Effects of Dolomitization on Porosity during Various Sedimentation-Diagenesis Processes in Carbonate Reservoirs
Abstract
:1. Introduction
2. Geological Background
2.1. Tectonic Locations
2.2. Diagenesis
2.3. Sedimentary Environments
3. Model Setup
3.1. Model Tools
3.1.1. Equilibrium Mineral Dissolution/Precipitation
3.1.2. Kinetic Mineral Dissolution/Precipitation
3.2. One-Dimensional Flow
3.3. Vertical Profile Flow
3.4. Diagenesis Evolution
- ①
- Marine phreatic environment in the subtidal zone. Under the influence of tides, seawater leaks from the surface. The infiltration rate corresponds to the water exchange rate between seawater and formation.
- ②
- Meteoric fresh water and freshwater phreatic environment in the supralittoral zone. The diagenetic process consists of two sub-processes: (1) the atmospheric freshwater leaching process, with the following parameters: infiltration rate referenced to the infiltration rate of rainfall in equatorial regions, fluid composition corresponding to the equatorial region rainwater composition. (2) The shallow layer water flow process, with the fluid defined as mixed atmospheric fresh water and formation water.
- ③
- Seawater evaporation environment in shoal. The infiltration rate corresponds to that at the surface.
- ④
- Seawater and freshwater interaction environment in intertidal zones: The diagenetic process includes two sub-processes: (1) atmospheric freshwater leaching with an infiltration rate corresponding to the annual rainfall in the equatorial region and a fluid composition referring to the rainwater component in the equatorial region. (2) Seawater infiltration process after sea level rise. The infiltration rate corresponds to the water exchange rate between seawater and formation.
4. Results
4.1. One-Dimensional Flow
4.2. Vertical Profile Flow
4.3. Diagenetic Evolution
4.3.1. Marine Phreatic Environment in the Subtidal Zone
4.3.2. Meteoric Fresh Water and Freshwater Phreatic Environment in the Supralittoral Zone
4.3.3. Seawater Evaporation Environment in Shoal
4.3.4. Seawater and Freshwater Interaction Environment in Intertidal Zones
5. Discussion
5.1. Effect of Geological Factors on Dolomitization
5.2. Comparison of Model and Test Results during Successive Diagenetic Stages
5.3. Implications for Reservoir Evolution under Various Sedimentary Environments
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Alvarado, V.; Manrique, E. Enhanced Oil Recovery: An Update Review. Energies 2010, 3, 1529–1575. [Google Scholar] [CrossRef]
- Araujo, T.P.; Leite, M.G.P. Flow simulation with reactive transport applied to carbonate rock diagenesis. Mar. Pet. Geol. 2017, 88, 94–106. [Google Scholar] [CrossRef]
- Ehrenberg, S.N.; Walderhaug, O.; Bjorlykke, K. Carbonate porosity creation by mesogenetic dissolution: Reality or illusion? AAPG Bull. 2012, 96, 217–233. [Google Scholar] [CrossRef]
- Kang, Y. Reservoir rock characteristics of paleozoic marine facies carbonate rock in the Tarim Basin. Pet. Geol. Exp. 2007, 29, 217–223. [Google Scholar]
- Rashid, F.; Glover, P.W.J.; Lorinczi, P.; Hussein, D.; Collier, R.; Lawrence, J. Permeability prediction in tight carbonate rocks using capillary pressure measurements. Mar. Pet. Geol. 2015, 68, 536–550. [Google Scholar] [CrossRef]
