The Relationship between Surface Roughness, Capillarity and Mineral Composition in Roofing Slates
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cárdenes, V.; Cnudde, J.P.; Wichert, J.; Large, D.; López-Munguira, A.; Cnudde, V. Roofing slate standards: A critical review. Constr. Build. Mater. 2016, 115, 93–104. [Google Scholar] [CrossRef]
- Cárdenes, V.; Rubio-Ordoñez, A.; Ruiz de Argandoña, V.G. Definition of Roofing Slate Lithotypes for an International Roofing Slate Classification. Key Mater. Eng. 2020, 848, 48–57. [Google Scholar]
- Wagner, H.W.; Jung, D.; Wagner, J.F.; Wagner, M.P. Slatecalculation—A practical tool for deriving norm minerals in the lowest-grade metamorphic pelites and roof slates. Minerals 2020, 10, 395. [Google Scholar] [CrossRef]
- Cárdenes, V.; Rubio-Ordóñez, Á.; Wichert, J.; Cnudde, J.P.; Cnudde, V. Petrography of roofing slates. Earth-Sci. Rev. 2014, 138, 435–453. [Google Scholar] [CrossRef]
- Garabito, J.; Rodriguez, A.; Garabito, J.C.; Calderon, V. Durability of slate and zinc sheets in the rehabilitation of historical heritage. A case study. Constr. Build. Mater. 2017, 135, 212–224. [Google Scholar] [CrossRef]
- Perini, K.; Castellari, P.; Giachetta, A.; Turcato, C.; Roccotiello, E. Experiencing innovative biomaterials for buildings: Potentialities of mosses. Build. Environ. 2020, 172, 8. [Google Scholar] [CrossRef]
- Sanmartín, P.; Silva, B.; Prieto, B. Effect of surface finish on roughness, color and gloss of ornamental granites. J. Mater. Civ. Eng. 2010, 23, 1239–1249. [Google Scholar] [CrossRef]
- Cárdenes, V.; Rubio-Ordóñez, A.; López-Munguira, A.; De la Horra, R.; Monterroso, C.; Paradelo, R.; Calleja, L. Mineralogy and modulus of rupture of roofing slate: Applications in the prospection and quarrying of slate deposits. Eng. Geol. 2010, 114, 191–197. [Google Scholar] [CrossRef]
- Grissom, C.A.; Charola, A.E.; Wachowiak, M.J. Measuring surface roughness on stone: Back to basics. Stud. Conserv. 2000, 45, 73–84. [Google Scholar] [CrossRef]
- Alonso, F.J.; Vázquez, P.; Esbert, R.; Ordaz, J. Influence of measuring conditions on roughness parameters of ornamental rocks. In Proceedings of the International Workshop in Preservation of Natural Stone and Rock Weathering, Madrid, Spain, 14 July 2007. [Google Scholar]
- Gadelmawla, E.S.; Koura, M.M.; Maksoud, T.M.A.; Elewa, I.M.; Soliman, H.H. Roughness parameters. J. Mater. Process. Technol. 2002, 123, 133–145. [Google Scholar] [CrossRef]
- Butt, H.-J. Capillary Forces: Influence of Roughness and Heterogeneity. Langmuir 2008, 24, 4715–4721. [Google Scholar] [CrossRef] [PubMed]
- Butt, H.J.; Kappl, M. Normal capillary forces. Adv. Colloid Interface Sci. 2009, 146, 48–60. [Google Scholar] [CrossRef] [PubMed]
