Reutilization Prospects of Diamond Clay Tailings at the Lomonosov Mine, Northwestern Russia
Abstract
:1. Introduction
1.1. Mineral Processing Waste as An Environmental Issue
1.2. Mineral Processing Waste as A Promising Raw Material
2. Materials and Methods
2.1. Mining and Processing Plant
2.2. Study Area
2.3. Slurry Sampling and Analysis
- Cement clinker and ceramics manufacture
- Integration of alkaline clay into the reclamation of acidic peat bogs
- Production of aqueous clay-based drilling fluid
2.4. Thermal Treatment and Compression Tests
2.5. Soil Deacidification Experiments
2.6. Drilling Fluid Quality Evaluation
3. Results and Discussion
3.1. Composition of the Diamond Clay Tailings
3.2. Reprocessing as Building Materials
3.3. Integration into Reclamation Scenarios
3.4. Production of Aqueous Clay-Based Drilling Fluid
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Timofeev, I.; Kosheleva, N.; Kasimov, N. Contamination of soils by potentially toxic elements in the impact zone of tungsten-molybdenum ore mine in the Baikal region: A survey and risk assessment. Sci. Total Environ. 2018, 642, 63–76. [Google Scholar] [CrossRef]
- Yusupov, D.V.; Bolshunova, T.S.; Mezhibor, A.M.; Rikhvanov, L.P.; Baranovskaya, N.V. The use of Betula Pendula R. Leaves for the assessment of environmental pollution by metals around tailings from a gold deposit (Western Siberia, Russia). Int. Multidiscip. Sci. GeoConf. Surv. Geol. Min. Ecol. Manag. SGEM 2017, 17, 665–672. [Google Scholar]
- García-Lorenzo, M.L.; Crespo-Feo, E.; Esbrí, J.M.; Higueras, P.; Grau, P.; Crespo, I.; Sánchez-Donoso, R. Assessment of Potentially Toxic Elements in Technosols by Tailings Derived from Pb–Zn–Ag Mining Activities at San Quintín (Ciudad Real, Spain): Some Insights into the Importance of Integral Studies to Evaluate Metal Contamination Pollution Hazards. Minerals 2019, 9, 346. [Google Scholar] [CrossRef] [Green Version]
- Tepanosyan, G.; Sahakyan, L.; Belyaeva, O.; Asmaryan, S.; Saghatelyan, A. Continuous impact of mining activities on soil heavy metals levels and human health. Sci. Total Environ. 2018, 639, 900–909. [Google Scholar] [CrossRef] [PubMed]
- Bolshunova, T.S.; Rikhvanov, L.P.; Mezhibor, A.M.; Baranovskaya, N.V.; Yusupov, D.V. Biogeochemical features of epiphytyc lichens from the area of the tailing of a gold-polymetallic deposit (Kemerovo region, Russia) comparative to a reference area. Int. Multidiscip. Sci. GeoConf. Surv. Geol. Min. Ecol. Manag. SGEM 2017, 17, 165–172. [Google Scholar]
- The Global Tailings Portal. Available online: https://tailing.grida.no (accessed on 5 May 2020).
- Shpilevaya, D.V. Geological Structure, Mineral Composition, and Environmental and Economic Aspects of the Development of the Arkhangelskaya Pipe (the M.V. Lomonosov Diamond Deposit). Ph.D. Thesis, Lomonosov Moscow State University, Moscow, Russia, 2008. [Google Scholar]
- Saponite: Mineral Information, Data and Localities. Available online: https://www.mindat.org/min-3528.html (accessed on 5 May 2020).
