Interlayer-Confined Cu(II) Complex as an Efficient and Long-Lasting Catalyst for Oxidation of H2S on Montmorillonite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of H2S Sorbent Material
2.2. Exposure of Mt-CuPhen to H2S Gas Stream
2.3. Characterization of Mt-CuPhen Exposed to H2S Gas Stream
3. Results and Discussion
3.1. H2S Capture by Mt-CuPhen
3.2. DR UV–Vis Spectra
3.3. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectrometry (EDX)
3.4. X-ray Diffraction (XRPD)
3.5. FTIR Spectra
3.6. Thermal Analysis of Mt-CuPhen before and after Exposure to H2S
3.7. XAS Analysis of Mt-CuPhen before and after H2S Exposure
3.8. Catalytic Mechanism Responsible for Oxidation of H2S to S0
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Phen | 1,10-phenanthroline |
Cu(II)Phen | [Cu[(Phen)(H2O)2]2+ |
Mt-CuPhen | solid hybrid material obtained by Mt treated with Cu(II)Phen complex |
Mt-CuPhen-exp H2S-10min | Mt-CuPhen exposed to H2S vapor for 10 minutes |
Mt-CuPhen-exp H2S-30min | Mt-CuPhen exposed to H2S vapor for 30 minutes |
Mt-CuPhen-exp H2S-12h | Mt-CuPhen exposed to H2S vapor for 12 h |
Mt-CuPhen-exp H2S-5d | Mt-CuPhen exposed to H2S vapor for 5 days |
Mt-CuPhen-exp H2S-25d | Mt-CuPhen exposed to H2S vapor for 25 days |
Mt-CuPhen-exp H2S-1m | Mt-CuPhen exposed to H2S vapor for 1 month |
Mt-CuPhen-exp H2S-2m | Mt-CuPhen exposed to H2S vapor for 2 months |
Mt-CuPhen-exp H2S-3m | Mt-CuPhen exposed to H2S vapor for 3 months |
Mt-CuPhen-exp H2S ac-12h | Mt-CuPhen exposed to H2S vapor for 12 h in anaerobic conditions |
Mt-CuPhen-exp H2S ac-1m | Mt-CuPhen exposed to H2S vapor for 1 month in anaerobic conditions |
Mt-CuPhen-exp H2S ac-1m-air | Mt-CuPhen exposed to H2S vapor for 1 month in anaerobic conditions and then exposed to air for 2 weeks |
Mt-FePhen | solid hybrid material obtained by Mt treated with a µ-oxo 1:1 Fe(III)-phenanthroline complex |
References
- Brigatti, M.F.; Malferrari, D.; Laurora, A.; Elmi, C. Structure and mineralogy of layer silicates: Recent perspectives and new trends. In Layered Mineral Structures and Their Application in Advanced Technologies; Brigatti, M.F., Mottana, A., Eds.; European Mineralogical Union and the Mineralogical Society of Great Britain & Ireland, EMU Notes in Mineralogy: London, UK, 2011; Volume 11, pp. 1–71. [Google Scholar] [CrossRef]
- Christidis, G.E. Industrial Clays. In Advances in the Characterization of Industrial Minerals; Christidis, G.E., Ed.; European Mineralogical Union and the Mineralogical Society of Great Britain & Ireland, EMU Notes in Mineralogy: London, UK, 2009; Volume 9, pp. 341–414. [Google Scholar] [CrossRef]
- Bernini, F.; Castellini, E.; Malferrari, D.; Borsari, M.; Brigatti, M.F. Stepwise structuring of the adsorbed layer modulates the physic-chemical properties of hybrid materials from phyllosilicates interacting with the µ-oxo Fe+3 phenanthroline complex. Microporous Mesoporous Mater. 2015, 211, 19–29. [Google Scholar] [CrossRef]
- Baloyi, J.; Ntho, T.; Moma, J. Synthesis and application of pillared clay heterogeneous catalysts for wastewater treatment: A review. RCS Adv. 2018, 8, 5197–5220. [Google Scholar] [CrossRef] [Green Version]
- Castellini, E.; Berthold, C.; Malferrari, D.; Bernini, F. Sodium hexametaphosphate interaction with 2:1 clay minerals illite and montmorillonite. Appl. Clay Sci. 2013, 83–84, 162–170. [Google Scholar] [CrossRef]
