Lead Isotopes in Exploration for Basement-Hosted Structurally Controlled Unconformity-Related Uranium Deposits: Kiggavik Project (Nunavut, Canada)
Abstract
:1. Introduction
2. Geological Setting and Uranium Mineralization
3. Materials and Methods
- TAD: Saskatchewan Research Council Geoanalytical Laboratory (SRC-GA; Saskatoon, SK, Canada) 3-acid total digestion of rock pulp using a mixture of ultrapure concentrated hydrofluoric (HCl), nitric (HNO3), and hydrochloric (HF) acids with the pulp being digested to dryness in a hot-block digestion tube system, followed by dissolution of the residue in deionized water prior to analysis. Pb-isotope analyses were carried out using a Perkin Elmer Elan DRC II ICP-MS instrument (PerkinElmer Corporation, Waltham, MA, USA) that was calibrated using certified commercial materials.
- PAD: SRC-GA 2-acid reverse Aqua Regia partial digestion (leaching) of rock pulp using HCl + HNO3 (volume ratio 1:3) in a hot water bath, followed by dilution with deionized water. Pb-isotope analyses were also carried out using a Perkin Elmer Elan DRC II ICP-MS instrument.
- WAL-S: SRC-GA weak acid leach using 5% nitric acid. A total of 0.5 g of sample and 5 mL HNO3 were loaded into a polyurethane tube that was placed into an ultrasonic bath for 2 h and then centrifuged. One gram of the liquid was diluted with 50 g of acid reagent and the Pb isotopic ratios were measured using a Perkin Elmer high-resolution ICP-MS (PerkinElmer Corporation, Waltham, MA, USA).
- WAL-Q: Queen’s Facility for Isotope Research (QFIR; Queen’s University, Kingston, ON, Canada) weak acid leach using 2% nitric acid [10]. A total of 0.5 g of sample and 5 mL HNO3 were loaded into a polyurethane tube that was placed into an ultrasonic bath for 2 h and then centrifuged. One gram of the liquid was diluted with 50 g of acid reagent and the Pb isotopic ratios were measured using a Thermo Scientific Element II high-resolution ICP-MS (Thermo Fisher Scientific, Waltham, MA, USA).
4. Results
4.1. Comparison of Results of the Various Rock Digestions and Leaches
4.1.1. TAD versus PAD
4.1.2. PAD versus WAL
4.1.3. Comparison of WAL Variants
4.2. Pb-Isotope Pathfinder PAD and WAL Geochemistry: Bong and End U Deposits
4.3. Pb-Isotope Pathfinder Geochemistry: Contact U Prospect
5. Discussion
5.1. Comparison and Evaluation of Pb-Isotopic Data from Various Digestion and Leach Methods
5.1.1. TAD Versus PAD
5.1.2. WAL Variants
5.1.3. PAD Versus WAL: Bong and End Deposits
5.2. Pb-Isotope Pathfinder Dispersion Geochemistry Evaluation: Contact Prospect
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Quirt, D.; Benedicto, A. Application of lead isotopes in uranium exploration at Kiggavik (NE Thelon area, Nunavut). In Proceedings of the GAC-MAC Joint Annual Meeting, Whitehorse, Yukon, 1–3 June 2016; poster and abstract no. 89, Abstracts/Resumés. 2016; Volume 39, p. 75. [Google Scholar]
- Quirt, D.; Benedicto, A.; Millar, R. Lead isotopes in exploration for basement-hosted uranium at Kiggavik (Nunavut). In Proceedings of the GAC-MAC Joint Annual Meeting, Kingston, Ontario, 14–18 May 2019; poster and abstract, Abstracts/Resumés. 2017; Volume 40, p. 322. [Google Scholar]
- Benedicto, A.; Quirt, D.; Robbins, J. Lead isotopes in exploration for basement-hosted uranium at Kiggavik (Nunavut). Goldschmidt Abstr. 2019, 255. [Google Scholar]