- Oblitsov, A.Y. Utilization of Diamond Ore Dressing Waste of the M.V. Lomonosov Diamond Deposit. Ph.D. Thesis, Saint Petersburg Mining University, St Petersburg, Russia, 2012. [Google Scholar]
- Selyanina, S.B.; Ponomareva, T.I.; Mikhailova, G.V.; Churakova, E.Y.; Zubov, I.N.; Yarygina, O.N. Transformation of Arctic ecosystems under impact of open-pit extraction of mineral resources. IOP Conf. Ser. Mater. Sci. Eng. 2019, 696, 012003. [Google Scholar] [CrossRef] [Green Version]
- Chanturiya, V.A.; Minenko, V.G.; Makarov, D.V.; Suvorova, O.V.; Selivanova, E.A. Advanced Techniques of Saponite Recovery from Diamond Processing Plant Water and Areas of Saponite Application. Minerals 2018, 8, 549. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, K.G.; Gupta, S.S. Removal of Cu(II) by natural and acid-activated clays: An insight of adsorption isotherm, kinetic and thermodynamics. Desalination 2011, 272, 66–75. [Google Scholar] [CrossRef]
- Petra, L.; Billik, P.; Melichová, Z.; Komadel, P. Mechanochemically activated saponite as materials for Cu2+ and Ni2+ removal from aqueous solutions. Appl. Clay Sci. 2017, 143, 22–28. [Google Scholar] [CrossRef]
- Parthasarathy, G.; Sreedhar, B.; Boyapati, M.C. Method for Adsorption and Reduction of Hexavalent Chromium by Using Ferrous-Saponite. U.S. Patent 7273557B2, 25 September 2007. [Google Scholar]
- Angeles-Boza, A.M.; Landis, C.R.; Shumway, W.W. Composition and method for removing metal contaminants. U.S. Patent 9404166B2, 2 August 2016. [Google Scholar]
- Uddin, M.K. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem. Eng. J. 2017, 308, 438–462. [Google Scholar] [CrossRef]
- Pshinko, G.N.; Kobets, S.A.; Bogolepov, A.A.; Goncharuk, V.V. Treatment of waters containing uranium with saponite clay. J. Water Chem. Technol. 2010, 32, 10–16. [Google Scholar] [CrossRef]
- Villa-Alfagemea, M.; Hurtado, S.; Castro, M.; Mrabet, S.; Orta, M.; Pazosc, M.; Alba, M. Quantification and comparison of the reaction properties of FEBEX and MX-80 clays with saponite: Europium immobilisers under subcritical conditions. Appl. Clay Sci. 2014, 101, 10–15. [Google Scholar] [CrossRef]
- Carniato, F.; Bisio, C.; Psaro, R.; Marchese, L.; Guidotti, M. Niobium(V) saponite clay for the catalytic oxidative abatement of chemical warfare agents. Angew. Chem. Int. Ed. 2014, 53, 10095–10098. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Pozuelo, G.; Sanz-Pérez, E.S.; Arencibia, A.; Pizarro, P.; Sanz, R.; Serrano, D.P. CO2 adsorption on amine-functionalized clays. Microporous Mesoporous Mater. 2019, 282, 38–47. [Google Scholar] [CrossRef]
- Zhou, C.H.; Zhou, Q.; Wu, Q.Q.; Petit, S.; Jiang, X.C.; Xia, S.T.; Li, C.S.; Yu, W.H. Modification, hybridization and applications of saponite: An overview. Appl. Clay Sci. 2019, 168, 136–154. [Google Scholar] [CrossRef]
- Nityashree, N.; Gautam, U.K.; Rajamathi, M. Synthesis and thermal decomposition of metal hydroxide intercalated saponite. Appl. Clay Sci. 2014, 87, 163–169. [Google Scholar] [CrossRef]
- Hwang, S.Y.; ImSeung, S. Modified Clay, a Treating Method Thereof, Clay-Polymer Nanocomposite and a Manufacturing Method Thereof. KR Patent 101010735B1, 25 January 2011. [Google Scholar]
- Albeniz, S.; Vicente, M.A.; Trujillano, R.; Korili, S.A.; Gil, A. Synthesis and characterization of organosaponites. Thermal behavior of their poly(vinyl chloride) nanocomposites. Appl. Clay Sci. 2014, 99, 72–82. [Google Scholar] [CrossRef]