- Fasana, S.; Nelva, R. Improvement of the performance of traditional stone roofs by wind driven rain experimental tests. Constr. Build. Mater. 2011, 25, 1491–1502. [Google Scholar] [CrossRef]
- Jenkins, J.C. The Slate Roof Bible, 3rd ed.; Traditionalroofs.com: Grove City, PA, USA, 2016. [Google Scholar]
- Menéndez-Seigas, J.L. Architecture and Techniques of Slate Roofing; Asociación Galega de Pizarristas: Sobradelo de Valdeorras, Spain, 2007. [Google Scholar]
- British Standards Institution (BSI). Code of Practice for Slating and Tiling (Including Shingles); BS 5534:2014; BSI: London, UK, 2014; p. 141. [Google Scholar]
- AEN/CTN_22. UNE 22190:2014. Productos de Piedra Natural. Construcción de Cubiertas Inclinadas y Revestimiento de Paramentos Verticales con Pizarra; AENOR: Brussels, Belgium, 2014; p. 44. [Google Scholar]
- López-Mesones, F. Diseño y Construcción de Cubiertas de Pizarra; Cluster da Pizarra de Galicia: Sobradelo de Valdeorras, Spain, 2012. [Google Scholar]
- Guimaraes, A.S.; Delgado, J.; de Freitas, V.P.; Albuquerque, A.P. The Effect of Salt Solutions and Absorption Cycles in the Capillary and Drying Coefficient of Red Brick Samples with Different Joints. Adv. Mater. Sci. Eng. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Cann, J.H. Physical weathering of slate gravestones in a Mediterranean climate. Aust. J. Earth Sci. 2012, 59, 1021–1032. [Google Scholar] [CrossRef]
- CEN/TC_128. EN 12326. Slate and Stone Products for Discontinuous Roofing and Cladding—Parts 1 (Product Specification) and 2 (Methods of Test); BSI Corporate: London, UK, 2014. [Google Scholar]
- ISO_25178-2. ISO 25178-2: Geometrical Product Specifications (GPS)—Surface Texture: Areal—Part 2: Terms, Definitions and Surface Texture Parameters; BSI Corporate: London, UK, 2012. [Google Scholar]
- CEN/TC_246. EN 12370—Natural Stone Test Methods—Determination of Resistance to Salt Crystallization; BSI Corporate: London, UK, 2020. [Google Scholar]
- Derluyn, H.; Dewanckele, J.; Boone, M.N.; Cnudde, V.; Derome, D.; Carmeliet, J. Crystallization of hydrated and anhydrous salts in porous limestone resolved by synchrotron X-ray microtomography. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 2014, 324, 102–112. [Google Scholar] [CrossRef] [Green Version]
- Ward, C.; Gómez-Fernandez, F. Quantitative mineralogical analysis of spanish roofing slates using the Rietveld method and X-ray powder diffraction data. Eur. J. Mineral. 2003, 15, 1051–1062. [Google Scholar] [CrossRef]
CODE | IRSC | Market | Location | Surface Texture | ||||
---|---|---|---|---|---|---|---|---|
Smooth | Grained | Flaked | Lineation | Features | ||||