- Gu, S.; Kang, X.; Wang, L.; Lichtfouse, E.; Wang, C. Clay mineral adsorbents for heavy metal removal from wastewater: A review. Environ. Chem. Lett. 2019, 17, 629–654. [Google Scholar] [CrossRef]
- Lee, M.S.; McGrail, B.P.; Glezakou, V.A. Microstructural response of variably hydrated Ca-rich montmorillonite to supercritical CO2. Environ. Sci. Technol. 2014, 48, 8612–8619. [Google Scholar] [CrossRef]
- Cavalcanti, L.P.; Kalantzopoulos, G.N.; Eckert, J.; Knudsen, K.D.; Fossum, J.O. A nano-silicate material with exceptional capacity for CO2 capture and storage at room temperature. Sci. Rep. 2018, 8, 11827–11832. [Google Scholar] [CrossRef]
- Bernini, F.; Castellini, E.; Malferrari, D.; Castro, G.R.; Sainz Diaz, C.I.; Brigatti, M.F.; Borsari, M. Effective and Selective Trapping of Volatile Organic Sulfur Derivatives by Montmorillonite Intercalated with a μ-oxo Fe(III)−Phenanthroline Complex. Appl. Mater. Interfaces 2017, 9, 1045–1056. [Google Scholar] [CrossRef]
- Castellini, E.; Malferrari, D.; Bernini, F.; Sainz Diaz, C.I.; Mucci, A.; Sola, M.; Brigatti, M.F.; Borsari, M. Trapping at the solid-gas interface: Selective adsorption of naphthalene by montmorillonite intercalated with a Fe(III)-phenanthroline complex. ACS Omega 2019, 4, 7785–7794. [Google Scholar] [CrossRef]
- Castellini, E.; Malferrari, D.; Bernini, F.; Bighi, B.; Mucci, A.; Sainz Diaz, C.I.; Serrano, A.; Castro, G.R.; Brigatti, M.F.; Borsari, M. A new material based on montmorillonite and Cu(II)-phenanthroline complex for effective capture of ammonia from gas phase. Appl. Clay Sci. 2019, 184, 105386. [Google Scholar] [CrossRef] [Green Version]
- Sainz-Díaz, C.I.; Francisco-Márquez, M.; Vivier-Bunge, A. Adsorption of polyaromatic heterocycles on pyrophyllite surface by means of different theoretical approaches. Environ. Chem. 2011, 8, 429–440. [Google Scholar] [CrossRef] [Green Version]
- Khabazipour, M.; Anbia, M. Removal of Hydrogen Sulfide from Gas Streams Using Porous Materials: A Review. Ind. Eng. Chem. Res. 2019, 58, 22133–22164. [Google Scholar] [CrossRef]
- Malferrari, D.; Castellini, E.; Bernini, F.; Serrano Rubio, A.; Castro, G.R.; Sainz Diaz, C.I.; Caleffi, M.; Brigatti, M.F.; Borsari, M. Chemical trapping of gaseous H2S at high and low partial pressures by an iron complex immobilized inside the montmorillonite interlayer. Microporous Mesoporous Mater. 2018, 265, 8–17. [Google Scholar] [CrossRef]
- Castellini, E.; Bernini, F.; Borsari, M.; Brigatti, M.F.; Castro, G.R.; Malferrari, D.; Medici, L.; Mucci, A. Baseline studies of the Clay Minerals Society Source Clay montmorillonite STx-1b. Clays Clay Miner. 2017, 65, 220–233. [Google Scholar] [CrossRef]
- Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, C.H.; Chen, C.H.; Huang, M.H. Seed-Mediated Synthesis of Monodispersed Cu2O Nanocubes with Five Different Size Ranges from 40 to 420 nm. Adv. Funct. Mater. 2007, 17, 3773–3780. [Google Scholar] [CrossRef]
- Castellini, E.; Malferrari, D.; Bernini, F.; Bighi, B.; Mucci, A.; Sainz Diaz, C.I.; Serrano, A.; Castro, G.R.; Brigatti, M.F.; Borsari, M. Tuning of halobenzenes uptake in montmorillonite from gas phase through a functionalization process involving Cu(II)-phenanthroline and heptanethiol. Appl. Clay Sci. 2020, 192, 105642. [Google Scholar] [CrossRef]
- Moore, D.; Reynolds, R.C., Jr. X-ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed.; Oxford University Press: New York, NY, USA, 1997; ISBN 9780195087130. [Google Scholar]