- Gebretsadik, F.; Mance, D.; Baldus, M.; Salagre, P.; Cesteros, Y. Microwave synthesis of delaminated acid saponites using quaternary ammonium salt or polymer as template. Study of pH influence. Appl. Clay Sci. 2015, 114, 20–30. [Google Scholar] [CrossRef]
- Gebretsadik, F.B.; Cesteros, Y.; Salagre, P.; Giménez-Mañogil, J.; García-García, A.; Bueno-López, A. Potential of Cu-saponite catalysts for soot combustion. Catal. Sci. Technol. 2016, 6, 507–514. [Google Scholar] [CrossRef] [Green Version]
- Luukkonen, T.; Abdollahnejad, Z.; Yliniemi, J.; Mastali, M.; Kinnunen, P.; Illikainen, M. Alkali-activated soapstone waste—Mechanical properties, durability, and economic prospects. Sustain. Mater. Technol. 2019, 22, e00118. [Google Scholar] [CrossRef]
- Drozdyuk, T.; Ayzenshtadt, A.; Frolova, M.; Nosulya, A. Thermal insulation composite with the use of mining waste. IOP Conf. Ser. Mater. Sci. Eng. 2018, 365, 032062. [Google Scholar] [CrossRef] [Green Version]
- Volodchenko, A.N.; Zhukov, R.V.; Lesovik, V.S. Silicate-based materials overburden Arkhangelsk diamond province-ray. Univ. N. Cauc. Reg. Tech. Sci. Ser. 2006, 3, 67–70. (In Russian) [Google Scholar]
- Morozova, M.; Frolova, M.; Lesovik, V.; Ayzenshtadt, A. Operating characteristics of concrete modified by high-dispersed saponite-containing material. Int. Multidiscip. Sci. GeoConf. Surv. Geol. Min. Ecol. Manag. SGEM 2018, 18, 371–376. [Google Scholar]
- Morozova, M.V.; Ayzenstadt, A.M.; Makhova, T.A. The use of saponite-containing material for producing frost-resistant concretes. Ind. Civ. Constr. 2015, 1, 28–31. (In Russian) [Google Scholar]
- Kim, D.H. Natural Ore Use Construction Mortar of Manufacture Method. KR Patent 100532250B1, 29 November 2005. [Google Scholar]
- Chanturiya, V.A.; Minenko, V.G.; Samusev, A.L.; Masloboev, V.A.; Makarov, D.V.; Suvorova, O.V. Method of Manufacturing Wall Products and Tiles. RU Patent 2640437C1, 9 January 2018. [Google Scholar]
- Posukhova, T.V.; Dorofeev, S.A.; Garanin, K.V.; Siaoin, G. Diamond industry wastes: Mineral composition and recycling. Mosc. Univ. Geol. Bull. 2013, 68, 96–107. [Google Scholar] [CrossRef]
- O’Connor, P.; Daamen, S. Stable Suspensions of Biomass Comprising Inorganic Particulates. WO Patent 2008020046A3, 17 July 2008. [Google Scholar]
- Nozoe, T.; Tsuji, Y.; Black-Wood, W.; Kojima, K.; Ozaki, M.; Hori, S. Friction Reducing Coatings. WO Patent 2011082137A1, 7 July 2011. [Google Scholar]
- Wang, W.; Zhen, W.; Bian, S.; Xi, X. Structure and properties of quaternary fulvic acid–intercalated saponite/poly (lactic acid) nanocomposites. Appl. Clay Sci. 2015, 109–110, 136–142. [Google Scholar] [CrossRef]
- Zarate-Reyes, L.; Lopez-Pacheco, C.; Nieto-Camacho, A.; Palacios, E.; Gómez-Vidales, V.; Kaufhold, S.; Ufer, K.; García Zepeda, E.; Cervini-Silva, J. Antibacterial clay against gram-negative antibiotic resistant bacteria. J. Hazard. Mater. 2018, 342, 625–632. [Google Scholar] [CrossRef]
- Gorpynchenko, I.I.; Nurimanov, K.R. Application dietary supplement Saponit in patients with chronic prostatitis and erectile dysfunction. Health Man (Zdorov’e mužčiny) 2014, 3, 77–79. Available online: https://www.elibrary.ru/item.asp?id=25436151 (accessed on 20 May 2020). (In Russian with English abstract).
- Mining Technology. The World’s Top 10 Biggest Diamond Mines. Available online: https://www.mining-technology.com/features/feature-the-worlds-top-10-biggest-diamond-mines (accessed on 20 May 2020).