BRA | B0 | Low | Minas Gerais, Brazil | X | X | |||
WAM | B0 | Low | Gauteng, South Africa | X | ||||
BUR | B0 | Low | Lake District, UK | X | X | |||
01 | B1 | High | Valdeorras, Spain | XX | ||||
02 | B1 | High | Valdeorras, Spain | X | X | |||
03 | B1 | High | Valdeorras, Spain | X | XX | |||
04 | B1 | High | Valdeorras, Spain | X | ||||
05 | B1 | No market | Valdeorras, Spain | X | XXX | |||
06 | B1 | Low | Valdeorras, Spain | X | XX | Pyrite | ||
PIV | B1 | High | Valdeorras, Spain | X | X | |||
PEN | R1 | Medium | Penrhyn, UK | X | ||||
NYR | R1 | Low | New York, USA | X | ||||
RIM | G1 | No market | Rimogne, France | X | X | Magnetite | ||
OSO | G2 | Medium | Lugo, Spain | X | ||||
SPT | ST | Low | Valmalenco, Italy | X | X | XXX | ||
ALT | ST | Low | Alta, Norway | X |
CODE | Mineralogy (%) | RUG Sa (µm) | Capillary Ascension (cm) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Q | Chl | Mica | Fs | Cte | Acc | Wt // | Wt Ͱ | Na2SO4 // | Na2SO4 Ͱ | NaCl // | NaCl Ͱ | ||
BRA | 65.5 | 9.1 | 6.2 | 19.2 | 0.0 | 0.0 | 110.7 | 4.8(6.1) | 5.2(5.6) | 4.5(6.4) | 4.5(6.0) | 4.6(5.2) | 4.7(--) |
WAM | 49.5 | 4.1 | 30.6 | 5.7 | 9.7 | 0.4 | 136.0 | 4.8(7.0) | 5.2(6.0) | 3.8(6.0) | 5.5(7.5) | 3.8(--) | 4.7(--) |
BUR | 64.1 | 18.2 | 17.6 | 0.0 | 0.0 | 0.0 | 114.5 | 5.2(5.8) | 5.2(5.3) | 3.6(--) | 3.6(4.4) | 4.5(5.9) | 4.3(--) |
01 | 47.7 | 11.0 | 22.5 | 17.9 | 0.0 | 0.9 | 173.3 | 4.8(5.8) | 5.1(--) | 4.8(5.8) | 4.7(5.7) | 4.4(--) | 4.2(5.5) |
02 | 33.5 | 13.4 | 39.7 | 13.4 | 0.0 | 0.0 | 51.7 | 4.0(8.0) | 3.9(8.3) | 3.3(4.5) | 4.5(8.0) | 3.2(5.8) | 3.8(8.5) |
03 | 31.3 | 21.4 | 17.6 | 29.2 | 0.0 | 0.5 | 100.1 | 4.9(5.0) | 5.2(--) | 3.4(--) | 4.9(--) | 3.8(5.0) | 3.8(5.5) |
04 | 45.7 | 15.0 | 20.4 | 18.3 | 0.0 | 0.5 | 82.5 | 3.9(4.5) | 4.5(4.6) | 2.9(--) | 4.2(--) | 3.5(--) | 4.2(--) |
05 | 34.9 | 26.1 | 17.0 | 21.3 | 0.0 | 0.7 | 292.6 | 3.8(6.8) | 4.1(4.6) | 3.3(4.3) | 5.0(7.0) | 5.5(6.5) | 4.5(6.5) |
06 | 32.2 | 21.5 | 18.0 | 27.9 | 0.0 | 0.4 | 63. 0 | 3.3(4.5) | 4.4(6.0) | 3.0(4.4) | 3.8(--) | 3.6(--) | 3.8(5.4) |
PIV | 41.6 | 9.9 | 15.8 | 31.6 | 0.0 | 1.1 | 94.8 | 3.3(5.5) | 4.9(--) | 2.8(--) | 3.6(--) | 3.5(4.5) | 4.2(--) |
PEN | 47.5 | 14.9 | 11.0 | 19.3 | 0.0 | 7.3 | 126.0 | 4.2(5.0) | 5.2(6.2) | 3.0(3.0) | 5.5(5.9) | 5.0(6.0) | 4.5(6.5) |
NYR | 37.3 | 1.6 | 9.8 | 12.9 | 30.9 | 7.6 | 95.6 | 4.5(5.0) | 4.9(5.8) | 3.4(3.6) | 4.2(4.5) | 4.0(5.7) | 3.8(4.4) |
RIM | 35.3 | 6.6 | 30.4 | 27.7 | 0.0 | 0.0 | 127.7 | 4.8(7.0) | 5.0(6.0) | 4.8(5.8) | 5.5(7.5) | 4.5(8.0) | 5.0(9.3) |
OSO | 35.5 | 10.0 | 39.0 | 15.6 | 0.0 | 0.0 | 117.3 | 4.6(5.0) | 5.3(6.9) | 3.5(4.5) | 4.5(6.0) | 4.2(5.1) | 4.1(--) |
ALT | 58.9 | 0.0 | 21.6 | 19.5 | 0.0 | 0.0 | 401.1 | 5.7(--) | 6.2(--) | 5.0(5.0) | 7.0(9.0) | 4.2(5.5) | 9.8(14.8) |