- Quirt, D.H. Applying Pb isotopes in unconformity-type uranium exploration. In Proceedings of the 24th IAGS, Fredericton, NB, Canada, 1–4 June 2009; Lentz, D., Thorne, K.G., Beal, K.-L., Eds.; 2009; pp. 445–448. [Google Scholar]
- Kyser, K.; Lahusen, L.; Drever, G.; Dunn, C.; Leduc, E.; Chipley, D. Using Pb isotopes in surface media to distinguish anthropogenic sources from undercover uranium sources. Comptes Rendus-Geosci. 2015, 347, 215–226. [Google Scholar] [CrossRef]
- Fayek, M.; Shabaga, B.; Sharpe, R.; Quirt, D. Application of SIMS U-Pb and Pb-Pb geochronology of uraninite and galena from selected Canadian uranium deposits. In Applied Isotope Geochemistry; Eglington, B., Fayek, M., Kyser, K., Eds.; Topics in Mineral Sciences; Mineralogical Association of Canada: Québec, QC, Canada, 2019; Volume SC48, pp. 59–76. [Google Scholar]
- Faure, G. Principles of Isotope Geology; John Wiley and Sons: New York, NY, USA, 1986; 589p. [Google Scholar]
- Grare, A.; Benedicto, A.; Lacombe, O.; Trave, A.; Ledru, P.; Blain, M.; Robbins, J. The Contact uranium prospect, Kiggavik project, Nunavut (Canada): Tectonic history, structural constraints and timing of mineralization. Ore Geol. Rev. 2018, 93, 141–167. [Google Scholar] [CrossRef] [Green Version]
- Gulson, B.L. Lead isotopes in mineral exploration. In Developments in Economic Geology 23; Elsevier: Amsterdam, The Netherlands, 1986; 245p. [Google Scholar]
- Holk, G.J.; Kyser, T.K.; Chipley, D.; Hiatt, E.E.; Marlatt, J. Mobile Pb-isotopes in Proterozoic sedimentary basins as guides for exploration of uranium deposits. J. Geochem. Explor. 2003, 80, 297–320. [Google Scholar] [CrossRef]
- Martz, P.; Mercadier, J.; Perret, J.; Villeneuve, J.; Deloule, E.; Cathelineau, M.; Quirt, D.; Doney, A.; Ledru, P. Post-crystallization alteration of natural uraninites: Implications for dating, tracing, and nuclear forensics. Geochim. Cosmochim. Acta 2019, 249, 138–159. [Google Scholar] [CrossRef]
- Carr, G.; Rutherford, N. U exploration using Pb isotopes: Opportunities in partial extraction geochemistry. In Proceedings of the 22nd International Geochemical Exploration Symposium (IGES 2005), Perth, Australia, 19–23 September 2005. [Google Scholar]
- IAEA. World Distribution of Uranium Deposits (UDEPO) with Uranium Deposit Classification; IAEA-TECHDOC-1629; International Atomic Energy Agency: Vienna, Austria, 2009; 117p. [Google Scholar]
- IAEA. Unconformity-Related Uranium Deposits; IAEA-TECHDOC-1857; International Atomic Energy Agency: Vienna, Austria, 2018; 295p. [Google Scholar]
- Fayek. Uranium ore deposits: A review. In Uranium: Cradle to Grave; Burns, P.C., Sigmon, G., Eds.; Short Course; Mineralogical Association of Canada: Québec, QC, Canada, 2013; Volume 43, pp. 121–147. [Google Scholar]
- Grare, A.; Benedicto, A.; Lacombe, O.; Trave, A.; Robbins, J.; Blain, M. Structural controls on uranium mineralization at the Kiggavik Project (NE Thelon area, Canada). SGA 2017 extended abstract. In Proceedings of the SGA Symposium, Quebec, QC, Canada, 20–23 August 2017. [Google Scholar]
- Grare, A.; Benedicto, A.; Mercadier, J.; Lacombe, O.; Trave, A.; Guilcher, M.; Richard, A.; Ledru, P.; Blain, M.; Robbins, J.; et al. Structural controls and metallogenic model of polyphase uranium mineralization in the Kiggavik area (Nunavut, Canada). Miner. Depos. 2020. [Google Scholar] [CrossRef]