- Serdyukova, A. Rapaport Magazine. The North Diamond: Diamonds in the Northwest Russia are a New Brilliant Spot for the Industry. 2013. Available online: http://eng.alrosa.ru/the-north-diamond-rapaport/ (accessed on 5 May 2020).
- Diamonds.net; Miller, J. Severalmaz Opens Second Processing Plant at Lomonosov. 2014. Available online: http://www.diamonds.net/News/NewsItem.aspx?ArticleID=46389&ArticleTitle=Severalmaz+Opens+Second+Processing+Plant+at+Lomonosov (accessed on 5 May 2020).
- Rough & Polished. Severalmaz Recovers First 10 Million Carats of Diamonds at Lomonosov Deposit. 2017. Available online: http://www.rough-polished.com/en/news/105637.html (accessed on 5 May 2020).
- Smit, K.V.; Shor, R. Geology and Development of the Lomonosov diamond deposit, Northwestern Russia. Gems Gemol. 2017, 53, 144–167. [Google Scholar]
- Shchukina, E.V.; Shchukin, V.S. Diamond Exploration Potential of the Northern East European Platform. Minerals 2018, 8, 189. [Google Scholar] [CrossRef] [Green Version]
- Shchukina, E.V.; Agashev, A.M.; Shchukin, V.S. Diamond-Bearing Root Beneath the Northern East European Platform (Arkhangelsk Region, Russia): Evidence from Cr-Pyrope Trace-Element Geochemistry. Minerals 2019, 9, 261. [Google Scholar] [CrossRef] [Green Version]
- Kalemeneva, E. Zolotitsa: How Diamond Mining Threatens the Ecological Conditions of a River Region. Environment & Society Portal, Arcadia, 2014, No. 8. Rachel Carson Center for Environment and Society. Available online: https://doi.org/10.5282/rcc/5393 (accessed on 5 May 2020).
- Evdokia, B.; Anna, B. Damage Compensation for Indigenous Peoples in the Conditions of Industrial Development of Territories on the Example of the Arctic Zone of the Sakha Republic. Resources 2019, 8, 55. [Google Scholar] [CrossRef] [Green Version]
- Nosov, S.I.; Bondarev, B.E.; Gladkov, A.A.; Gassiy, V. Land Resources Evaluation for Damage Compensation to Indigenous Peoples in the Arctic (Case-Study of Anabar Region in Yakutia). Resources 2019, 8, 143. [Google Scholar] [CrossRef] [Green Version]
- Alekseev, A.I.; Zubkova, O.S.; Kononchuk, O.O. Influence of the development of the mineral resources sector of the Arkhangelsk region on the environment. In Innovation-Based Development of the Mineral Resources Sector: Challenges and Prospects, Proceedings of the 11th conference of the Russian-German Raw Materials Forum, 7–8 November 2018, Potsdam, Germany; CRC Press: Boca Raton, FL, USA, 2019; pp. 437–447. [Google Scholar]
- Bezel, V.S.; Zhuikova, T.V. Role of herbaceous plant communities in biogenic cycles of chemical elements. Biol. Bull. 2011, 38, 950–956. [Google Scholar] [CrossRef]
- Sannikov, P.Y.; Andreev, D.N.; Buzmakov, S.A. Identification and analysis of deadwood using an unmanned aerial vehicle. Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosm. 2018, 15, 103–113. [Google Scholar] [CrossRef]
- ALROSA. Tailings Dam Management. Response to the Church of England Pension Board and the Council on Ethics Swedish National Pension Funds, 21 August 2019. Available online: http://www.alrosa.ru/wp-content/uploads/2019/08/Response-to-The-Church-of-England.pdf (accessed on 5 May 2020).
