece-portugal/ (accessed on 27 November 2019).
- Sousa, L.M. Petrophysical properties and durability of granites employed as building stone: A comprehensive evaluation. B Eng. Geol. Environ. 2014, 73, 569–588. [Google Scholar] [CrossRef]
- Calvo, J.P.; Regueiro, M. Carbonate rocks in the Mediterranean region—From classical to innovative uses of building stone. Geol. Soc. Spec. Publ. 2010, 331, 27–35. [Google Scholar] [CrossRef]
- Munyanyiwa, H.; Hanson, R. Geochemistry of marbles and calc-silicate rocks in the Pan-African Zambezi belt, Zambia. Precambrian Res. 1988, 38, 177–200. [Google Scholar] [CrossRef]
- Papatrechas, C. Correlation of Physicomechanical Properties with Grain Size and Mineralogical Composition of the Carbonate Rocks of Eastern Macedonia (Greece). Ph.D. Thesis, Department of Geology, University of Thessaloniki, Thessaloniki, Greece, 2011. (In Greek). [Google Scholar]
- Ferrini, V.; De Vito, C.; Mignardi, S.; Fucinese, D. Archaeological carved slabs of the Langobard art in churches of Peligna Valley and Spoleto (Italy): Provenance of the stones. J. Archaeol. Sci. 2012, 39, 3505–3515. [Google Scholar] [CrossRef]
- Brilli, M.; Giustini, F.; Conte, A.; Mercadal, P.; Quarta, G.; Plumed, H.; Scardozzi, G.; Belardi, G. Petrography, geochemistry, and cathodoluminescence of ancient white marble from quarries in the southern Phrygia and northern Caria regions of Turkey: Considerations on provenance discrimination. J. Archaeol. Sci. Rep. 2015, 4, 124–142. [Google Scholar]
- Badouna, I.; Koutsovitis, P.; Laskaridis, K.; Patronis, M.; Papatrechas, C. Aesthetic characteristics of Greek ornamental stones associated with mineral, geochemical and structural properties. Bull. Geol. Soc. Greece 2016, 50, 1771–1780. [Google Scholar] [CrossRef] [Green Version]
- Sabatakakis, N.; Koukis, G.; Tsiambaos, G.; Papanakli, S. Index properties and strength variation controlled by microstructure for sedimentary rocks. Eng. Geol. 2008, 97, 80–90. [Google Scholar] [CrossRef]
- Galetakis, M.; Soultana, A. A review on the utilisation of quarry and ornamental stone industry fine by-products in the construction sector. Constr. Build. Mater. 2016, 102, 769–781. [Google Scholar]
- Petrounias, P.; Giannakopoulou, P.; Rogkala, A.; Lampropoulou, P.; Tsikouras, B.; Rigopoulos, I.; Hatzipanagiotou, K. Petrographic and Mechanical Characteristics of Concrete Produced by Different Type of Recycled Materials. Geosciences 2019, 9, 264. [Google Scholar] [CrossRef] [Green Version]
- Yasar, E.; Erdogan, Y.; Kılıç, A. Effect of limestone aggregate type and water–cement ratio on concrete strength. Mater. Lett. 2004, 58, 772–777. [Google Scholar] [CrossRef]
- Petrounias, P.; Giannakopoulou, P.P.; Rogkala, A.; Kalpogiannaki, M.; Koutsovitis, P.; Damoulianou, M.-E.; Koukouzas, N. Petrographic Characteristics of Sandstones as a Basis to Evaluate Their Suitability in Construction and Energy Storage Applications. A Case Study from Klepa Nafpaktias (Central Western Greece). Energies 2020, 13, 1119. [Google Scholar]
- Kore, S.D.; Vyas, A. Impact of marble waste as coarse aggregate on properties of lean cement concrete. Case Stud. Constr. Mater. 2016, 4, 85–92. [Google Scholar]