- Gall, Q.; Peterson, T.D.; Donaldson, A. A proposed revision of Early Proterozoic stratigraphy of the Thelon and Baker Lake basins, Northwest Territories. Northwest Territ. Curr. Res. Part C Geol. Surv. Canada 1992, 92-1C, 129–137. [Google Scholar]
- Hiatt, E.E.; Kyser, K.; Dalrymple, R.W. Relationships among sedimentology, stratigraphy, and diagenesis in the Proterozoic Thelon Basin, Nunavut, Canada: Implications for paleoaquifers and sedimentary-hosted mineral deposits. J. Geochem. Explor. 2003, 80, 221–240. [Google Scholar] [CrossRef]
- Davis, W.J.; Gall, Q.; Jefferson, C.W.; Rainbird, R.H. Fluorapatite in the Paleoproterozoic Thelon Basin: Structural-stratigraphic context, in situ ion microprobe U–Pb ages, and fluid-flow history. Geol. Soc. Am. Bull. 2011, 123, 1056–1073. [Google Scholar] [CrossRef]
- Chamberlain, K.R.; Schmitt, A.K.; Swappa, S.M.; Harrison, T.M.; Swoboda-Colberg, N.; Bleeker, W.; Peterson, T.D.; Jefferson, C.W.; Khudoley, A. In situ U–Pb SIMS (IN-SIMS) micro-baddeleyite dating of mafic rocks: Method with examples. Precambrian Res. 2010, 183, 379–387. [Google Scholar] [CrossRef]
- Jefferson, C.W.; Pehrsson, S.; Peterson, T.; Chorlton, L.; Davis, W.; Keating, P.; Gandhi, S.; Fortin, R.; Buckle, J.; Miles, W.; et al. Northeast Thelon Region Geoscience Framework—New Maps and Data for Uranium in Nunavut; Open File 6949; Geological Survey of Canada: Ottawa, ON, Canada, 2011; p. 1. [Google Scholar] [CrossRef]
- Ramaekers, P.; Jefferson, C.W.; Yeo, G.M.; Collier, B.; Long, D.G.F.; Drever, G.; McHardy, S.; Jiricka, D.; Cutts, C.; Wheatley, K.; et al. Revised geological map and stratigraphy of the Athabasca Group, Saskatchewan and Alberta. In EXTECH IV: Geology and Uranium EXploration TECHnology of the Proterozoic Athabasca Basin, Saskatchewan and Alberta; Jefferson, C.W., Delaney, G., Eds.; Geological Survey of Canada: Ottawa, ON, Canada, 2007; pp. 155–192. [Google Scholar]
- Hoeve, J.; Sibbald, T.I.I. On the genesis of Rabbit Lake and other unconformity-type uranium deposits in northern Saskatchewan, Canada. Econ. Geol. 1978, 73, 1450–1473. [Google Scholar]
- Hoeve, J.; Quirt, D.H. Mineralization and host-rock alteration in relation to clay mineral diagenesis and evolution of the Middle Proterozoic Athabasca Basin, northern Saskatchewan, Canada; Technical Report; Saskatchewan Research Council: Saskatoon, SK, Canada, 1984; p. 187. [Google Scholar]
- Hoeve, J.; Quirt, D. A stationary redox front as a critical factor in the formation of high-grade unconformity-type uranium ores in the Athabasca Basin, northern Saskatchewan. Bullétin Minéralogique 1987, 110, 157–171. [Google Scholar] [CrossRef]
- Peterson, T.D. Geology of the Dubawnt Lake area, Nunavut-Northwest Territories; Geological Survey of Canada: Ottawa, ON, Canada, 2006; Volume 580, p. 51. [Google Scholar]
- Davis, W.J.; Hanmer, S.; Tella, S.; Sandeman, H.A.; Ryan, J.J. U–Pb geochronology of the MacQuoid supracrustal belt and Cross Bay plutonic complex: Key components of the northwestern Hearne subdomain, western Churchill Province, Nunavut, Canada. Precambrian Res. 2006, 145, 53–80. [Google Scholar] [CrossRef]