- Pashkevich, M.A.; Petrova, T.A. Recyclability of ore beneficiation wastes at the Lomonosov Deposit. J. Ecol. Eng. 2019, 20, 27–33. [Google Scholar] [CrossRef]
- Li, C.; Wen, Q.; Hong, M.; Zhuang, Z.; Yu, Y. Heavy metals leaching in bricks made from lead and zinc mine tailings with varied chemical components. Constr. Build. Mater. 2017, 134, 443–451. [Google Scholar] [CrossRef]
- Tepanosyan, G.; Sahakyan, L.; Maghakyan, N.; Saghatelyan, A. Combination of compositional data analysis and machine learning approaches to identify sources and geochemical associations of potentially toxic elements in soil and assess the associated human health risk in a mining city. Environ. Pollut. 2020, 261, 114210. [Google Scholar] [CrossRef]
- Alekseenko, V.A.; Maximovich, N.G.; Alekseenko, A.V. Geochemical Barriers for Soil Protection in Mining Areas. In Assessment, Restoration and Reclamation of Mining Influenced Soils; Bech, J., Bini, C., Pashkevich, M., Eds.; Academic Press: London, UK, 2017; pp. 255–274. [Google Scholar]
- Fall, M.; Nasir, O. Mechanical Behaviour of the Interface Between Cemented Tailings Backfill and Retaining Structures Under Shear Loads. Geotech. Geol. Eng. 2010, 28, 779–790. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, H.; Liu, L.; Ji, R.; Wang, X. Preparation and characterization of permeable bricks from gangue and tailings. Constr. Build. Mater. 2017, 148, 484–491. [Google Scholar] [CrossRef]
- Kuranchie, F.A.; Shukla, S.K.; Habibi, D. Utilisation of iron ore mine tailings for the production of geopolymer bricks. Int. J. Min. Reclam. Environ. 2016, 30, 92–114. [Google Scholar] [CrossRef]
- Tayebi-Khorami, M.; Edraki, M.; Corder, G.; Golev, A. Re-Thinking Mining Waste through an Integrative Approach Led by Circular Economy Aspirations. Minerals 2019, 9, 286. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, J.; Mondal, A.K.; Singh, N.; Das, S.K. Evaluation of iron ore tailings for the production of building materials. Ind. Ceram. 2011, 31, 115–119. [Google Scholar]
- Mohamed Soltan, A.M.; Pöhler, K.; Fuchs, F.; Koenig, A.; Pöllmann, H. Clay-bricks from recycled rock tailings. Ceram. Int. 2016, 42, 16685–16696. [Google Scholar] [CrossRef]
- Yagüe, S.; Sánchez, I.; Vigil de la Villa, R.; García-Giménez, R.; Zapardiel, A.; Frías, M. Coal-Mining Tailings as a Pozzolanic Material in Cements Industry. Minerals 2018, 8, 46. [Google Scholar] [CrossRef] [Green Version]
- Cihangir, F.; Ercikdi, B.; Kesimal, A.; Turan, A.; Deveci, H. Utilisation of alkali-activated blast furnace slag in paste backfill of high-sulphide mill tailings: Effect of binder type and dosage. Miner. Eng. 2012, 30, 33–43. [Google Scholar] [CrossRef]
- Zhou, C.; Liu, G.; Wu, S.; Lam, P.K.S. The environmental characteristics of usage of coal gangue in bricking-making: A case study at Huainan, China. Chemosphere 2014, 95, 274–280. [Google Scholar] [CrossRef]
- Taha, Y.; Benzaazoua, M.; Edahbi, M.; Mansori, M.; Hakkou, R. Leaching and geochemical behavior of fired bricks containing coal wastes. J. Environ. Manag. 2018, 209, 227–235. [Google Scholar] [CrossRef]