- Hebhoub, H.; Aoun, H.; Belachia, M.; Houari, H.; Ghorbel, E. Use of waste marble aggregates in concrete. Constr. Build. Mater. 2011, 25, 1167–1171. [Google Scholar]
- Petrounias, P.; Giannakopoulou, P.; Rogkala, A.; Stamatis, P.; Lampropoulou, P.; Tsikouras, B.; Hatzipanagiotou, K. The Effect of Petrographic Characteristics and Physico-Mechanical Properties of Aggregates on the Quality of Concrete. Minerals 2018, 8, 577. [Google Scholar] [CrossRef] [Green Version]
- EN 1936. Natural stone test methods. In Determination of Real Density and Apparent Density, and of Total and Open POROSITY; CEN: Brussels, Belgium, 2006. [Google Scholar]
- EN 13755. Natural Stone Test Methods—Determination of Water Absorption at Atmospheric Pressure; CEN: Brussels, Belgium, 2005. [Google Scholar]
- EN 1926. Natural stone test methods. In Determination of Uniaxial Compressive Strength; CEN: Brussels, Belgium, 2006. [Google Scholar]
- EN 12372. Natural stone test methods. In Determination of Flexural Strength under Concentrated Load; CEN: Brussels, Belgium, 2006. [Google Scholar]
- EN 13364. Natural stone test methods. In Determination of the Breaking Load at Dowel Hole; CEN: Brussels, Belgium, 2002. [Google Scholar]
- EN 14157. Natural stone test methods. In Determination of the Abrasion Resistance; CEN: Brussels, Belgium, 2017. [Google Scholar]
- EN 14158. Natural stone test methods. In Determination of Rupture Energy; CEN: Brussels, Belgium, 2004. [Google Scholar]
- EN 12371. Natural stone test methods. In Determination of Frost Resistance; CEN: Brussels, Belgium, 2010. [Google Scholar]
- Arnoldi, C.; Azzaro, E.; Barbieri, M.; Tucci, P. Petrographic and geochemical features of the “Cipollino Verde” marble from the Apuan Alps (northern Tuscany, Italy) and archaeometric implications. Period. Mineral. 1999, 68, 145–162. [Google Scholar]
- Katsikatsos, G. Geology of Greece; University of Patras: Patras, Greece, 1992; pp. 1–451. [Google Scholar]
- Woolley, A.R.; Kempe, D.R.C. Carbonatites: Nomenclature, Average Chemical Compositions, and Element Distribution; Carbonatites: Genesis and Evolution; Bell, K., Ed.; Unwin Hyman: London, UK, 1989; pp. 1–14. [Google Scholar]
- Koutsovitis, P. High-pressure subduction-related serpentinites and metarodingites from East Thessaly (Greece): Implications for their metamorphic, geochemical and geodynamic evolution in the Hellenic–Dinaric ophiolite context. Lithos 2017, 276, 122–145. [Google Scholar]
- Shearman, D.J.; Shirmohammadi, N.H. Distribution of strontium in dedolomites from the French Jura. Nature 1969, 223, 606–608. [Google Scholar] [CrossRef]
- Garde, A.A. Strontium geochemistry and carbon and oxygen isotopic compositions of lower Proterozoic dolomite and calcite marbles from the Marmoliric formation, West Greenland. Precambrian Res. 1979, 8, 183–199. [Google Scholar] [CrossRef]