- Teichert, B.M.A.; Johnson, J.E.; Solomon, E.A.; Giosan, L.; Rose, K.; Kocherla, M.; Connolly, E.C.; Torres, M.E. Composition and origin of authigenic carbonates in the Krishna–Godavari and Mahanadi Basins, eastern continental margin of India. Mar. Pet. Geol. 2014, 58, 438–460. [Google Scholar] [CrossRef]
- Zou, C.; Zhu, R.; Liu, K.; Su, L.; Bai, B.; Zhang, X.; Yuan, X.; Wang, J. Tight gas sandstone reservoirs in China: Characteristics and recognition criteria. J. Pet. Sci. Eng. 2012, 88, 82–91. [Google Scholar] [CrossRef]
- Javanbakht, M.; Wanas, H.A.; Jafarian, A.; Shahsavan, N.; Sahraeyan, M. Carbonate diagenesis in the Barremian-Aptian Tirgan Formation (Kopet-Dagh Basin, NE Iran): Petrographic, geochemical and reservoir quality constraints. J. Afr. Earth Sci. 2018, 144, 122–135. [Google Scholar] [CrossRef]
- Ronchi, P.; Ortenzi, A.; Borromeo, O.; Claps, M.; Zempolich, W.G. Depositional setting and diagenetic processes and their impact on the reservoir quality in the late Visean-Bashkirian Kashagan carbonate platform (Pre-Caspian Basin, Kazakhstan). AAPG Bull. 2010, 94, 1313–1348. [Google Scholar] [CrossRef]
- Yasuda, E.Y.; dos Santos, R.G.; Trevisan, O.V. Kinetics of carbonate dissolution and its effects on the porosity and permeability of consolidated porous media. J. Pet. Sci. Eng. 2013, 112, 284–289. [Google Scholar] [CrossRef]
- Li, J.; Ma, Y.; Huang, K.; Zhang, Y.; Wang, W.; Liu, J.; Li, Z.; Lu, S. Quantitative characterization of organic acid generation, decarboxylation, and dissolution in a shale reservoir and the corresponding applications—A case study of the Bohai Bay Basin. Fuel 2018, 214, 538–545. [Google Scholar] [CrossRef]
- Li, Y.; Yang, W.; Wang, Q.; Song, Y.; Jiang, Z.; Guo, L.; Zhang, Y.; Wang, J. Influence of the actively migrated diagenetic elements on the hydrocarbon generation potential in tuffaceous shale. Fuel 2019, 256, 115795. [Google Scholar] [CrossRef]
- Read, J.F.; Husinec, A.; Cangialosi, M.; Loehn, C.W.; Prtoljan, B. Climate controlled, fabric destructive, reflux dolomitization and stabilization via marine- and synorogenic mixed fluids: An example from a large Mesozoic, calcite-sea platform, Croatia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 449, 108–126. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Ning, Z.; Zhao, T.; Zhang, R.; Wang, Q. Effects of mineralogy on petrophysical properties and permeability estimation of the Upper Triassic Yanchang tight oil sandstones in Ordos Basin, Northern China. Fuel 2016, 186, 328–338. [Google Scholar] [CrossRef]
- Miller, K.; Vanorio, T.; Keehm, Y. Evolution of permeability and microstructure of tight carbonates due to numerical simulation of calcite dissolution. J. Geophys. Res. Solid Earth 2017, 122, 4460–4474. [Google Scholar] [CrossRef]
- Pearce, J.K.; Golab, A.; Dawson, G.K.W.; Knuefing, L.; Goodwin, C.; Golding, S.D. Mineralogical controls on porosity and water chemistry during O2-SO2-CO2 reaction of CO2 storage reservoir and cap-rock core. Appl. Geochem. 2016, 75, 152–168. [Google Scholar] [CrossRef] [Green Version]
- Adams, A.; Diamond, L.W. Early diagenesis driven by widespread meteoric infiltration of a Central European carbonate ramp: A reinterpretation of the Upper Muschelkalk. Sediment. Geol. 2017, 362, 37–52. [Google Scholar] [CrossRef]