Ant | Chy | Srp | Liz | ||||||||||
SPT | 26.4 | 37.5 | 22.9 | 13.2 | 202.1 | 5.4(6.5) | 5.9(6.9) | 4.9(6.5) | 5.5(8.0) | 6.2(9.5) | 5.5(6.3) |
Correlation Matrix | Sa | Wt // | Wt Ͱ | Na2SO4 // | Na2SO4 Ͱ | NaCl // | NaCl Ͱ | Q | Chl | Mica | Fs | Cte | Acc |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sa | 1 | 0.479 | 0.487 | 0.743 (**) | 0.539 (*) | 0.766 (**) | 0.493 | 0.297 | −0.189 | −0.064 | 0.007 | −0.131 | −0.129 |
16 | 16 | 16 | 16 | 16 | 16 | 16 | 15 | 15 | 15 | 15 | 15 | 15 | |
Wt // | 1 | 0.795 (**) | 0.597 (*) | 0.787 (**) | 0.603 (*) | 0.403 | 0.543 (*) | -0.468 | 0.077 | −0.429 | 0.069 | −0.126 | |
16 | 16 | 16 | 16 | 16 | 16 | 15 | 15 | 15 | 15 | 15 | 15 | ||
WtͰ | 1 | 0.564 (*) | 0.635 (**) | 0.707 (**) | 0.384 | 0.561 (*) | −0.571 (*) | −0.145 | −0.099 | 0.012 | 0.033 | ||
16 | 16 | 16 | 16 | 16 | 15 | 15 | 15 | 15 | 15 | 15 | |||
Na2SO4 // | 1 | 0.613 (*) | 0.765 (**) | 0.375 | 0.156 | −0.409 | 0.164 | 0.045 | −0.088 | 0.006 | |||
16 | 16 | 16 | 16 | 15 | 15 | 15 | 15 | 15 | 15 | ||||
Na2SO4Ͱ | 1 | 0.612 (*) | 0.460 | 0.433 | −0.522 (*) | 0.111 | −0.076 | −0.085 | −0.302 | ||||
16 | 16 | 16 | 15 | 15 | 15 | 15 | 15 | 15 | |||||
NaCl // | 1 | 0.161 | 0.478 | −0.552 (*) | 0.019 | −0.002 | −0.132 | −0.162 | |||||
16 | 16 | 15 | 15 | 15 | 15 | 15 | 15 | ||||||
NaClͰ | 1 | 0.262 | 0.205 | −0.349 | −0.078 | −0.115 | 0.210 | ||||||
16 | 15 | 15 | 15 | 15 | 15 | 15 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardenes, V.; García, A.; Rodríguez, E.; Hernández Battez, A.; López-Piñeiro, S.; Ruiz de Argandoña, V.G.; Rubio-Ordoñez, Á. The Relationship between Surface Roughness, Capillarity and Mineral Composition in Roofing Slates. Minerals 2020, 10, 539. https://doi.org/10.3390/min10060539
Cardenes V, García A, Rodríguez E, Hernández Battez A, López-Piñeiro S, Ruiz de Argandoña VG, Rubio-Ordoñez Á. The Relationship between Surface Roughness, Capillarity and Mineral Composition in Roofing Slates. Minerals. 2020; 10(6):539. https://doi.org/10.3390/min10060539
Chicago/Turabian StyleCardenes, Víctor, Alberto García, Eduardo Rodríguez, Antolín Hernández Battez, Santiago López-Piñeiro, Vicente G. Ruiz de Argandoña, and Álvaro Rubio-Ordoñez. 2020. "The Relationship between Surface Roughness, Capillarity and Mineral Composition in Roofing Slates" Minerals 10, no. 6: 539. https://doi.org/10.3390/min10060539
APA StyleCardenes, V., García, A., Rodríguez, E., Hernández Battez, A., López-Piñeiro, S., Ruiz de Argandoña, V. G., & Rubio-Ordoñez, Á. (2020). The Relationship between Surface Roughness, Capillarity and Mineral Composition in Roofing Slates. Minerals, 10(6), 539. https://doi.org/10.3390/min10060539