- Stoll, H.M.; Schrag, D.P. Coccolith Sr/Ca as a new indicator of coccolithophorid calcification and growth rate. Geochem. Geophy. Geosy. 2001, 1, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Lau, K.V.; Maher, K.; Brown, S.T.; Jost, A.B.; Altiner, D.; DePaolo, D.J.; Eisenhauer, A.; Kelley, B.M.; Lehrmann, D.J.; Paytan, A.; et al. The influence of seawater carbonate chemistry, mineralogy, and diagenesis on calcium isotope variations in Lower-Middle Triassic carbonate rocks. Chem. Geol. 2017, 471, 13–77. [Google Scholar]
- Hall, C.; Hamilton, A. Porosity-density relations in stone and brick materials. Mater. Struct. 2015, 48, 1265–1271. [Google Scholar] [CrossRef]
- Hall, C.; Hamilton, A. Porosities of building limestones: Using the solid density to assess data quality. Mater. Struct. 2016, 49, 3969–3979. [Google Scholar]
- Ulusay, R.; Hudson, J.A. The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring; Springer: Berlin, Germany, 2007. [Google Scholar]
- Siegesmund, S.; Ruedrich, J.; Koch, A. Marble bowing: Comparative studies of three different public building facades. Envron. Geol. 2008, 56, 473–494. [Google Scholar]
- Vázquez, P.; Siegesmund, S.; Alonso, F.J. Bowing of dimensional granitic stones. Environ. Earth Sci. 2011, 63, 1603–1612. [Google Scholar] [CrossRef] [Green Version]
- Koch, A.; Siegesmund, S. Bowing of marble panels: On-site damage analysis from the Oeconomicum building at Goettingen (Germany). Geol. Soc. Spec. Publ. 2002, 205, 299–314. [Google Scholar] [CrossRef]
- Grelk, B.; Christiansen, C.; Schouenborg, B.; Malaga, K. Durability of Marble Cladding—A Comprehensive Literature Review. J. Astm Int. 2007, 4, 1–19. [Google Scholar]
- Cross, S.L. Behind the Curtain: Mechanical Treatments for Bowed Marble Panels. Master’s Thesis (Historic Preservation), University of Pennsylvania, Philadelphia, PA, USA, 2005; p. 24. [Google Scholar]
- Sariisik, G. Determining performance of marble finished products on their usage areas by a new impact resistance test method. J. Test. Eval. 2012, 40, 945–951. [Google Scholar] [CrossRef]
- Sariisik, G.; Ozkan, E.; Kundak, E.; Akdas, H. Classification of Parameters Affecting Impact Resistance of Natural Stones. J. Test. Eval. 2016, 44, 1650–1660. [Google Scholar] [CrossRef]
- Noor-E-Khuda, S.; Albermani, F.; Veidt, M. Flexural Strength of Weathered Granites: Influence of Freeze and Thaw Cycles. Constr. Build. Mater. 2017, 156, 891–901. [Google Scholar] [CrossRef]
- Bumanis, G.; Dembovska, L.; Korjakins, A.; Bajare, D. Applicability of freeze-thaw resistance testing methods for high strength concrete at extreme−52.5 °C and standard −18 °C testing conditions. Case Stud. Constr. Mater. 2018, 8, 139–149. [Google Scholar]
- Gaziev, E. Rupture energy evaluation for brittle materials. Int. J. Solids Struct. 2001, 38, 7681–7690. [Google Scholar] [CrossRef]
Rock Type (n: Number of Samples) | Calcitic Marbles | Cipollino Marbles | Dolomitic Marbles | Limestones | Dolomites | |||||
---|---|---|---|---|---|---|---|---|---|---|
(n: 26) | (n: 5) | (n: 15) | (n: 21) | (n: 6) | ||||||
Avg. | ±(1σ) | Avg. | ±(1σ) | Avg. | ±(1σ) | Avg. | ±(1σ) | Avg. | ±(1σ) | |
SiO2 | 1.10 | 3.66 | 4.89 | 1.27 | 0.09 | 0.14 | 2.50 | 6.28 | 0.32 | 0.32 |
TiO2 | 0.02 | 0.02 | 0.05 | 0.05 | 0.01 | 0.01 | 0.04 | 0.08 | 0.02 | 0.04 |
Al2O3 | 0.27 | 0.58 | 1.01 | 0.26 | 0.04 | 0.10 | 0.34 | 0.42 | 0.05 | 0.04 |