- Berkowitz, B.; Singurindy, O.; Lowell, R.P. Mixing-driven diagenesis and mineral deposition: CaCO3 precipitation in salt water-fresh water mixing zones. Geophys. Res. Lett. 2003, 30, 4. [Google Scholar] [CrossRef]
- Dumariska-Slowik, M.; Powolny, T.; Sikorska-Jaworowska, M.; Heflik, W.; Morgun, V.; Xuan, B.T. Mineralogical and geochemical constraints on the origin and evolution of albitites from Dmytrivka at the Oktiabrski complex, Southeast Ukraine. Lithos 2019, 334, 231–244. [Google Scholar] [CrossRef]
- Jones, G.D.; Xiao, Y.T. Geothermal convection in the Tengiz carbonate platform, Kazakhstan: Reactive transport models of diagenesis and reservoir quality. AAPG Bull. 2006, 90, 1251–1272. [Google Scholar] [CrossRef]
- Jons, N.; Kahl, W.A.; Bach, W. Reaction-induced porosity and onset of low-temperature carbonation in abyssal peridotites: Insights from 3D high-resolution microtomography. Lithos 2017, 268, 274–284. [Google Scholar] [CrossRef] [Green Version]
- Putnis, A.; Hinrichs, R.; Putnis, C.V.; Golla-Schindler, U.; Collins, L.G. Hematite in porous red-clouded feldspars: Evidence of large-scale crustal fluid-rock interaction. Lithos 2007, 95, 10–18. [Google Scholar] [CrossRef]
- Iannace, A.; Capuano, M.; Galluccio, L. “Dolomites and dolomites” in Mesozoic platform carbonates of the Southern Apennines: Geometric distribution, petrography and geochemistry. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 310, 324–339. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, Y.; Dong, L.; Guo, Z. Oligocene syndepositional lacustrine dolomite: A study from the southern Junggar Basin, NW China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 503, 69–80. [Google Scholar] [CrossRef]
- Tosti, F.; Mastandrea, A.; Guido, A.; Demasi, F.; Russo, F.; Riding, R. Biogeochemical and redox record of mid–late Triassic reef evolution in the Italian Dolomites. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 399, 52–66. [Google Scholar] [CrossRef]
- Ebrahimi, P.; Vilcaez, J. Effect of brine salinity and guar gum on the transport of barium through dolomite rocks: Implications for unconventional oil and gas wastewater disposal. J. Environ. Manag. 2018, 214, 370–378. [Google Scholar] [CrossRef]
- Giorgioni, M.; Iannace, A.; D’Amore, M.; Dati, F.; Galluccio, L.; Guerriero, V.; Mazzoli, S.; Parente, M.; Strauss, C.; Vitale, S. Impact of early dolomitization on multi-scale petrophysical heterogeneities and fracture intensity of low-porosity platform carbonates (Albian-Cenomanian, southern Apennines, Italy). Mar. Pet. Geol. 2016, 73, 462–478. [Google Scholar] [CrossRef]
- Huang, S.; Gong, Y.; Huang, K.; Tong, H. The Influence of Burial History on Carbonate Dissolution and Precipitation A Case Study from Feixianguan Formation of Triassic, NE Sichuan and Ordovician Carbonate of Northern Tarim Basin. Adv. Earth Sci. 2010, 25, 381–390. [Google Scholar]
- Vincent, B.; Waters, J.; Witkowski, F.; Daniau, G.; Oxtoby, N.; Crowley, S.; Ellam, R. Diagenesis of Rotliegend sandstone reservoirs (offshore Netherlands): The origin and impact of dolomite cements. Sediment. Geol. 2018, 373, 272–291. [Google Scholar] [CrossRef]
- Jasionowski, M.; Peryt, T.M.; Durakiewicz, T. Polyphase dolomitisation of the Wuchiapingian Zechstein Limestone (Ca1) isolated reefs (Wolsztyn Palaeo-Ridge, Fore-Sudetic Monocline, SW Poland). Geol. Q. 2014, 58, 493–510. [Google Scholar]