- Rudmin, M.; Oskina, Y.; Banerjee, S.; Mazurov, A.; Soktoev, B.; Shaldybin, M. Roasting-leaching experiments on glauconitic rocks of Bakchar ironstone deposit (Western Siberia) for evaluation their fertilizer potential. Appl. Clay Sci. 2018, 162, 121–128. [Google Scholar] [CrossRef]
- Yang, S.X.; Li, J.T.; Yang, B.; Zhang, J.T.; Shu, W.S. Effectiveness of amendments on re-acidification and heavy metal immobilization in an extremely acidic mine soil. J. Environ. Monit. 2011, 13, 1876–1883. [Google Scholar] [CrossRef]
- Gałka, B.; Kabała, C.; Karczewska, A.; Sowiński, J.; Jakubiec, J. Variability of soil properties in an intensively cultivated experimental field. Soil Sci. Annu. 2016, 67, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Kremcheev, E.A.; Nagornov, D.O.; Kremcheeva, D.A. Changing hydraulic conductivity after rupturing native structure of peat under limited evaporation conditions. In Processes and Phenomena on the Boundary between Biogenic and Abiogenic Nature; Frank-Kamenetskaya, O.V., Vlasov, D.Y., Panova, E.G., Lessovaia, S.N., Eds.; Springer: Cham, Switzerland, 2020; pp. 233–256. [Google Scholar]
- Bisio, C.; Gatti, G.; Boccaleri, E.; Marchese, L.; Bertinetti, L.; Coluccia, S. On the acidity of saponite materials: A combined HRTEM, FTIR, and solid-state NMR study. Langmuir 2008, 24, 2808–2819. [Google Scholar] [CrossRef] [PubMed]
- Farrell, M.; Healey, J.R.; Godbold, D.L.; Tandy, S.; Jones, D.L. Modification of Fertility of Soil Materials for Restoration of Acid Grassland Habitat. Restor. Ecol. 2011, 19, 509–519. [Google Scholar] [CrossRef]
- Yang, D.; Sasaki, A.; Endo, M. Reclamation of a waste arsenic-bearing gypsum as a soil conditioner via acid treatment and subsequent Fe(II)–As stabilization. J. Clean. Prod. 2019, 217, 22–31. [Google Scholar] [CrossRef]
- Zgangurov, E.V.; Lebedeva, M.P.; Shishkov, V.A. Mineralogical and Micromorphological Diagnostics of Pedogenesis on Intermediate and Mafic Rocks in the Northern Taiga of the Timan Range. Eurasian Soil Sci. 2018, 51, 1357–1368. [Google Scholar] [CrossRef]
- Chomczyńska, M.; Kujawska, J.; Wasąg, H. Application of drilling waste in the reclamation of acidic soils. Rocz. Ochr. Srodowiska 2016, 18, 375–388. [Google Scholar]
- Abedin, J.; Beckett, P.; Spiers, G. An evaluation of extractants for assessment of metal phytoavailability to guide reclamation practices in acidic soilscapes in northern regions. Can. J. Soil Sci. 2012, 92, 253–268. [Google Scholar] [CrossRef] [Green Version]
- Jordán, M.M.; Bech, J.; García-Sánchez, E.; García-Orenes, F. Bulk density and aggregate stability assays in percolation columns. J. Min. Inst. 2016, 222, 877–881. [Google Scholar]
- Working Group on Land Reclamation, Environmental Protection, and Best Available Techniques (BAT) in Mining. Available online: https://www.rohstoff-forum.org/ag-rekultivierung (accessed on 20 May 2020).
- Rodrigues, M.; Mendes, L. Mapping of the literature on social responsibility in the mining industry: A systematic literature review. J. Clean. Prod. 2018, 181, 88–101. [Google Scholar] [CrossRef]
- Nascimento, D.R.; Oliveira, B.R.; Saide, V.G.P.; Scheid, C.M.; Calçada, L.A. Effects of particle-size distribution and solid additives in the apparent viscosity of drilling fluids. J. Pet. Sci. Eng. 2019, 182, 106275. [Google Scholar] [CrossRef]