Fe2O3t | 0.10 | 0.18 | 0.73 | 0.27 | 0.02 | 0.03 | 0.31 | 0.77 | 0.17 | 0.16 |
MnO | 0.01 | 0.02 | 0.06 | 0.02 | 0.00 | 0.01 | 0.04 | 0.11 | 0.01 | 0.02 |
MgO | 1.07 | 1.08 | 0.90 | 0.31 | 19.38 | 1.90 | 1.04 | 0.67 | 18.80 | 1.15 |
CaO | 53.66 | 2.66 | 50.92 | 1.68 | 33.35 | 2.59 | 52.10 | 4.86 | 34.23 | 2.18 |
Na2O | 0.32 | 0.36 | 0.30 | 0.52 | 0.22 | 0.29 | 0.37 | 0.43 | 0.70 | 0.66 |
K2O | 0.11 | 0.16 | 0.11 | 0.18 | 0.05 | 0.07 | 0.15 | 0.33 | 0.12 | 0.14 |
LOI | 42.63 | 1.87 | 40.52 | 0.87 | 45.79 | 0.78 | 41.97 | 3.49 | 45.74 | 1.14 |
Total | 99.26 | 0.72 | 99.50 | 0.57 | 98.95 | 0.66 | 98.86 | 1.01 | 100.14 | 0.55 |
V | 2.81 | 5.72 | 10.00 | 3.39 | 1.48 | 2.29 | 7.06 | 15.77 | 2.87 | 1.53 |
Cr | 37.55 | 109.24 | 78.00 | 121.33 | 43.14 | 88.38 | 26.71 | 29.97 | 25.00 | 5.93 |
Co | 2.39 | 1.13 | 6.30 | 2.80 | 2.14 | 1.27 | 3.39 | 2.38 | 2.48 | 0.88 |
Ni | 22.30 | 47.06 | 53.60 | 52.43 | 21.07 | 42.03 | 21.52 | 21.30 | 16.00 | 6.16 |
Cu | 5.59 | 4.32 | 40.20 | 36.85 | 4.99 | 4.38 | 7.79 | 6.51 | 12.50 | 14.28 |
Zn | 22.35 | 11.37 | 29.40 | 10.16 | 18.50 | 9.15 | 27.43 | 13.78 | 27.00 | 13.75 |
As | 4.48 | 6.91 | 2.28 | 1.06 | 2.51 | 2.63 | 16.33 | 57.49 | 63.58 | 150.12 |
Sr | 152.65 | 63.22 | 475.20 | 60.62 | 60.21 | 49.09 | 342.38 | 229.18 | 131.50 | 99.07 |
Cd | 0.43 | 0.45 | 0.53 | 0.05 | 0.60 | 0.29 | 0.44 | 0.37 | 8.63 | 19.78 |
Ba | 129.22 | 327.59 | 75.80 | 12.42 | 365.38 | 1276.68 | 279.00 | 899.93 | 1027.33 | 2436.25 |
Pb | 8.22 | 10.49 | 9.30 | 2.33 | 14.06 | 21.70 | 8.63 | 3.56 | 7.55 | 5.84 |
Be | 0.43 | 0.92 | 0.25 | 0.06 | 0.98 | 1.78 | 0.31 | 0.43 | 0.77 | 0.69 |
Rb | 13.54 | 37.56 | 7.90 | 1.75 | 3.66 | 6.98 | 11.18 | 23.07 | 5.45 | 8.08 |
Bi | 0.04 | 0.12 | 0.05 | 0.06 | 0.17 | 0.53 | 0.10 | 0.27 | 0.37 | 0.80 |
U | 0.56 | 1.22 | 0.52 | 0.64 | 0.26 | 0.32 | 1.11 | 0.92 | 1.28 | 1.75 |
Sc | 19.76 | 13.66 | 11.80 | 11.58 | 13.56 | 11.75 | 14.91 | 12.86 | 13.28 | 15.61 |
Y | 2.78 | 2.21 | 4.20 | 1.02 | 1.71 | 1.41 | 3.53 | 2.87 | 2.90 | 3.51 |
Th | 0.72 | 0.83 | 1.08 | 0.18 | 0.60 | 0.71 | 0.57 | 0.64 | 1.45 | 1.56 |
Sb | 1.19 | 1.27 | 1.10 | 0.46 | 0.87 | 1.07 | 1.18 | 1.16 | 0.58 | 0.41 |
Ta | 4.68 | 16.48 | 0.30 | 0.08 | 1.27 | 1.51 | 1.09 | 1.13 | 0.93 | 0.58 |
Nb | 5.09 | 11.03 | 1.18 | 0.75 | 1.43 | 1.20 | 1.59 | 0.96 | 1.25 | 1.08 |
Rock Type | Calcitic Marbles | Cipollino Marbles | Dolomitic Marbles | Limestones | Dolomites | |||||
---|---|---|---|---|---|---|---|---|---|---|
Main mineral phases | cal (77–100 vol.%), dol (0–23 vol.%) | cal (78–87 vol.%), ep, pmp, chl, qtz (<18 vol.%) | cal (3–37 vol.%), dol (63–97 vol.%) | cal(90–98 vol.%), dol (2–10 vol.%) | dol (81–94 vol.%), cal (6–19 vol.%) | |||||
Accessory minerals | Mag, hem, chr, brt, clay min., ms, bt, ser, ab, qtz, ep | Ilm, mag, hem, chr), ms, bt, ttn, rt, ap, zrn, tur | Fe-oxides, fl, sp, chr, qtz, chl, ms | clay min., qtz, ap, Fe-Mn and Fe-Cr oxides | qtz, fsp, Fe-Mn oxides | |||||
Avg. | ±(1σ) | Avg. | ±(1σ) | Avg. | ±(1σ) | Avg. | ±(1σ) | Avg. | ±(1σ) | |
CaO/MgO | 387.66 | 1110.08 | 61.06 | 16.06 | 1.75 | 0.36 | 113.97 | 209.55 | 1.83 | 0.22 |