- Chen, X.; Yi, W.; Lu, W. The Paleokarst Reservoirs of Oil/Gas FIelds in China. Acta Sedimentol. Sin. 2004, 22, 244–253. [Google Scholar]
- Ni, X.; Zhang, L.; Shen, A.; Qiao, Z.; Han, L. Diagenesis and pore evolution of the Ordovician karst reservoir in Yengimahalla-Hanilcatame region of Tarim Basin. J. Palaeogeogr. 2010, 12, 467–479. [Google Scholar]
- Wang, T.; Song, D.; Li, M.; Yang, C.; Ni, Z. Natural gas source and deep gas exploration potential of the Ordovician Yingshan Formation in the Shunnan-Gucheng region, Tarim Basin. Oil Gas Geol. 2014, 35, 753–762. [Google Scholar]
- Yu, Z.; Liu, K.; Zhao, M.; Liu, S.; Zhuo, Q.; Lu, X. Characterization of Diagenesis and the Petroleum Charge in Kela 2 Gas Field, Kuqa Depression, Tarim Basin. Earth Sci. 2016, 41, 533–545. [Google Scholar]
- Jiao, C.; He, Z.; Xing, X.; Qing, H.; He, B.; Li, C. Tectonic hydrothermal dolomite and its significance of reservoirs in Tarim basin. Acta Pet. Sin. 2011, 27, 277–284. [Google Scholar]
- You, D.; Han, J.; Hu, W.; Qian, Y.; Cao, Z.; Chen, Q.; Li, H. Characteristics and genesis of pores and micro-pores in ultra—deep limestones: A case study of Yijianfang Formation limestones from Shunnan-7 and Shuntuo-1 wells in Tarim Basin. Oil Gas Geol. 2017, 38, 693–702. [Google Scholar]
- Li, Z.; Li, J.; Zhang, P.; Yu, J.; Liu, J.; Yang, L. Key Structural-Fluid Evolution and Reservoir Diagenesis of Deep-buried Carbonates: An Example from the Ordovician Yingshan Formation in Tazhong, Tarim Basin. Bull. Mineral. Petrol. Geochem. 2016, 35, 827–838. [Google Scholar]
- Lu, Z.; Chen, H.; Qing, H.; Chi, G.; You, D.; Hang, Y.; Zhang, S. Petrography, fluid inclusion and isotope studies in Ordovician carbonate reservoirs in the Shunnan area, Tarim basin, NW China: Implications for the nature and timing of silicification. Sediment. Geol. 2017, 359, 29–43. [Google Scholar] [CrossRef]
- Liu, W.; Huang, Q.; Wang, K.; Shi, S.; Jiang, H. Characteristics of hydrothermal activity in the Tarim Basin and its reworking effect on carbonate reservoirs. Nat. Gas Ind. 2016, 36, 14–21. [Google Scholar] [CrossRef]
- Xu, T.; Sonnenthal, E.; Spycher, N.; Pruess, K. TOUGHREACT—A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: Applications to geothermal injectivity and CO2 geological sequestration. Comput. Geosci. 2006, 32, 145–165. [Google Scholar] [CrossRef]
- Ma, J.; Li, C.; Li, B. Distribution and changes of current, temperature and salinity in the equatorial region of the western Pacific Ocean. Acta Oceanol. Sin. 1985, 7, 131–142. [Google Scholar]
- Helpa, V.; Rybacki, E.; Abart, R.; Morales, L.F.G.; Rhede, D.; Jeřábek, P.; Dresen, G. Reaction kinetics of dolomite rim growth. Contrib. Mineral. Petrol. 2014, 167, 1001. [Google Scholar] [CrossRef] [Green Version]
- Montes-Hernandez, G.; Findling, N.; Renard, F. Dissolution-precipitation reactions controlling fast formation of dolomite under hydrothermal conditions. Appl. Geochem. 2016, 73, 169–177. [Google Scholar] [CrossRef]
- Machel, H.G. Concepts and models of dolomitization: A critical reappraisal. Geol. Soc. Lond. Spec. Publ. 2004, 235, 7–63. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, D.; Ye, N.; Li, Y. Reservoir characteristics and diagenesis of the Cambrian dolomite in the Tarim Basin. J. Northeast Pet. Univ. 2013, 37, 63–74. [Google Scholar]