- Pehrsson, S.J.; Berman, R.; Davis, W.J. Paleoproterozoic orogenesis during Nuna aggregation: A case study of reworking of the Archean Rae craton, Woodburn Lake, Nunavut. Precambrian Res. 2013, 232, 167–188. [Google Scholar]
- Jefferson, C.W.; Thomas, D.J.; Gandhi, S.S.; Ramaekers, P.; Delaney, G.; Brisbin, D.; Cutts, C.; Quirt, D.; Portella, P.; Olson, R.A. Unconformity-associated uranium deposits of the Athabasca Basin, Saskatchewan and Alberta. In EXTECH IV: Geology and Uranium Exploration Technology of the Proterozoic Athabasca Basin, Saskatchewan and Alberta; Jefferson, C.W., Delaney, G., Eds.; Geological Survey of Canada: Ottawa, ON, Canada, 2007; pp. 23–67. [Google Scholar]
- Peterson, T.D. Geological Setting and Geochemistry of the ca. 2.6 Ga Snow Island Suite in the Central Rae Domain of the Western Churchill Province; Open File 7841; Nunavut. Geol Survey of Canada: Ottawa, ON, Canada, 2015. [Google Scholar]
- Johnstone, D.; Bethune, K.; Quirt, D.; Benedicto, A. Lithostratigraphic and structural controls of uranium mineralization in the Kiggavik East Zone, Centre Zone, and Main Zone deposits. In Abstracts-Résumés, Proceedings of the GAC-MAC Joint Annual Meeting, Whitehorse, YT, Canada, 1–3 June 2016; Geological Association of Canada: St. John’s, NL, Canada, 2016; Volume 39, p. 41. [Google Scholar]
- Johnstone, D.; Bethune, K.; Quirt, D.; Benedicto, A.; Ledru, P. Lithostructural controls of U mineralization in the Kiggavik Main and Centre zones, north-central Rae craton: A record of long-lived tectonism and ground preparation for U ore systems. In Abstracts-Résumés, Proceedings of the Joint Annual Meeting, Kingston, ON, Canada, 14–18 May 2017; Geological Association of Canada: St. John’s, NL, Canada; Mineralogical Association of Canada: Québec, QC, Canada, 2017; Volume 40, p. 190. [Google Scholar]
- Rainbird, R.H.; Davis, W.J.; Pehrsson, S.J.; Wodicka, N.; Rayner, N.; Skulski, T. Early Paleoproterozoic supracrustal assemblages of the Rae domain, Nunavut, Canada: Intracratonic basin development during supercontinent break-up and assembly. Precambrian Res. 2010, 181, 167–186. [Google Scholar] [CrossRef]
- Roy, R.; Benedicto, A.; Grare, A.; Béhaegel, M.; Yoann, R.; Grant, H. Three-dimensional gravity modelling applied to the exploration of uranium unconformity-related basement-hosted deposits: The Contact prospect case study, Kiggavik, NE Thelon region (Nunavut, Canada). Can. J. Earth Sci. 2017, 54, 869–882. [Google Scholar]
- Scott, J.M.J.; Peterson, T.D.; Jefferson, C.W.; Cousens, B.L. Petrology and geochronology of Paleoproterozoic intrusive rocks, Kiggavik uranium camp, Nunavut. Can. J. Earth Sci. 2015, 518, 1–80. [Google Scholar] [CrossRef]
- LeCheminant, A.N.; Heaman, L.M. MacKenzie igneous events, Canada: Middle Proterozoic hotspot magmatism associated with ocean opening. Earth Planet. Sci. Lett. 1989, 96, 38–48. [Google Scholar] [CrossRef]
- Heaman, L.M.; LeCheminant, A.N. U-Pb baddeleyite ages of the Muskox intrusion and MacKenzie dyke swarm, N.W.T., Canada; Joint Annual Meeting, Program with Abstracts; Geological Association of Canada: St. John’s, NL, Canada; Mineralogical Association of Canada: Québec, QC, Canada, 1988; Volume 13, p. A53. [Google Scholar]
- Sharpe, R.; Fayek, M.; Quirt, D.; Jefferson, C.W. Geochronology and genesis of the Bong uranium deposit, Thelon Basin, Nunavut, Canada. Econ. Geol. 2015, 110, 1759–1777. [Google Scholar]