LOI | 42.63 | 1.87 | 40.52 | 0.87 | 45.79 | 0.78 | 41.97 | 3.49 | 45.74 | 1.14 |
SiO2 | 1.10 | 3.66 | 4.89 | 1.27 | 0.09 | 0.14 | 2.50 | 6.28 | 0.32 | 0.32 |
Na2O + K2O | 0.43 | 0.48 | 0.41 | 0.70 | 0.27 | 0.36 | 0.47 | 0.61 | 0.82 | 0.78 |
Al2O3 | 0.27 | 0.58 | 1.01 | 0.26 | 0.04 | 0.10 | 0.34 | 0.42 | 0.05 | 0.04 |
Fe2O3t | 0.10 | 0.18 | 0.73 | 0.27 | 0.02 | 0.03 | 0.31 | 0.77 | 0.17 | 0.16 |
Cr | 37.55 | 109.24 | 78.00 | 121.33 | 43.14 | 88.38 | 26.71 | 29.97 | 25.00 | 5.93 |
Ni | 22.30 | 47.06 | 53.60 | 52.43 | 21.07 | 42.03 | 21.52 | 21.30 | 16.00 | 6.16 |
Ba | 129.22 | 327.59 | 75.80 | 12.42 | 365.38 | 1276.68 | 279.00 | 899.93 | 1027.33 | 2436.25 |
Sr | 152.65 | 63.22 | 475.20 | 60.62 | 60.21 | 49.09 | 342.38 | 229.18 | 131.50 | 99.07 |
V | 2.81 | 5.72 | 10.00 | 3.39 | 1.48 | 2.29 | 7.06 | 15.77 | 2.87 | 1.53 |
As | 4.48 | 6.91 | 2.28 | 1.06 | 2.51 | 2.63 | 16.33 | 57.49 | 63.58 | 150.12 |
(1) | 2709.64 | 15.94 | 2715.00 | 5.77 | 2826.15 | 15.02 | 2648.50 | 148.69 | 2768.33 | 43.55 |
(2) | 0.45 | 0.26 | 0.28 | 0.05 | 0.91 | 0.28 | 2.38 | 5.42 | 1.73 | 1.09 |
(3) | 0.16 | 0.20 | 0.10 | 0.00 | 0.26 | 0.08 | 0.84 | 1.83 | 0.52 | 0.31 |
(4) | 107.00 | 21.88 | 86.00 | 0.00 | 178.23 | 33.98 | 142.38 | 34.01 | 144.33 | 27.22 |
(5) | 16.88 | 4.72 | 23.08 | 2.33 | 10.96 | 5.53 | 15.14 | 5.67 | 13.83 | 4.71 |
(6) | 2071.43 | 318.03 | 2000.00 | 0.00 | 1633.33 | 524.55 | 2210.00 | 301.31 | 2483.33 | 490.58 |
(7) | 21,313.16 | 5410.02 | 22,309.00 | 2927.87 | 22,088.00 | 6283.16 | 17,563.30 | 5328.10 | 13,227.00 | 3388.43 |
(8) | 3.84 | 0.94 | 5.00 | 0.82 | 4.15 | 1.14 | 3.35 | 1.04 | 3.50 | 0.55 |
(9) | 15.53 | 5.00 | 21.93 | 3.58 | 10.12 | 4.38 | 13.24 | 6.14 | 12.48 | 4.08 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badouna, I.; Koutsovitis, P.; Karkalis, C.; Laskaridis, K.; Koukouzas, N.; Tyrologou, P.; Patronis, M.; Papatrechas, C.; Petrounias, P. Petrological and Geochemical Properties of Greek Carbonate Stones, Associated with Their Physico-Mechanical and Aesthetic Characteristics. Minerals 2020, 10, 507. https://doi.org/10.3390/min10060507
Badouna I, Koutsovitis P, Karkalis C, Laskaridis K, Koukouzas N, Tyrologou P, Patronis M, Papatrechas C, Petrounias P. Petrological and Geochemical Properties of Greek Carbonate Stones, Associated with Their Physico-Mechanical and Aesthetic Characteristics. Minerals. 2020; 10(6):507. https://doi.org/10.3390/min10060507
Chicago/Turabian StyleBadouna, Ioanna, Petros Koutsovitis, Christos Karkalis, Konstantinos Laskaridis, Nikolaos Koukouzas, Pavlos Tyrologou, Michalis Patronis, Christos Papatrechas, and Petros Petrounias. 2020. "Petrological and Geochemical Properties of Greek Carbonate Stones, Associated with Their Physico-Mechanical and Aesthetic Characteristics" Minerals 10, no. 6: 507. https://doi.org/10.3390/min10060507
APA StyleBadouna, I., Koutsovitis, P., Karkalis, C., Laskaridis, K., Koukouzas, N., Tyrologou, P., Patronis, M., Papatrechas, C., & Petrounias, P. (2020). Petrological and Geochemical Properties of Greek Carbonate Stones, Associated with Their Physico-Mechanical and Aesthetic Characteristics. Minerals, 10(6), 507. https://doi.org/10.3390/min10060507