- Li, P.; Chen, G.; Zeng, Q.; Yi, J.; Hu, G. Genesis of Lower Ordovician Dolomite in Central Tarim Basin. Acta Sedimentol. Sin. 2011, 29, 842–856. [Google Scholar]
- Hu, M.; Hu, Z.; Li, S.; Wang, Y. Geochemical Characteristics and Genetic Mechanism of the Ordovician Dolostone in the Tazhong Area, Tarim Basin. Acta Geol. Sin. 2011, 85, 2060–2069. [Google Scholar]
Model No. | T (°C) | Flow Rate (m/yr) | Seawater Index | Mg/Ca | pH | SO42− (mmol/L) |
---|---|---|---|---|---|---|
Base Case | 40 | 4 | 1# | 5.25 | 8.5 | 22.208 |
Case 1 | - | - | - | - | 222.08 | |
Case 2 | - | 2 | - | - | - | - |
Case 3 | - | 8 | - | - | - | - |
Case 4 | - | - | 2# | - | - | - |
Case 5 | - | - | 3# | - | - | - |
Case 6 | - | - | 4# | - | - | - |
Case 7 | - | - | - | 52.5 | - | - |
Case 8 | - | - | - | 10.5 | - | - |
Case 9 | - | - | - | - | 6.5 | - |
Case 10 | - | - | - | - | 9 | - |
Case 11 | 60 | - | - | - | - | - |
Case 12 | 80 | - | - | - | - | - |
Case 13 | 100 | - | - | - | - | - |
Seawater Index | Saltness (ppt) | Ca2+ | Mg2+ | K+ | Na+ | Cl− | HCO3− | SO42− |
---|---|---|---|---|---|---|---|---|
mmol/L | ||||||||
1# | 27 | 8.075 | 42.375 | 8.051 | 368.130 | 428.310 | 1.836 | 22.208 |
2# | 15 | 4.475 | 23.333 | 4.436 | 202.696 | 235.775 | 1.016 | 12.219 |
3# | 42 | 12.750 | 66.458 | 12.641 | 577.913 | 672.620 | 2.754 | 34.854 |
4# | 32 | 9.625 | 50.417 | 9.564 | 437.913 | 509.380 | 2.180 | 26.417 |
Sub-Models No. | Diagenesis Stage | Diagenetic Time (Ma) | Buried Depth (m) | Temperature (°C) | Fluid Composition | Mineral Composition |
---|---|---|---|---|---|---|
1# | Sedimentary-parasyngenetic stage | 488–465 | 0–100 | 25 | seawater, meteoric fresh water | micritization, calcite cement |
2# | Parasyngenetic-shallow burial stage | 465–460 | 50–600 | 25–40 | mixed water, formation water | calcite cement |
3# | Supergene stage | 460–455 | 0–50 | 25 | meteoric fresh water | calcite cement |
4# | Shallow burial stage | 455–445 | 50–600 | 25–40 | formation water | calcite cement |
5# | Middle-deep buried stage | 445–252 | 600–4600 | 40–120 | formation water, hydrothermal | calcite, dolomite, siliceous cement |
6# | Deep buried stage | 252–0 | 4600–7000 | 120–165 | formation water | calcite cement |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Yu, L.; Chen, D.; Liu, K.; Yang, P.; Li, X. Effects of Dolomitization on Porosity during Various Sedimentation-Diagenesis Processes in Carbonate Reservoirs. Minerals 2020, 10, 574. https://doi.org/10.3390/min10060574
Yang L, Yu L, Chen D, Liu K, Yang P, Li X. Effects of Dolomitization on Porosity during Various Sedimentation-Diagenesis Processes in Carbonate Reservoirs. Minerals. 2020; 10(6):574. https://doi.org/10.3390/min10060574
Chicago/Turabian StyleYang, Leilei, Linjiao Yu, Donghua Chen, Keyu Liu, Peng Yang, and Xinwei Li. 2020. "Effects of Dolomitization on Porosity during Various Sedimentation-Diagenesis Processes in Carbonate Reservoirs" Minerals 10, no. 6: 574. https://doi.org/10.3390/min10060574
APA StyleYang, L., Yu, L., Chen, D., Liu, K., Yang, P., & Li, X. (2020). Effects of Dolomitization on Porosity during Various Sedimentation-Diagenesis Processes in Carbonate Reservoirs. Minerals, 10(6), 574. https://doi.org/10.3390/min10060574