- Shabaga, B.; Fayek, M.; Jefferson, C.W.; Camacho, A. Mineralogy, geochronology, and genesis of the Andrew Lake uranium deposit, Thelon Basin, Nunavut, Canada. Can. J. Earth Sci. 2017, 54, 850–868. [Google Scholar] [CrossRef]
- Quirt, D.H. Athabasca unconformity-type uranium deposits: One deposit type with many variations. In Uranium Geochemistry, Proceedings of International Conference, Géochime de l’Uranium, Nancy, France, 13–16 April 2003; Cuney, M., Ed.; Université Henri-Poincaré: Nancy, France, 2003; pp. 309–312. [Google Scholar]
- Chi, G.; Haid, T.; Quirt, D.; Fayek, M.; Blamey, N. Petrography, fluid inclusion analysis, and geochronology of the End uranium deposit, Kiggavik, Nunavut, Canada. Miner. Deposita 2017, 52, 211–232. [Google Scholar] [CrossRef]
- Pagel, M.; Michard, A.; Juteau, M.; Turpin, L. Sm–Nd, Pb–Pb, and Rb–Sr systematics of the basement in the Cigar Lake area, Saskatchewan, Canada. Can. J. Earth Sci. 1993, 30, 731–742. [Google Scholar] [CrossRef]
Statistic | 204Pb-t | 206Pb-t | 207Pb-t | 208Pb-t | 204Pb-p | 206Pb-p | 207Pb-p | 208Pb-p |
---|---|---|---|---|---|---|---|---|
Geometric Mean | 0.122 | 4.434 | 2.185 | 4.972 | 0.040 | 1.661 | 0.762 | 1.751 |
Median | 0.105 | 3.000 | 1.815 | 4.220 | 0.032 | 1.080 | 0.590 | 1.410 |
Mode | 0.064 | 2.020 | 1.010 | 2.600 | 0.014 | 1.200 | 1.040 | 1.140 |
Minimum | 0.004 | 0.347 | 0.026 | 0.114 | 0.002 | 0.097 | 0.046 | 0.154 |
Maximum | 12 | 1890 | 282 | 464 | 11.2 | 1870 | 270 | 456 |
Count | 2208 | 2208 | 2208 | 2208 | 2207 | 2207 | 2207 | 2207 |
Confidence Level on mean (95.0%) | 0.0051 | 0.2417 | 0.0913 | 0.1913 | 0.0021 | 0.1065 | 0.0401 | 0.0834 |
Statistic | 204Pb-WAL-S | 206Pb-WAL-S | 207Pb-WAL-S | 208Pb-WAL-S | 204Pb-WAL-Q | 206Pb-WAL-Q | 207Pb-WAL-Q | 208Pb-WAL-Q |
Geometric Mean | 0.010 | 0.335 | 0.162 | 0.452 | 0.009 | 0.306 | 0.147 | 0.408 |
Median | 0.009 | 0.308 | 0.153 | 0.436 | 0.009 | 0.272 | 0.134 | 0.378 |
Mode | 0.004 | 0.140 | 0.062 | 0.182 | 0.004 | 0.209 | 0.063 | 1.100 |
Minimum | 0.001 | 0.022 | 0.010 | 0.024 | 0.001 | 0.008 | 0.004 | 0.014 |
Maximum | 0.344 | 111 | 11.5 | 17 | 0.322 | 126 | 12.6 | 15.5 |
Count | 607 | 607 | 607 | 607 | 607 | 607 | 607 | 607 |
Confidence Level on mean (95.0%) | 0.0009 | 0.0309 | 0.0139 | 0.0387 | 0.0008 | 0.0293 | 0.0129 | 0.0355 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quirt, D.; Benedicto, A. Lead Isotopes in Exploration for Basement-Hosted Structurally Controlled Unconformity-Related Uranium Deposits: Kiggavik Project (Nunavut, Canada). Minerals 2020, 10, 512. https://doi.org/10.3390/min10060512
Quirt D, Benedicto A. Lead Isotopes in Exploration for Basement-Hosted Structurally Controlled Unconformity-Related Uranium Deposits: Kiggavik Project (Nunavut, Canada). Minerals. 2020; 10(6):512. https://doi.org/10.3390/min10060512
Chicago/Turabian StyleQuirt, David, and Antonio Benedicto. 2020. "Lead Isotopes in Exploration for Basement-Hosted Structurally Controlled Unconformity-Related Uranium Deposits: Kiggavik Project (Nunavut, Canada)" Minerals 10, no. 6: 512. https://doi.org/10.3390/min10060512
APA StyleQuirt, D., & Benedicto, A. (2020). Lead Isotopes in Exploration for Basement-Hosted Structurally Controlled Unconformity-Related Uranium Deposits: Kiggavik Project (Nunavut, Canada). Minerals, 10(6), 512. https://doi.org/10.3390/min10060512