- Sigot, L.; Ducom, G.; Germain, P. Adsorption of hydrogen sulfide (H2S) on zeolite (Z): Retention mechanism. Chem. Eng. 2016, 287, 47–53. [Google Scholar] [CrossRef]
- Zahid, W.M.; Othman, M.A.; Abasaeed, A.E. Enhanced sulfur removal by a tuned composite structure of Cu, Zn, Fe, and Al elements. J. Hazard. Mater. 2017, 331, 273–279. [Google Scholar] [CrossRef]
- Frost, R.L.; Reddy, B.J.; Keeffe, E.C. Structure of selected basic copper (II) sulphate minerals based upon spectroscopy: Implications for hydrogen bonding. J. Mol. Struct. 2010, 977, 90–99. [Google Scholar] [CrossRef] [Green Version]
- Gaur, A.; Shrivastava, B.D. A comparative study of the methods of speciation using X-ray absorption fine structure. Acta Phys. Pol. Ser. A 2011, 121, 647–652. [Google Scholar] [CrossRef]
- Kim, W.B.; Lee, J.S. Quantitative XANES Analysis of Cuprous Dibromide Complex Formed in the Oxidative Carbonylation of Phenols. J. Phys. Chem. B 2003, 107, 9195–9202. [Google Scholar] [CrossRef]
- Shimizu, K.; Maeshima, H.; Yoshida, H.; Satsuma, A.; Hattori, T. Ligand field effect on the chemical shift in XANES spectra of Cu(II) compounds. Phys. Chem. Chem. Phys. 2001, 3, 862–866. [Google Scholar] [CrossRef]
- Gaur, A.; Klysubun, W.; Nitin Nair, N.; Shrivastava, B.D.; Prasad, J.; Srivastava, K. XAFS study of copper(II) complexes with square planar and square pyramidal coordination geometries. J. Mol. Struct. 2016, 1118, 212–219. [Google Scholar] [CrossRef]
- Giorgetti, M.; Guagagnini, L.; Fiddy, S.G.; Santini, C.; Pellei, M. Cu K-edge EXAFS on copper(I) complexes containing dihydridobis(3-nitro-1,2,4-triazol-1-yl)borate and bis(1,2,4-triazol-1-yl)acetate ligand: Evidence for the Cu–O interaction. Polyhedron 2009, 28, 3600–3606. [Google Scholar] [CrossRef]
- Kunzl, V. A linear dependence of energy levels on the valence of elements. Collect. Trav. Chim. Tchecoslov. 1932, 4, 213. [Google Scholar]
- Abuin, M.; Serrano, A.; Chaboy, J.; García, M.A.; Carmona, N. XAS study of Mn, Fe and Cu as indicators of historical glass decay. J. Anal. At. Spectrom. 2013, 28, 1118–1124. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castellini, E.; Bernini, F.; Sebastianelli, L.; Sainz-Díaz, C.I.; Serrano, A.; Castro, G.R.; Malferrari, D.; Brigatti, M.F.; Borsari, M. Interlayer-Confined Cu(II) Complex as an Efficient and Long-Lasting Catalyst for Oxidation of H2S on Montmorillonite. Minerals 2020, 10, 510. https://doi.org/10.3390/min10060510
Castellini E, Bernini F, Sebastianelli L, Sainz-Díaz CI, Serrano A, Castro GR, Malferrari D, Brigatti MF, Borsari M. Interlayer-Confined Cu(II) Complex as an Efficient and Long-Lasting Catalyst for Oxidation of H2S on Montmorillonite. Minerals. 2020; 10(6):510. https://doi.org/10.3390/min10060510
Chicago/Turabian StyleCastellini, Elena, Fabrizio Bernini, Lorenzo Sebastianelli, Claro Ignacio Sainz-Díaz, Aida Serrano, German R. Castro, Daniele Malferrari, Maria Franca Brigatti, and Marco Borsari. 2020. "Interlayer-Confined Cu(II) Complex as an Efficient and Long-Lasting Catalyst for Oxidation of H2S on Montmorillonite" Minerals 10, no. 6: 510. https://doi.org/10.3390/min10060510
APA StyleCastellini, E., Bernini, F., Sebastianelli, L., Sainz-Díaz, C. I., Serrano, A., Castro, G. R., Malferrari, D., Brigatti, M. F., & Borsari, M. (2020). Interlayer-Confined Cu(II) Complex as an Efficient and Long-Lasting Catalyst for Oxidation of H2S on Montmorillonite. Minerals, 10(6), 510. https://doi.org/10.3390/min10060510