- Srungavarapu, M.; Patidar, K.K.; Pathak, A.K.; Mandal, A. Performance studies of water-based drilling fluid for drilling through hydrate bearing sediments. Appl. Clay Sci. 2018, 152, 211–220. [Google Scholar] [CrossRef]
- Jha, P.K.; Mahto, V.; Saxena, V.K. Effects of Carboxymethyl Cellulose and Tragacanth Gum on the Properties of Emulsion-Based Drilling Fluids. Can. J. Chem. Eng. 2015, 93, 1577–1587. [Google Scholar] [CrossRef]
- Kök, M.V.; Bal, B. Effects of silica nanoparticles on the performance of water-based drilling fluids. J. Pet. Sci. Eng. 2019, 180, 605–614. [Google Scholar] [CrossRef]
Sample | Cd | Co | Cr | Cu | Ni | Pb | Sr | Zn |
---|---|---|---|---|---|---|---|---|
SP-1 | 0.25 | 0.26 | 0.21 | 0.90 | 0.47 | 0.01 | 0.26 | 0.78 |
SP-2 | 0.20 | 0.28 | 0.26 | 0.76 | 0.50 | 0.03 | 0.52 | 0.95 |
SP-3 | 0.35 | 0.30 | 0.24 | 0.86 | 0.51 | 0.02 | 0.25 | 0.86 |
SP-4 | 0.22 | 1.20 | 0.23 | 0.83 | 0.49 | 0.01 | 0.27 | 0.82 |
SP-5 | 0.25 | 0.28 | 0.21 | 0.80 | 0.52 | 0.03 | 0.26 | 0.95 |
Sample Series | Brick firing Temperature, °C | Collapse Pressure, MPa | Average, MPa | |||||
---|---|---|---|---|---|---|---|---|
SB-1 | 120 | 2.00 | 2.36 | 2.11 | 2.24 | 2.27 | 2.19 | 2.63 |
SB-2 | 800 | 11.81 | 12.17 | 8.70 | 8.08 | 14.28 | 12.60 | 13.53 |
SB-3 | 900 | 12.44 | 13.18 | 16.02 | 9.95 | 9.95 | 13.01 | 14.91 |
SB-4 | 1000 | 8.08 | 9.70 | 8.83 | 11.44 | 10.07 | 9.62 | 11.54 |
Sample | HE-1 | HE-2 | HE-3 | HE-4 | HE-5 | HE-6 | HE-7 | HE-8 | HE-9 | HE-10 |
---|---|---|---|---|---|---|---|---|---|---|
pHKCl | 3.54 | 3.55 | 3.73 | 3.68 | 3.69 | 3.54 | 3.54 | 3.50 | 3.49 | 3.55 |
Sample | SP-1 | SP-2 | SP-3 | SP-4 | SP-5 |
---|---|---|---|---|---|
pH | 8.72 | 8.84 | 8.95 | 8.47 | 8.80 |
HE/SP Ratio | 90/10 | 80/20 | 70/30 | 60/40 | 50/50 | 40/60 | 30/70 | 20/80 | 10/90 | |
---|---|---|---|---|---|---|---|---|---|---|
pH | TM-1 | 5.80 | 6.50 | 7.04 | 7.40 | 7.50 | 7.58 | 7.70 | 7.68 | 7.93 |
TM-2 | 5.96 | 6.47 | 7.14 | 7.46 | 7.53 | 7.60 | 7.64 | 7.71 | 7.90 | |
TM-3 | 5.87 | 6.48 | 7.09 | 7.43 | 7.51 | 7.59 | 7.68 | 7.69 | 7.91 | |
TM-4 | 5.96 | 6.50 | 7.13 | 7.47 | 7.53 | 7.61 | 7.65 | 7.72 | 7.90 | |
TM-5 | 5.89 | 6.46 | 7.08 | 7.43 | 7.49 | 7.62 | 7.67 | 7.70 | 7.92 |
Sample Series | DF-1 | DF-2 | DF-3 | DF-4 |
---|---|---|---|---|
Fluid loss, cm3 | 24.0 | 25.0 | 23.5 | 24.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pashkevich, M.A.; Alekseenko, A.V. Reutilization Prospects of Diamond Clay Tailings at the Lomonosov Mine, Northwestern Russia. Minerals 2020, 10, 517. https://doi.org/10.3390/min10060517
Pashkevich MA, Alekseenko AV. Reutilization Prospects of Diamond Clay Tailings at the Lomonosov Mine, Northwestern Russia. Minerals. 2020; 10(6):517. https://doi.org/10.3390/min10060517
Chicago/Turabian StylePashkevich, Mariya A., and Alexey V. Alekseenko. 2020. "Reutilization Prospects of Diamond Clay Tailings at the Lomonosov Mine, Northwestern Russia" Minerals 10, no. 6: 517. https://doi.org/10.3390/min10060517
APA StylePashkevich, M. A., & Alekseenko, A. V. (2020). Reutilization Prospects of Diamond Clay Tailings at the Lomonosov Mine, Northwestern Russia. Minerals, 10(6), 517. https://doi.org/10.3390/min10060517